changeset 321:8d9b3ea59444 cacao

2007-10-24 Lillian Angel <langel@redhat.com> * patches/icedtea-libraries.patch: Updated jpeg patches to properly create OpenJDK's libjpeg.so without files common to the system installed libjpeg.so.
author Lillian Angel <langel@redhat.com>
date Wed, 24 Oct 2007 22:28:39 -0400
parents 335f71762c44
children f5f4a0462f74
files ChangeLog patches/icedtea-libraries.patch
diffstat 2 files changed, 25301 insertions(+), 222 deletions(-) [+]
line wrap: on
line diff
--- a/ChangeLog	Mon Oct 22 16:10:10 2007 -0400
+++ b/ChangeLog	Wed Oct 24 22:28:39 2007 -0400
@@ -1,3 +1,9 @@
+2007-10-24  Lillian Angel  <langel@redhat.com>
+
+	* patches/icedtea-libraries.patch: Updated jpeg patches to properly
+	create OpenJDK's libjpeg.so without files common to the system
+	installed libjpeg.so.
+
 2007-10-23  Christan Thalinger  <twisti@complang.tuwien.ac.at>
 
 	* j2se/make/common/Defs-linux.gmk: Updated for b22.
--- a/patches/icedtea-libraries.patch	Mon Oct 22 16:10:10 2007 -0400
+++ b/patches/icedtea-libraries.patch	Wed Oct 24 22:28:39 2007 -0400
@@ -20,210 +20,6 @@
  
  #define GIF_TRANSPARENT     0x01
  #define GIF_USER_INPUT      0x02
---- openjdk.old/j2se/src/share/native/sun/awt/splashscreen/splashscreen_jpeg.c	2007-10-12 04:03:51.000000000 -0400
-+++ openjdk/j2se/src/share/native/sun/awt/splashscreen/splashscreen_jpeg.c	2007-10-22 12:50:36.000000000 -0400
-@@ -25,11 +25,9 @@
- 
- #include "splashscreen_impl.h"
- 
--#include "jinclude.h"
--#include "jpeglib.h"
--#include "jerror.h"
--
-+#include <jerror.h>
- #include <setjmp.h>
-+#include <jpeglib.h>
- 
- /* stream input handling */
- 
-@@ -105,13 +103,9 @@
-     stream_src_ptr src;
- 
-     if (cinfo->src == NULL) {   /* first time for this JPEG object? */
--        cinfo->src = (struct jpeg_source_mgr *)
--            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, 
--            JPOOL_PERMANENT, SIZEOF(stream_source_mgr));
-+        cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(stream_source_mgr));
-         src = (stream_src_ptr) cinfo->src;
--        src->buffer = (JOCTET *)
--            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, 
--            JPOOL_PERMANENT, INPUT_BUF_SIZE * SIZEOF(JOCTET));
-+        src->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, INPUT_BUF_SIZE * sizeof(JOCTET));
-     }
- 
-     src = (stream_src_ptr) cinfo->src;
---- openjdk.old/j2se/make/sun/jpeg/FILES_c.gmk	2007-10-12 03:54:08.000000000 -0400
-+++ openjdk/j2se/make/sun/jpeg/FILES_c.gmk	2007-10-22 12:50:36.000000000 -0400
-@@ -23,53 +23,7 @@
- # have any questions.
- #
- 
--FILES_c = \
--	imageioJPEG.c \
--	jpegdecoder.c \
--	jcomapi.c \
--	jdapimin.c \
--	jdapistd.c \
--	jdcoefct.c \
--	jdcolor.c \
--	jddctmgr.c \
--	jdhuff.c \
--	jdinput.c \
--	jdmainct.c \
--	jdmarker.c \
--	jdmaster.c \
--	jdmerge.c \
--	jdphuff.c \
--	jdpostct.c \
--	jdsample.c \
--	jerror.c \
--	jidctflt.c \
--	jidctfst.c \
--	jidctint.c \
--	jidctred.c \
--	jmemmgr.c \
--	jmemnobs.c \
--	jquant1.c \
--	jquant2.c \
--	jutils.c \
--	jcapimin.c \
--	jcapistd.c \
--	jccoefct.c \
--	jccolor.c \
--	jcdctmgr.c \
--	jchuff.c \
--	jcinit.c \
--	jcmainct.c \
--	jcmarker.c \
--	jcmaster.c \
--	jcparam.c \
--	jcphuff.c \
--	jcprepct.c \
--	jcsample.c \
--	jctrans.c \
--	jdtrans.c \
--	jfdctflt.c \
--	jfdctfst.c \
--	jfdctint.c
-+
- 
- ifndef OPENJDK
- FILES_c += \
---- openjdk.old/j2se/make/sun/splashscreen/Makefile	2007-10-12 03:54:08.000000000 -0400
-+++ openjdk/j2se/make/sun/splashscreen/Makefile	2007-10-22 13:17:21.000000000 -0400
-@@ -59,12 +59,12 @@
- # C Flags
- #
- 
--CFLAGS += -DSPLASHSCREEN
-+CFLAGS += -DSPLASHSCREEN -DPNG_NO_MMX_CODE
- 
- ifneq ($(PLATFORM), windows)
-   CFLAGS += -DWITH_X11
-   CPPFLAGS += -I$(OPENWIN_HOME)/include -I$(OPENWIN_HOME)/include/X11/extensions
--  OTHER_LDLIBS += -L$(OPENWIN_LIB) -lX11 -lXext $(LIBM) -lpthread
-+  OTHER_LDLIBS += -L$(OPENWIN_LIB) -lX11 -lXext $(LIBM) -lpng -ljpeg -lgif -lz -lpthread
- else # PLATFORM
-   CFLAGS += -DWITH_WIN32
-   OTHER_LDLIBS += kernel32.lib user32.lib gdi32.lib 
-@@ -76,12 +76,7 @@
- #
- vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/splashscreen
- vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)
--vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/giflib
--vpath %.c   $(SHARE_SRC)/native/java/util/zip/zlib-1.1.3
--vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/libpng
--vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/image/jpeg
- vpath %.c   $(PLATFORM_SRC)/native/$(PKGDIR)/splashscreen
- 
- CPPFLAGS += -I$(PLATFORM_SRC)/native/$(PKGDIR)/splashscreen -I$(SHARE_SRC)/native/$(PKGDIR)/splashscreen
--CPPFLAGS += -I$(SHARE_SRC)/native/$(PKGDIR)/image/jpeg -I$(SHARE_SRC)/native/java/util/zip/zlib-1.1.3
- 
---- openjdk.old/j2se/make/sun/splashscreen/FILES_c.gmk	2007-10-12 03:54:08.000000000 -0400
-+++ openjdk/j2se/make/sun/splashscreen/FILES_c.gmk	2007-10-22 13:18:28.000000000 -0400
-@@ -30,81 +30,5 @@
- 	splashscreen_impl.c \
- 	splashscreen_jpeg.c \
- 	splashscreen_png.c \
--	splashscreen_sys.c \
--	png.c \
--	pngerror.c \
--	pngget.c \
--	pngmem.c  \
--	pngpread.c \
--	pngread.c \
--	pngrio.c \
--	pngrtran.c \
--	pngrutil.c \
--	pngset.c \
--	pngtrans.c \
--	pngwio.c \
--	pngwrite.c \
--	pngwtran.c \
--	pngwutil.c \
--	dgif_lib.c \
--	gif_err.c \
--	gifalloc.c \
--	compress.c \
--	deflate.c \
--	gzio.c \
--	infblock.c \
--	infcodes.c \
--	inffast.c \
--	inflate.c \
--	inftrees.c \
--	infutil.c \
--	trees.c \
--	uncompr.c \
--	zadler32.c \
--	zcrc32.c \
--	zutil.c \
--	jcomapi.c \
--	jdapimin.c \
--	jdapistd.c \
--	jdcoefct.c \
--	jdcolor.c \
--	jddctmgr.c \
--	jdhuff.c \
--	jdinput.c \
--	jdmainct.c \
--	jdmarker.c \
--	jdmaster.c \
--	jdmerge.c \
--	jdphuff.c \
--	jdpostct.c \
--	jdsample.c \
--	jerror.c \
--	jidctflt.c \
--	jidctfst.c \
--	jidctint.c \
--	jidctred.c \
--	jmemmgr.c \
--	jmemnobs.c \
--	jquant1.c \
--	jquant2.c \
--	jutils.c \
--	jcapimin.c \
--	jcapistd.c \
--	jccoefct.c \
--	jccolor.c \
--	jcdctmgr.c \
--	jchuff.c \
--	jcinit.c \
--	jcmainct.c \
--	jcmarker.c \
--	jcmaster.c \
--	jcparam.c \
--	jcphuff.c \
--	jcprepct.c \
--	jcsample.c \
--	jctrans.c \
--	jdtrans.c \
--	jfdctflt.c \
--	jfdctfst.c \
--	jfdctint.c
-+	splashscreen_sys.c
- 
 --- openjdk.old/j2se/src/share/native/java/util/zip/Adler32.c	2007-10-12 04:03:46.000000000 -0400
 +++ openjdk/j2se/src/share/native/java/util/zip/Adler32.c	2007-10-22 13:21:09.000000000 -0400
 @@ -29,7 +29,7 @@
@@ -235,24 +31,6 @@
  
  #include "java_util_zip_Adler32.h"
  
---- openjdk.old/j2se/src/share/native/java/util/zip/zip_util.c	2007-10-12 04:03:46.000000000 -0400
-+++ openjdk/j2se/src/share/native/java/util/zip/zip_util.c	2007-10-22 13:22:05.000000000 -0400
-@@ -36,6 +36,7 @@
- #include <time.h>
- #include <ctype.h>
- #include <assert.h>
-+#include <zlib.h>
- 
- #include "jni.h"
- #include "jni_util.h"
-@@ -44,7 +45,6 @@
- #include "io_util.h"
- #include "io_util_md.h"
- #include "zip_util.h"
--#include "zlib.h"
- 
- /* USE_MMAP means mmap the CEN & ENDHDR part of the zip file. */
- #ifdef USE_MMAP
 --- openjdk.old/j2se/src/share/native/java/util/zip/Deflater.c	2007-10-12 04:03:46.000000000 -0400
 +++ openjdk/j2se/src/share/native/java/util/zip/Deflater.c	2007-10-22 13:22:34.000000000 -0400
 @@ -32,7 +32,7 @@
@@ -441,3 +219,25298 @@
  #include "java_util_zip_Inflater.h"
  
  #define ThrowDataFormatException(env, msg) \
+--- openjdk.old/j2se/src/share/native/java/util/zip/zip_util.c	2007-10-12 04:03:46.000000000 -0400
++++ openjdk/j2se/src/share/native/java/util/zip/zip_util.c	2007-10-23 14:33:18.000000000 -0400
+@@ -44,7 +44,8 @@
+ #include "io_util.h"
+ #include "io_util_md.h"
+ #include "zip_util.h"
+-#include "zlib.h"
++
++#include <zlib.h>
+ 
+ /* USE_MMAP means mmap the CEN & ENDHDR part of the zip file. */
+ #ifdef USE_MMAP
+--- openjdk.old/j2se/make/sun/splashscreen/FILES_c.gmk	2007-10-12 03:54:08.000000000 -0400
++++ openjdk/j2se/make/sun/splashscreen/FILES_c.gmk	2007-10-23 16:15:48.000000000 -0400
+@@ -30,81 +30,5 @@
+ 	splashscreen_impl.c \
+ 	splashscreen_jpeg.c \
+ 	splashscreen_png.c \
+-	splashscreen_sys.c \
+-	png.c \
+-	pngerror.c \
+-	pngget.c \
+-	pngmem.c  \
+-	pngpread.c \
+-	pngread.c \
+-	pngrio.c \
+-	pngrtran.c \
+-	pngrutil.c \
+-	pngset.c \
+-	pngtrans.c \
+-	pngwio.c \
+-	pngwrite.c \
+-	pngwtran.c \
+-	pngwutil.c \
+-	dgif_lib.c \
+-	gif_err.c \
+-	gifalloc.c \
+-	compress.c \
+-	deflate.c \
+-	gzio.c \
+-	infblock.c \
+-	infcodes.c \
+-	inffast.c \
+-	inflate.c \
+-	inftrees.c \
+-	infutil.c \
+-	trees.c \
+-	uncompr.c \
+-	zadler32.c \
+-	zcrc32.c \
+-	zutil.c \
+-	jcomapi.c \
+-	jdapimin.c \
+-	jdapistd.c \
+-	jdcoefct.c \
+-	jdcolor.c \
+-	jddctmgr.c \
+-	jdhuff.c \
+-	jdinput.c \
+-	jdmainct.c \
+-	jdmarker.c \
+-	jdmaster.c \
+-	jdmerge.c \
+-	jdphuff.c \
+-	jdpostct.c \
+-	jdsample.c \
+-	jerror.c \
+-	jidctflt.c \
+-	jidctfst.c \
+-	jidctint.c \
+-	jidctred.c \
+-	jmemmgr.c \
+-	jmemnobs.c \
+-	jquant1.c \
+-	jquant2.c \
+-	jutils.c \
+-	jcapimin.c \
+-	jcapistd.c \
+-	jccoefct.c \
+-	jccolor.c \
+-	jcdctmgr.c \
+-	jchuff.c \
+-	jcinit.c \
+-	jcmainct.c \
+-	jcmarker.c \
+-	jcmaster.c \
+-	jcparam.c \
+-	jcphuff.c \
+-	jcprepct.c \
+-	jcsample.c \
+-	jctrans.c \
+-	jdtrans.c \
+-	jfdctflt.c \
+-	jfdctfst.c \
+-	jfdctint.c
++	splashscreen_sys.c 
+ 
+--- openjdk.old/j2se/make/sun/splashscreen/Makefile	2007-10-12 03:54:08.000000000 -0400
++++ openjdk/j2se/make/sun/splashscreen/Makefile	2007-10-23 16:20:24.000000000 -0400
+@@ -59,12 +59,12 @@
+ # C Flags
+ #
+ 
+-CFLAGS += -DSPLASHSCREEN
++CFLAGS += -DSPLASHSCREEN -DPNG_NO_MMX_CODE
+ 
+ ifneq ($(PLATFORM), windows)
+   CFLAGS += -DWITH_X11
+   CPPFLAGS += -I$(OPENWIN_HOME)/include -I$(OPENWIN_HOME)/include/X11/extensions
+-  OTHER_LDLIBS += -L$(OPENWIN_LIB) -lX11 -lXext $(LIBM) -lpthread
++  OTHER_LDLIBS += -L$(OPENWIN_LIB) -lX11 -lXext $(LIBM) -lpng -ljpeg -lgif -lz -lpthread
+ else # PLATFORM
+   CFLAGS += -DWITH_WIN32
+   OTHER_LDLIBS += kernel32.lib user32.lib gdi32.lib 
+@@ -76,12 +76,8 @@
+ #
+ vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/splashscreen
+ vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)
+-vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/giflib
+-vpath %.c   $(SHARE_SRC)/native/java/util/zip/zlib-1.1.3
+-vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/libpng
+ vpath %.c   $(SHARE_SRC)/native/$(PKGDIR)/image/jpeg
+ vpath %.c   $(PLATFORM_SRC)/native/$(PKGDIR)/splashscreen
+ 
+ CPPFLAGS += -I$(PLATFORM_SRC)/native/$(PKGDIR)/splashscreen -I$(SHARE_SRC)/native/$(PKGDIR)/splashscreen
+-CPPFLAGS += -I$(SHARE_SRC)/native/$(PKGDIR)/image/jpeg -I$(SHARE_SRC)/native/java/util/zip/zlib-1.1.3
+ 
+--- openjdk.old/j2se/src/share/native/sun/awt/splashscreen/splashscreen_jpeg.c	2007-10-12 04:03:51.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/splashscreen/splashscreen_jpeg.c	2007-10-23 16:29:30.000000000 -0400
+@@ -25,9 +25,8 @@
+ 
+ #include "splashscreen_impl.h"
+ 
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jerror.h"
++#include <jpeglib.h>
++#include <jerror.h>
+ 
+ #include <setjmp.h>
+ 
+@@ -105,13 +104,9 @@
+     stream_src_ptr src;
+ 
+     if (cinfo->src == NULL) {   /* first time for this JPEG object? */
+-        cinfo->src = (struct jpeg_source_mgr *)
+-            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, 
+-            JPOOL_PERMANENT, SIZEOF(stream_source_mgr));
++        cinfo->src = (struct jpeg_source_mgr *)(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, sizeof(stream_source_mgr));
+         src = (stream_src_ptr) cinfo->src;
+-        src->buffer = (JOCTET *)
+-            (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, 
+-            JPOOL_PERMANENT, INPUT_BUF_SIZE * SIZEOF(JOCTET));
++        src->buffer = (JOCTET *)(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, INPUT_BUF_SIZE * sizeof(JOCTET));
+     }
+ 
+     src = (stream_src_ptr) cinfo->src;
+diff -ruN openjdk.old/j2se/make/sun/jpeg/FILES_c.gmk openjdk/j2se/make/sun/jpeg/FILES_c.gmk
+--- openjdk.old/j2se/make/sun/jpeg/FILES_c.gmk	2007-10-12 03:54:08.000000000 -0400
++++ openjdk/j2se/make/sun/jpeg/FILES_c.gmk	2007-10-23 17:13:59.000000000 -0400
+@@ -25,51 +25,7 @@
+ 
+ FILES_c = \
+ 	imageioJPEG.c \
+-	jpegdecoder.c \
+-	jcomapi.c \
+-	jdapimin.c \
+-	jdapistd.c \
+-	jdcoefct.c \
+-	jdcolor.c \
+-	jddctmgr.c \
+-	jdhuff.c \
+-	jdinput.c \
+-	jdmainct.c \
+-	jdmarker.c \
+-	jdmaster.c \
+-	jdmerge.c \
+-	jdphuff.c \
+-	jdpostct.c \
+-	jdsample.c \
+-	jerror.c \
+-	jidctflt.c \
+-	jidctfst.c \
+-	jidctint.c \
+-	jidctred.c \
+-	jmemmgr.c \
+-	jmemnobs.c \
+-	jquant1.c \
+-	jquant2.c \
+-	jutils.c \
+-	jcapimin.c \
+-	jcapistd.c \
+-	jccoefct.c \
+-	jccolor.c \
+-	jcdctmgr.c \
+-	jchuff.c \
+-	jcinit.c \
+-	jcmainct.c \
+-	jcmarker.c \
+-	jcmaster.c \
+-	jcparam.c \
+-	jcphuff.c \
+-	jcprepct.c \
+-	jcsample.c \
+-	jctrans.c \
+-	jdtrans.c \
+-	jfdctflt.c \
+-	jfdctfst.c \
+-	jfdctint.c
++	jpegdecoder.c
+ 
+ ifndef OPENJDK
+ FILES_c += \
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcapimin.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcapimin.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcapimin.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcapimin.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,284 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcapimin.c
+- *
+- * Copyright (C) 1994-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains application interface code for the compression half
+- * of the JPEG library.  These are the "minimum" API routines that may be
+- * needed in either the normal full-compression case or the transcoding-only
+- * case.
+- *
+- * Most of the routines intended to be called directly by an application
+- * are in this file or in jcapistd.c.  But also see jcparam.c for
+- * parameter-setup helper routines, jcomapi.c for routines shared by
+- * compression and decompression, and jctrans.c for the transcoding case.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Initialization of a JPEG compression object.
+- * The error manager must already be set up (in case memory manager fails).
+- */
+-
+-GLOBAL(void)
+-jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
+-{
+-  int i;
+-
+-  /* Guard against version mismatches between library and caller. */
+-  cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */
+-  if (version != JPEG_LIB_VERSION)
+-    ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+-  if (structsize != SIZEOF(struct jpeg_compress_struct))
+-    ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, 
+-	     (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
+-
+-  /* For debugging purposes, we zero the whole master structure.
+-   * But the application has already set the err pointer, and may have set
+-   * client_data, so we have to save and restore those fields.
+-   * Note: if application hasn't set client_data, tools like Purify may
+-   * complain here.
+-   */
+-  {
+-    struct jpeg_error_mgr * err = cinfo->err;
+-    void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+-    MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
+-    cinfo->err = err;
+-    cinfo->client_data = client_data;
+-  }
+-  cinfo->is_decompressor = FALSE;
+-
+-  /* Initialize a memory manager instance for this object */
+-  jinit_memory_mgr((j_common_ptr) cinfo);
+-
+-  /* Zero out pointers to permanent structures. */
+-  cinfo->progress = NULL;
+-  cinfo->dest = NULL;
+-
+-  cinfo->comp_info = NULL;
+-
+-  for (i = 0; i < NUM_QUANT_TBLS; i++)
+-    cinfo->quant_tbl_ptrs[i] = NULL;
+-
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    cinfo->dc_huff_tbl_ptrs[i] = NULL;
+-    cinfo->ac_huff_tbl_ptrs[i] = NULL;
+-  }
+-
+-  cinfo->script_space = NULL;
+-
+-  cinfo->input_gamma = 1.0;	/* in case application forgets */
+-
+-  /* OK, I'm ready */
+-  cinfo->global_state = CSTATE_START;
+-}
+-
+-
+-/*
+- * Destruction of a JPEG compression object
+- */
+-
+-GLOBAL(void)
+-jpeg_destroy_compress (j_compress_ptr cinfo)
+-{
+-  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+-}
+-
+-
+-/*
+- * Abort processing of a JPEG compression operation,
+- * but don't destroy the object itself.
+- */
+-
+-GLOBAL(void)
+-jpeg_abort_compress (j_compress_ptr cinfo)
+-{
+-  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+-}
+-
+-
+-/*
+- * Forcibly suppress or un-suppress all quantization and Huffman tables.
+- * Marks all currently defined tables as already written (if suppress)
+- * or not written (if !suppress).  This will control whether they get emitted
+- * by a subsequent jpeg_start_compress call.
+- *
+- * This routine is exported for use by applications that want to produce
+- * abbreviated JPEG datastreams.  It logically belongs in jcparam.c, but
+- * since it is called by jpeg_start_compress, we put it here --- otherwise
+- * jcparam.o would be linked whether the application used it or not.
+- */
+-
+-GLOBAL(void)
+-jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
+-{
+-  int i;
+-  JQUANT_TBL * qtbl;
+-  JHUFF_TBL * htbl;
+-
+-  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+-    if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
+-      qtbl->sent_table = suppress;
+-  }
+-
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
+-      htbl->sent_table = suppress;
+-    if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
+-      htbl->sent_table = suppress;
+-  }
+-}
+-
+-
+-/*
+- * Finish JPEG compression.
+- *
+- * If a multipass operating mode was selected, this may do a great deal of
+- * work including most of the actual output.
+- */
+-
+-GLOBAL(void)
+-jpeg_finish_compress (j_compress_ptr cinfo)
+-{
+-  JDIMENSION iMCU_row;
+-
+-  if (cinfo->global_state == CSTATE_SCANNING ||
+-      cinfo->global_state == CSTATE_RAW_OK) {
+-    /* Terminate first pass */
+-    if (cinfo->next_scanline < cinfo->image_height)
+-      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+-    (*cinfo->master->finish_pass) (cinfo);
+-  } else if (cinfo->global_state != CSTATE_WRCOEFS)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  /* Perform any remaining passes */
+-  while (! cinfo->master->is_last_pass) {
+-    (*cinfo->master->prepare_for_pass) (cinfo);
+-    for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
+-      if (cinfo->progress != NULL) {
+-	cinfo->progress->pass_counter = (long) iMCU_row;
+-	cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
+-	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-      }
+-      /* We bypass the main controller and invoke coef controller directly;
+-       * all work is being done from the coefficient buffer.
+-       */
+-      if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
+-	ERREXIT(cinfo, JERR_CANT_SUSPEND);
+-    }
+-    (*cinfo->master->finish_pass) (cinfo);
+-  }
+-  /* Write EOI, do final cleanup */
+-  (*cinfo->marker->write_file_trailer) (cinfo);
+-  (*cinfo->dest->term_destination) (cinfo);
+-  /* We can use jpeg_abort to release memory and reset global_state */
+-  jpeg_abort((j_common_ptr) cinfo);
+-}
+-
+-
+-/*
+- * Write a special marker.
+- * This is only recommended for writing COM or APPn markers.
+- * Must be called after jpeg_start_compress() and before
+- * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
+- */
+-
+-GLOBAL(void)
+-jpeg_write_marker (j_compress_ptr cinfo, int marker,
+-		   const JOCTET *dataptr, unsigned int datalen)
+-{
+-  JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
+-
+-  if (cinfo->next_scanline != 0 ||
+-      (cinfo->global_state != CSTATE_SCANNING &&
+-       cinfo->global_state != CSTATE_RAW_OK &&
+-       cinfo->global_state != CSTATE_WRCOEFS))
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+-  write_marker_byte = cinfo->marker->write_marker_byte;	/* copy for speed */
+-  while (datalen--) {
+-    (*write_marker_byte) (cinfo, *dataptr);
+-    dataptr++;
+-  }
+-}
+-
+-/* Same, but piecemeal. */
+-
+-GLOBAL(void)
+-jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+-{
+-  if (cinfo->next_scanline != 0 ||
+-      (cinfo->global_state != CSTATE_SCANNING &&
+-       cinfo->global_state != CSTATE_RAW_OK &&
+-       cinfo->global_state != CSTATE_WRCOEFS))
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
+-}
+-
+-GLOBAL(void)
+-jpeg_write_m_byte (j_compress_ptr cinfo, int val)
+-{
+-  (*cinfo->marker->write_marker_byte) (cinfo, val);
+-}
+-
+-
+-/*
+- * Alternate compression function: just write an abbreviated table file.
+- * Before calling this, all parameters and a data destination must be set up.
+- *
+- * To produce a pair of files containing abbreviated tables and abbreviated
+- * image data, one would proceed as follows:
+- *
+- *		initialize JPEG object
+- *		set JPEG parameters
+- *		set destination to table file
+- *		jpeg_write_tables(cinfo);
+- *		set destination to image file
+- *		jpeg_start_compress(cinfo, FALSE);
+- *		write data...
+- *		jpeg_finish_compress(cinfo);
+- *
+- * jpeg_write_tables has the side effect of marking all tables written
+- * (same as jpeg_suppress_tables(..., TRUE)).  Thus a subsequent start_compress
+- * will not re-emit the tables unless it is passed write_all_tables=TRUE.
+- */
+-
+-GLOBAL(void)
+-jpeg_write_tables (j_compress_ptr cinfo)
+-{
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  /* (Re)initialize error mgr and destination modules */
+-  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+-  (*cinfo->dest->init_destination) (cinfo);
+-  /* Initialize the marker writer ... bit of a crock to do it here. */
+-  jinit_marker_writer(cinfo);
+-  /* Write them tables! */
+-  (*cinfo->marker->write_tables_only) (cinfo);
+-  /* And clean up. */
+-  (*cinfo->dest->term_destination) (cinfo);
+-  /*
+-   * In library releases up through v6a, we called jpeg_abort() here to free
+-   * any working memory allocated by the destination manager and marker
+-   * writer.  Some applications had a problem with that: they allocated space
+-   * of their own from the library memory manager, and didn't want it to go
+-   * away during write_tables.  So now we do nothing.  This will cause a
+-   * memory leak if an app calls write_tables repeatedly without doing a full
+-   * compression cycle or otherwise resetting the JPEG object.  However, that
+-   * seems less bad than unexpectedly freeing memory in the normal case.
+-   * An app that prefers the old behavior can call jpeg_abort for itself after
+-   * each call to jpeg_write_tables().
+-   */
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcapistd.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcapistd.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcapistd.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcapistd.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,165 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcapistd.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains application interface code for the compression half
+- * of the JPEG library.  These are the "standard" API routines that are
+- * used in the normal full-compression case.  They are not used by a
+- * transcoding-only application.  Note that if an application links in
+- * jpeg_start_compress, it will end up linking in the entire compressor.
+- * We thus must separate this file from jcapimin.c to avoid linking the
+- * whole compression library into a transcoder.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Compression initialization.
+- * Before calling this, all parameters and a data destination must be set up.
+- *
+- * We require a write_all_tables parameter as a failsafe check when writing
+- * multiple datastreams from the same compression object.  Since prior runs
+- * will have left all the tables marked sent_table=TRUE, a subsequent run
+- * would emit an abbreviated stream (no tables) by default.  This may be what
+- * is wanted, but for safety's sake it should not be the default behavior:
+- * programmers should have to make a deliberate choice to emit abbreviated
+- * images.  Therefore the documentation and examples should encourage people
+- * to pass write_all_tables=TRUE; then it will take active thought to do the
+- * wrong thing.
+- */
+-
+-GLOBAL(void)
+-jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
+-{
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  if (write_all_tables)
+-    jpeg_suppress_tables(cinfo, FALSE);	/* mark all tables to be written */
+-
+-  /* (Re)initialize error mgr and destination modules */
+-  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+-  (*cinfo->dest->init_destination) (cinfo);
+-  /* Perform master selection of active modules */
+-  jinit_compress_master(cinfo);
+-  /* Set up for the first pass */
+-  (*cinfo->master->prepare_for_pass) (cinfo);
+-  /* Ready for application to drive first pass through jpeg_write_scanlines
+-   * or jpeg_write_raw_data.
+-   */
+-  cinfo->next_scanline = 0;
+-  cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
+-}
+-
+-
+-/*
+- * Write some scanlines of data to the JPEG compressor.
+- *
+- * The return value will be the number of lines actually written.
+- * This should be less than the supplied num_lines only in case that
+- * the data destination module has requested suspension of the compressor,
+- * or if more than image_height scanlines are passed in.
+- *
+- * Note: we warn about excess calls to jpeg_write_scanlines() since
+- * this likely signals an application programmer error.  However,
+- * excess scanlines passed in the last valid call are *silently* ignored,
+- * so that the application need not adjust num_lines for end-of-image
+- * when using a multiple-scanline buffer.
+- */
+-
+-GLOBAL(JDIMENSION)
+-jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
+-		      JDIMENSION num_lines)
+-{
+-  JDIMENSION row_ctr, rows_left;
+-
+-  if (cinfo->global_state != CSTATE_SCANNING)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  if (cinfo->next_scanline >= cinfo->image_height)
+-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+-
+-  /* Call progress monitor hook if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+-    cinfo->progress->pass_limit = (long) cinfo->image_height;
+-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-  }
+-
+-  /* Give master control module another chance if this is first call to
+-   * jpeg_write_scanlines.  This lets output of the frame/scan headers be
+-   * delayed so that application can write COM, etc, markers between
+-   * jpeg_start_compress and jpeg_write_scanlines.
+-   */
+-  if (cinfo->master->call_pass_startup)
+-    (*cinfo->master->pass_startup) (cinfo);
+-
+-  /* Ignore any extra scanlines at bottom of image. */
+-  rows_left = cinfo->image_height - cinfo->next_scanline;
+-  if (num_lines > rows_left)
+-    num_lines = rows_left;
+-
+-  row_ctr = 0;
+-  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
+-  cinfo->next_scanline += row_ctr;
+-  return row_ctr;
+-}
+-
+-
+-/*
+- * Alternate entry point to write raw data.
+- * Processes exactly one iMCU row per call, unless suspended.
+- */
+-
+-GLOBAL(JDIMENSION)
+-jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
+-		     JDIMENSION num_lines)
+-{
+-  JDIMENSION lines_per_iMCU_row;
+-
+-  if (cinfo->global_state != CSTATE_RAW_OK)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  if (cinfo->next_scanline >= cinfo->image_height) {
+-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+-    return 0;
+-  }
+-
+-  /* Call progress monitor hook if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->pass_counter = (long) cinfo->next_scanline;
+-    cinfo->progress->pass_limit = (long) cinfo->image_height;
+-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-  }
+-
+-  /* Give master control module another chance if this is first call to
+-   * jpeg_write_raw_data.  This lets output of the frame/scan headers be
+-   * delayed so that application can write COM, etc, markers between
+-   * jpeg_start_compress and jpeg_write_raw_data.
+-   */
+-  if (cinfo->master->call_pass_startup)
+-    (*cinfo->master->pass_startup) (cinfo);
+-
+-  /* Verify that at least one iMCU row has been passed. */
+-  lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE;
+-  if (num_lines < lines_per_iMCU_row)
+-    ERREXIT(cinfo, JERR_BUFFER_SIZE);
+-
+-  /* Directly compress the row. */
+-  if (! (*cinfo->coef->compress_data) (cinfo, data)) {
+-    /* If compressor did not consume the whole row, suspend processing. */
+-    return 0;
+-  }
+-
+-  /* OK, we processed one iMCU row. */
+-  cinfo->next_scanline += lines_per_iMCU_row;
+-  return lines_per_iMCU_row;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jccoefct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jccoefct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jccoefct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jccoefct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,453 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jccoefct.c
+- *
+- * Copyright (C) 1994-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the coefficient buffer controller for compression.
+- * This controller is the top level of the JPEG compressor proper.
+- * The coefficient buffer lies between forward-DCT and entropy encoding steps.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* We use a full-image coefficient buffer when doing Huffman optimization,
+- * and also for writing multiple-scan JPEG files.  In all cases, the DCT
+- * step is run during the first pass, and subsequent passes need only read
+- * the buffered coefficients.
+- */
+-#ifdef ENTROPY_OPT_SUPPORTED
+-#define FULL_COEF_BUFFER_SUPPORTED
+-#else
+-#ifdef C_MULTISCAN_FILES_SUPPORTED
+-#define FULL_COEF_BUFFER_SUPPORTED
+-#endif
+-#endif
+-
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_c_coef_controller pub; /* public fields */
+-
+-  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
+-  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
+-  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+-  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+-
+-  /* For single-pass compression, it's sufficient to buffer just one MCU
+-   * (although this may prove a bit slow in practice).  We allocate a
+-   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
+-   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
+-   * it's not really very big; this is to keep the module interfaces unchanged
+-   * when a large coefficient buffer is necessary.)
+-   * In multi-pass modes, this array points to the current MCU's blocks
+-   * within the virtual arrays.
+-   */
+-  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+-
+-  /* In multi-pass modes, we need a virtual block array for each component. */
+-  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+-} my_coef_controller;
+-
+-typedef my_coef_controller * my_coef_ptr;
+-
+-
+-/* Forward declarations */
+-METHODDEF(boolean) compress_data
+-    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+-#ifdef FULL_COEF_BUFFER_SUPPORTED
+-METHODDEF(boolean) compress_first_pass
+-    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+-METHODDEF(boolean) compress_output
+-    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
+-#endif
+-
+-
+-LOCAL(void)
+-start_iMCU_row (j_compress_ptr cinfo)
+-/* Reset within-iMCU-row counters for a new row */
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+-   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+-   * But at the bottom of the image, process only what's left.
+-   */
+-  if (cinfo->comps_in_scan > 1) {
+-    coef->MCU_rows_per_iMCU_row = 1;
+-  } else {
+-    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+-    else
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+-  }
+-
+-  coef->mcu_ctr = 0;
+-  coef->MCU_vert_offset = 0;
+-}
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  coef->iMCU_row_num = 0;
+-  start_iMCU_row(cinfo);
+-
+-  switch (pass_mode) {
+-  case JBUF_PASS_THRU:
+-    if (coef->whole_image[0] != NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    coef->pub.compress_data = compress_data;
+-    break;
+-#ifdef FULL_COEF_BUFFER_SUPPORTED
+-  case JBUF_SAVE_AND_PASS:
+-    if (coef->whole_image[0] == NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    coef->pub.compress_data = compress_first_pass;
+-    break;
+-  case JBUF_CRANK_DEST:
+-    if (coef->whole_image[0] == NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    coef->pub.compress_data = compress_output;
+-    break;
+-#endif
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    break;
+-  }
+-}
+-
+-
+-/*
+- * Process some data in the single-pass case.
+- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+- * per call, ie, v_samp_factor block rows for each component in the image.
+- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+- *
+- * NB: input_buf contains a plane for each component in image,
+- * which we index according to the component's SOF position.
+- */
+-
+-METHODDEF(boolean)
+-compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+-  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  int blkn, bi, ci, yindex, yoffset, blockcnt;
+-  JDIMENSION ypos, xpos;
+-  jpeg_component_info *compptr;
+-
+-  /* Loop to write as much as one whole iMCU row */
+-  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+-       yoffset++) {
+-    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
+-	 MCU_col_num++) {
+-      /* Determine where data comes from in input_buf and do the DCT thing.
+-       * Each call on forward_DCT processes a horizontal row of DCT blocks
+-       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
+-       * sequentially.  Dummy blocks at the right or bottom edge are filled in
+-       * specially.  The data in them does not matter for image reconstruction,
+-       * so we fill them with values that will encode to the smallest amount of
+-       * data, viz: all zeroes in the AC entries, DC entries equal to previous
+-       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
+-       */
+-      blkn = 0;
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-	compptr = cinfo->cur_comp_info[ci];
+-	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+-						: compptr->last_col_width;
+-	xpos = MCU_col_num * compptr->MCU_sample_width;
+-	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
+-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+-	  if (coef->iMCU_row_num < last_iMCU_row ||
+-	      yoffset+yindex < compptr->last_row_height) {
+-	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+-					 input_buf[compptr->component_index],
+-					 coef->MCU_buffer[blkn],
+-					 ypos, xpos, (JDIMENSION) blockcnt);
+-	    if (blockcnt < compptr->MCU_width) {
+-	      /* Create some dummy blocks at the right edge of the image. */
+-	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
+-			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
+-	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
+-		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
+-	      }
+-	    }
+-	  } else {
+-	    /* Create a row of dummy blocks at the bottom of the image. */
+-	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
+-		      compptr->MCU_width * SIZEOF(JBLOCK));
+-	    for (bi = 0; bi < compptr->MCU_width; bi++) {
+-	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
+-	    }
+-	  }
+-	  blkn += compptr->MCU_width;
+-	  ypos += DCTSIZE;
+-	}
+-      }
+-      /* Try to write the MCU.  In event of a suspension failure, we will
+-       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
+-       */
+-      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+-	/* Suspension forced; update state counters and exit */
+-	coef->MCU_vert_offset = yoffset;
+-	coef->mcu_ctr = MCU_col_num;
+-	return FALSE;
+-      }
+-    }
+-    /* Completed an MCU row, but perhaps not an iMCU row */
+-    coef->mcu_ctr = 0;
+-  }
+-  /* Completed the iMCU row, advance counters for next one */
+-  coef->iMCU_row_num++;
+-  start_iMCU_row(cinfo);
+-  return TRUE;
+-}
+-
+-
+-#ifdef FULL_COEF_BUFFER_SUPPORTED
+-
+-/*
+- * Process some data in the first pass of a multi-pass case.
+- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+- * per call, ie, v_samp_factor block rows for each component in the image.
+- * This amount of data is read from the source buffer, DCT'd and quantized,
+- * and saved into the virtual arrays.  We also generate suitable dummy blocks
+- * as needed at the right and lower edges.  (The dummy blocks are constructed
+- * in the virtual arrays, which have been padded appropriately.)  This makes
+- * it possible for subsequent passes not to worry about real vs. dummy blocks.
+- *
+- * We must also emit the data to the entropy encoder.  This is conveniently
+- * done by calling compress_output() after we've loaded the current strip
+- * of the virtual arrays.
+- *
+- * NB: input_buf contains a plane for each component in image.  All
+- * components are DCT'd and loaded into the virtual arrays in this pass.
+- * However, it may be that only a subset of the components are emitted to
+- * the entropy encoder during this first pass; be careful about looking
+- * at the scan-dependent variables (MCU dimensions, etc).
+- */
+-
+-METHODDEF(boolean)
+-compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  JDIMENSION blocks_across, MCUs_across, MCUindex;
+-  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
+-  JCOEF lastDC;
+-  jpeg_component_info *compptr;
+-  JBLOCKARRAY buffer;
+-  JBLOCKROW thisblockrow, lastblockrow;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Align the virtual buffer for this component. */
+-    buffer = (*cinfo->mem->access_virt_barray)
+-      ((j_common_ptr) cinfo, coef->whole_image[ci],
+-       coef->iMCU_row_num * compptr->v_samp_factor,
+-       (JDIMENSION) compptr->v_samp_factor, TRUE);
+-    /* Count non-dummy DCT block rows in this iMCU row. */
+-    if (coef->iMCU_row_num < last_iMCU_row)
+-      block_rows = compptr->v_samp_factor;
+-    else {
+-      /* NB: can't use last_row_height here, since may not be set! */
+-      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+-      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+-    }
+-    blocks_across = compptr->width_in_blocks;
+-    h_samp_factor = compptr->h_samp_factor;
+-    /* Count number of dummy blocks to be added at the right margin. */
+-    ndummy = (int) (blocks_across % h_samp_factor);
+-    if (ndummy > 0)
+-      ndummy = h_samp_factor - ndummy;
+-    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
+-     * on forward_DCT processes a complete horizontal row of DCT blocks.
+-     */
+-    for (block_row = 0; block_row < block_rows; block_row++) {
+-      thisblockrow = buffer[block_row];
+-      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
+-				   input_buf[ci], thisblockrow,
+-				   (JDIMENSION) (block_row * DCTSIZE),
+-				   (JDIMENSION) 0, blocks_across);
+-      if (ndummy > 0) {
+-	/* Create dummy blocks at the right edge of the image. */
+-	thisblockrow += blocks_across; /* => first dummy block */
+-	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
+-	lastDC = thisblockrow[-1][0];
+-	for (bi = 0; bi < ndummy; bi++) {
+-	  thisblockrow[bi][0] = lastDC;
+-	}
+-      }
+-    }
+-    /* If at end of image, create dummy block rows as needed.
+-     * The tricky part here is that within each MCU, we want the DC values
+-     * of the dummy blocks to match the last real block's DC value.
+-     * This squeezes a few more bytes out of the resulting file...
+-     */
+-    if (coef->iMCU_row_num == last_iMCU_row) {
+-      blocks_across += ndummy;	/* include lower right corner */
+-      MCUs_across = blocks_across / h_samp_factor;
+-      for (block_row = block_rows; block_row < compptr->v_samp_factor;
+-	   block_row++) {
+-	thisblockrow = buffer[block_row];
+-	lastblockrow = buffer[block_row-1];
+-	jzero_far((void FAR *) thisblockrow,
+-		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
+-	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
+-	  lastDC = lastblockrow[h_samp_factor-1][0];
+-	  for (bi = 0; bi < h_samp_factor; bi++) {
+-	    thisblockrow[bi][0] = lastDC;
+-	  }
+-	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
+-	  lastblockrow += h_samp_factor;
+-	}
+-      }
+-    }
+-  }
+-  /* NB: compress_output will increment iMCU_row_num if successful.
+-   * A suspension return will result in redoing all the work above next time.
+-   */
+-
+-  /* Emit data to the entropy encoder, sharing code with subsequent passes */
+-  return compress_output(cinfo, input_buf);
+-}
+-
+-
+-/*
+- * Process some data in subsequent passes of a multi-pass case.
+- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+- * per call, ie, v_samp_factor block rows for each component in the scan.
+- * The data is obtained from the virtual arrays and fed to the entropy coder.
+- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+- *
+- * NB: input_buf is ignored; it is likely to be a NULL pointer.
+- */
+-
+-METHODDEF(boolean)
+-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+-  int blkn, ci, xindex, yindex, yoffset;
+-  JDIMENSION start_col;
+-  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+-  JBLOCKROW buffer_ptr;
+-  jpeg_component_info *compptr;
+-
+-  /* Align the virtual buffers for the components used in this scan.
+-   * NB: during first pass, this is safe only because the buffers will
+-   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
+-   */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    buffer[ci] = (*cinfo->mem->access_virt_barray)
+-      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+-       coef->iMCU_row_num * compptr->v_samp_factor,
+-       (JDIMENSION) compptr->v_samp_factor, FALSE);
+-  }
+-
+-  /* Loop to process one whole iMCU row */
+-  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+-       yoffset++) {
+-    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+-	 MCU_col_num++) {
+-      /* Construct list of pointers to DCT blocks belonging to this MCU */
+-      blkn = 0;			/* index of current DCT block within MCU */
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-	compptr = cinfo->cur_comp_info[ci];
+-	start_col = MCU_col_num * compptr->MCU_width;
+-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+-	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+-	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+-	    coef->MCU_buffer[blkn++] = buffer_ptr++;
+-	  }
+-	}
+-      }
+-      /* Try to write the MCU. */
+-      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
+-	/* Suspension forced; update state counters and exit */
+-	coef->MCU_vert_offset = yoffset;
+-	coef->mcu_ctr = MCU_col_num;
+-	return FALSE;
+-      }
+-    }
+-    /* Completed an MCU row, but perhaps not an iMCU row */
+-    coef->mcu_ctr = 0;
+-  }
+-  /* Completed the iMCU row, advance counters for next one */
+-  coef->iMCU_row_num++;
+-  start_iMCU_row(cinfo);
+-  return TRUE;
+-}
+-
+-#endif /* FULL_COEF_BUFFER_SUPPORTED */
+-
+-
+-/*
+- * Initialize coefficient buffer controller.
+- */
+-
+-GLOBAL(void)
+-jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_coef_ptr coef;
+-
+-  coef = (my_coef_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_coef_controller));
+-  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+-  coef->pub.start_pass = start_pass_coef;
+-
+-  /* Create the coefficient buffer. */
+-  if (need_full_buffer) {
+-#ifdef FULL_COEF_BUFFER_SUPPORTED
+-    /* Allocate a full-image virtual array for each component, */
+-    /* padded to a multiple of samp_factor DCT blocks in each direction. */
+-    int ci;
+-    jpeg_component_info *compptr;
+-
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+-	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+-				(long) compptr->h_samp_factor),
+-	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+-				(long) compptr->v_samp_factor),
+-	 (JDIMENSION) compptr->v_samp_factor);
+-    }
+-#else
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-#endif
+-  } else {
+-    /* We only need a single-MCU buffer. */
+-    JBLOCKROW buffer;
+-    int i;
+-
+-    buffer = (JBLOCKROW)
+-      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+-    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+-      coef->MCU_buffer[i] = buffer + i;
+-    }
+-    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jccolor.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jccolor.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jccolor.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jccolor.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,462 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jccolor.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains input colorspace conversion routines.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_color_converter pub; /* public fields */
+-
+-  /* Private state for RGB->YCC conversion */
+-  INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */
+-} my_color_converter;
+-
+-typedef my_color_converter * my_cconvert_ptr;
+-
+-
+-/**************** RGB -> YCbCr conversion: most common case **************/
+-
+-/*
+- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+- * The conversion equations to be implemented are therefore
+- *	Y  =  0.29900 * R + 0.58700 * G + 0.11400 * B
+- *	Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B  + CENTERJSAMPLE
+- *	Cr =  0.50000 * R - 0.41869 * G - 0.08131 * B  + CENTERJSAMPLE
+- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+- * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
+- * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and
+- * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
+- * were not represented exactly.  Now we sacrifice exact representation of
+- * maximum red and maximum blue in order to get exact grayscales.
+- *
+- * To avoid floating-point arithmetic, we represent the fractional constants
+- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+- * the products by 2^16, with appropriate rounding, to get the correct answer.
+- *
+- * For even more speed, we avoid doing any multiplications in the inner loop
+- * by precalculating the constants times R,G,B for all possible values.
+- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+- * for 12-bit samples it is still acceptable.  It's not very reasonable for
+- * 16-bit samples, but if you want lossless storage you shouldn't be changing
+- * colorspace anyway.
+- * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
+- * in the tables to save adding them separately in the inner loop.
+- */
+-
+-#define SCALEBITS	16	/* speediest right-shift on some machines */
+-#define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS)
+-#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+-#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+-
+-/* We allocate one big table and divide it up into eight parts, instead of
+- * doing eight alloc_small requests.  This lets us use a single table base
+- * address, which can be held in a register in the inner loops on many
+- * machines (more than can hold all eight addresses, anyway).
+- */
+-
+-#define R_Y_OFF		0			/* offset to R => Y section */
+-#define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */
+-#define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */
+-#define R_CB_OFF	(3*(MAXJSAMPLE+1))
+-#define G_CB_OFF	(4*(MAXJSAMPLE+1))
+-#define B_CB_OFF	(5*(MAXJSAMPLE+1))
+-#define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */
+-#define G_CR_OFF	(6*(MAXJSAMPLE+1))
+-#define B_CR_OFF	(7*(MAXJSAMPLE+1))
+-#define TABLE_SIZE	(8*(MAXJSAMPLE+1))
+-
+-
+-/*
+- * Initialize for RGB->YCC colorspace conversion.
+- */
+-
+-METHODDEF(void)
+-rgb_ycc_start (j_compress_ptr cinfo)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  INT32 * rgb_ycc_tab;
+-  INT32 i;
+-
+-  /* Allocate and fill in the conversion tables. */
+-  cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(TABLE_SIZE * SIZEOF(INT32)));
+-
+-  for (i = 0; i <= MAXJSAMPLE; i++) {
+-    rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
+-    rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
+-    rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i     + ONE_HALF;
+-    rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
+-    rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
+-    /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
+-     * This ensures that the maximum output will round to MAXJSAMPLE
+-     * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
+-     */
+-    rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
+-/*  B=>Cb and R=>Cr tables are the same
+-    rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
+-*/
+-    rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
+-    rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
+-  }
+-}
+-
+-
+-/*
+- * Convert some rows of samples to the JPEG colorspace.
+- *
+- * Note that we change from the application's interleaved-pixel format
+- * to our internal noninterleaved, one-plane-per-component format.
+- * The input buffer is therefore three times as wide as the output buffer.
+- *
+- * A starting row offset is provided only for the output buffer.  The caller
+- * can easily adjust the passed input_buf value to accommodate any row
+- * offset required on that side.
+- */
+-
+-METHODDEF(void)
+-rgb_ycc_convert (j_compress_ptr cinfo,
+-		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-		 JDIMENSION output_row, int num_rows)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  register int r, g, b;
+-  register INT32 * ctab = cconvert->rgb_ycc_tab;
+-  register JSAMPROW inptr;
+-  register JSAMPROW outptr0, outptr1, outptr2;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->image_width;
+-
+-  while (--num_rows >= 0) {
+-    inptr = *input_buf++;
+-    outptr0 = output_buf[0][output_row];
+-    outptr1 = output_buf[1][output_row];
+-    outptr2 = output_buf[2][output_row];
+-    output_row++;
+-    for (col = 0; col < num_cols; col++) {
+-      r = GETJSAMPLE(inptr[RGB_RED]);
+-      g = GETJSAMPLE(inptr[RGB_GREEN]);
+-      b = GETJSAMPLE(inptr[RGB_BLUE]);
+-      inptr += RGB_PIXELSIZE;
+-      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+-       * must be too; we do not need an explicit range-limiting operation.
+-       * Hence the value being shifted is never negative, and we don't
+-       * need the general RIGHT_SHIFT macro.
+-       */
+-      /* Y */
+-      outptr0[col] = (JSAMPLE)
+-		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+-		 >> SCALEBITS);
+-      /* Cb */
+-      outptr1[col] = (JSAMPLE)
+-		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+-		 >> SCALEBITS);
+-      /* Cr */
+-      outptr2[col] = (JSAMPLE)
+-		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+-		 >> SCALEBITS);
+-    }
+-  }
+-}
+-
+-
+-/**************** Cases other than RGB -> YCbCr **************/
+-
+-
+-/*
+- * Convert some rows of samples to the JPEG colorspace.
+- * This version handles RGB->grayscale conversion, which is the same
+- * as the RGB->Y portion of RGB->YCbCr.
+- * We assume rgb_ycc_start has been called (we only use the Y tables).
+- */
+-
+-METHODDEF(void)
+-rgb_gray_convert (j_compress_ptr cinfo,
+-		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-		  JDIMENSION output_row, int num_rows)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  register int r, g, b;
+-  register INT32 * ctab = cconvert->rgb_ycc_tab;
+-  register JSAMPROW inptr;
+-  register JSAMPROW outptr;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->image_width;
+-
+-  while (--num_rows >= 0) {
+-    inptr = *input_buf++;
+-    outptr = output_buf[0][output_row];
+-    output_row++;
+-    for (col = 0; col < num_cols; col++) {
+-      r = GETJSAMPLE(inptr[RGB_RED]);
+-      g = GETJSAMPLE(inptr[RGB_GREEN]);
+-      b = GETJSAMPLE(inptr[RGB_BLUE]);
+-      inptr += RGB_PIXELSIZE;
+-      /* Y */
+-      outptr[col] = (JSAMPLE)
+-		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+-		 >> SCALEBITS);
+-    }
+-  }
+-}
+-
+-/*
+- * Convert some rows of samples to the JPEG colorspace.
+- * This version handles Adobe-style CMYK->YCCK conversion,
+- * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
+- * conversion as above, while passing K (black) unchanged.
+- * We assume rgb_ycc_start has been called.
+- */
+-
+-METHODDEF(void)
+-cmyk_ycck_convert (j_compress_ptr cinfo,
+-		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-		   JDIMENSION output_row, int num_rows)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  register int r, g, b;
+-  register INT32 * ctab = cconvert->rgb_ycc_tab;
+-  register JSAMPROW inptr;
+-  register JSAMPROW outptr0, outptr1, outptr2, outptr3;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->image_width;
+-
+-  while (--num_rows >= 0) {
+-    inptr = *input_buf++;
+-    outptr0 = output_buf[0][output_row];
+-    outptr1 = output_buf[1][output_row];
+-    outptr2 = output_buf[2][output_row];
+-    outptr3 = output_buf[3][output_row];
+-    output_row++;
+-    for (col = 0; col < num_cols; col++) {
+-      r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
+-      g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
+-      b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
+-      /* K passes through as-is */
+-      outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */
+-      inptr += 4;
+-      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
+-       * must be too; we do not need an explicit range-limiting operation.
+-       * Hence the value being shifted is never negative, and we don't
+-       * need the general RIGHT_SHIFT macro.
+-       */
+-      /* Y */
+-      outptr0[col] = (JSAMPLE)
+-		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
+-		 >> SCALEBITS);
+-      /* Cb */
+-      outptr1[col] = (JSAMPLE)
+-		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
+-		 >> SCALEBITS);
+-      /* Cr */
+-      outptr2[col] = (JSAMPLE)
+-		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
+-		 >> SCALEBITS);
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Convert some rows of samples to the JPEG colorspace.
+- * This version handles grayscale output with no conversion.
+- * The source can be either plain grayscale or YCbCr (since Y == gray).
+- */
+-
+-METHODDEF(void)
+-grayscale_convert (j_compress_ptr cinfo,
+-		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-		   JDIMENSION output_row, int num_rows)
+-{
+-  register JSAMPROW inptr;
+-  register JSAMPROW outptr;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->image_width;
+-  int instride = cinfo->input_components;
+-
+-  while (--num_rows >= 0) {
+-    inptr = *input_buf++;
+-    outptr = output_buf[0][output_row];
+-    output_row++;
+-    for (col = 0; col < num_cols; col++) {
+-      outptr[col] = inptr[0];	/* don't need GETJSAMPLE() here */
+-      inptr += instride;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Convert some rows of samples to the JPEG colorspace.
+- * This version handles multi-component colorspaces without conversion.
+- * We assume input_components == num_components.
+- */
+-
+-METHODDEF(void)
+-null_convert (j_compress_ptr cinfo,
+-	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-	      JDIMENSION output_row, int num_rows)
+-{
+-  register JSAMPROW inptr;
+-  register JSAMPROW outptr;
+-  register JDIMENSION col;
+-  register int ci;
+-  int nc = cinfo->num_components;
+-  JDIMENSION num_cols = cinfo->image_width;
+-
+-  while (--num_rows >= 0) {
+-    /* It seems fastest to make a separate pass for each component. */
+-    for (ci = 0; ci < nc; ci++) {
+-      inptr = *input_buf;
+-      outptr = output_buf[ci][output_row];
+-      for (col = 0; col < num_cols; col++) {
+-	outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
+-	inptr += nc;
+-      }
+-    }
+-    input_buf++;
+-    output_row++;
+-  }
+-}
+-
+-
+-/*
+- * Empty method for start_pass.
+- */
+-
+-METHODDEF(void)
+-null_method (j_compress_ptr cinfo)
+-{
+-  /* no work needed */
+-}
+-
+-
+-/*
+- * Module initialization routine for input colorspace conversion.
+- */
+-
+-GLOBAL(void)
+-jinit_color_converter (j_compress_ptr cinfo)
+-{
+-  my_cconvert_ptr cconvert;
+-
+-  cconvert = (my_cconvert_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_color_converter));
+-  cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
+-  /* set start_pass to null method until we find out differently */
+-  cconvert->pub.start_pass = null_method;
+-
+-  /* Make sure input_components agrees with in_color_space */
+-  switch (cinfo->in_color_space) {
+-  case JCS_GRAYSCALE:
+-    if (cinfo->input_components != 1)
+-      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-    break;
+-
+-  case JCS_RGB:
+-#if RGB_PIXELSIZE != 3
+-    if (cinfo->input_components != RGB_PIXELSIZE)
+-      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-    break;
+-#endif /* else share code with YCbCr */
+-
+-  case JCS_YCbCr:
+-    if (cinfo->input_components != 3)
+-      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-    break;
+-
+-  case JCS_CMYK:
+-  case JCS_YCCK:
+-    if (cinfo->input_components != 4)
+-      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-    break;
+-
+-  default:			/* JCS_UNKNOWN can be anything */
+-    if (cinfo->input_components < 1)
+-      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-    break;
+-  }
+-
+-  /* Check num_components, set conversion method based on requested space */
+-  switch (cinfo->jpeg_color_space) {
+-  case JCS_GRAYSCALE:
+-    if (cinfo->num_components != 1)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    if (cinfo->in_color_space == JCS_GRAYSCALE)
+-      cconvert->pub.color_convert = grayscale_convert;
+-    else if (cinfo->in_color_space == JCS_RGB) {
+-      cconvert->pub.start_pass = rgb_ycc_start;
+-      cconvert->pub.color_convert = rgb_gray_convert;
+-    } else if (cinfo->in_color_space == JCS_YCbCr)
+-      cconvert->pub.color_convert = grayscale_convert;
+-    else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_RGB:
+-    if (cinfo->num_components != 3)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
+-      cconvert->pub.color_convert = null_convert;
+-    else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_YCbCr:
+-    if (cinfo->num_components != 3)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    if (cinfo->in_color_space == JCS_RGB) {
+-      cconvert->pub.start_pass = rgb_ycc_start;
+-      cconvert->pub.color_convert = rgb_ycc_convert;
+-    } else if (cinfo->in_color_space == JCS_YCbCr)
+-      cconvert->pub.color_convert = null_convert;
+-    else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_CMYK:
+-    if (cinfo->num_components != 4)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    if (cinfo->in_color_space == JCS_CMYK)
+-      cconvert->pub.color_convert = null_convert;
+-    else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_YCCK:
+-    if (cinfo->num_components != 4)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    if (cinfo->in_color_space == JCS_CMYK) {
+-      cconvert->pub.start_pass = rgb_ycc_start;
+-      cconvert->pub.color_convert = cmyk_ycck_convert;
+-    } else if (cinfo->in_color_space == JCS_YCCK)
+-      cconvert->pub.color_convert = null_convert;
+-    else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  default:			/* allow null conversion of JCS_UNKNOWN */
+-    if (cinfo->jpeg_color_space != cinfo->in_color_space ||
+-	cinfo->num_components != cinfo->input_components)
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    cconvert->pub.color_convert = null_convert;
+-    break;
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcdctmgr.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcdctmgr.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcdctmgr.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcdctmgr.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,391 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcdctmgr.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the forward-DCT management logic.
+- * This code selects a particular DCT implementation to be used,
+- * and it performs related housekeeping chores including coefficient
+- * quantization.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-
+-/* Private subobject for this module */
+-
+-typedef struct {
+-  struct jpeg_forward_dct pub;	/* public fields */
+-
+-  /* Pointer to the DCT routine actually in use */
+-  forward_DCT_method_ptr do_dct;
+-
+-  /* The actual post-DCT divisors --- not identical to the quant table
+-   * entries, because of scaling (especially for an unnormalized DCT).
+-   * Each table is given in normal array order.
+-   */
+-  DCTELEM * divisors[NUM_QUANT_TBLS];
+-
+-#ifdef DCT_FLOAT_SUPPORTED
+-  /* Same as above for the floating-point case. */
+-  float_DCT_method_ptr do_float_dct;
+-  FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
+-#endif
+-} my_fdct_controller;
+-
+-typedef my_fdct_controller * my_fdct_ptr;
+-
+-
+-/*
+- * Initialize for a processing pass.
+- * Verify that all referenced Q-tables are present, and set up
+- * the divisor table for each one.
+- * In the current implementation, DCT of all components is done during
+- * the first pass, even if only some components will be output in the
+- * first scan.  Hence all components should be examined here.
+- */
+-
+-METHODDEF(void)
+-start_pass_fdctmgr (j_compress_ptr cinfo)
+-{
+-  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+-  int ci, qtblno, i;
+-  jpeg_component_info *compptr;
+-  JQUANT_TBL * qtbl;
+-  DCTELEM * dtbl;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    qtblno = compptr->quant_tbl_no;
+-    /* Make sure specified quantization table is present */
+-    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+-	cinfo->quant_tbl_ptrs[qtblno] == NULL)
+-      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+-    qtbl = cinfo->quant_tbl_ptrs[qtblno];
+-    /* Compute divisors for this quant table */
+-    /* We may do this more than once for same table, but it's not a big deal */
+-    switch (cinfo->dct_method) {
+-#ifdef DCT_ISLOW_SUPPORTED
+-    case JDCT_ISLOW:
+-      /* For LL&M IDCT method, divisors are equal to raw quantization
+-       * coefficients multiplied by 8 (to counteract scaling).
+-       */
+-      if (fdct->divisors[qtblno] == NULL) {
+-	fdct->divisors[qtblno] = (DCTELEM *)
+-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				      DCTSIZE2 * SIZEOF(DCTELEM));
+-      }
+-      dtbl = fdct->divisors[qtblno];
+-      for (i = 0; i < DCTSIZE2; i++) {
+-	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
+-      }
+-      break;
+-#endif
+-#ifdef DCT_IFAST_SUPPORTED
+-    case JDCT_IFAST:
+-      {
+-	/* For AA&N IDCT method, divisors are equal to quantization
+-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+-	 *   scalefactor[0] = 1
+-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+-	 * We apply a further scale factor of 8.
+-	 */
+-#define CONST_BITS 14
+-	static const INT16 aanscales[DCTSIZE2] = {
+-	  /* precomputed values scaled up by 14 bits */
+-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+-	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
+-	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
+-	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
+-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+-	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
+-	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
+-	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
+-	};
+-	SHIFT_TEMPS
+-
+-	if (fdct->divisors[qtblno] == NULL) {
+-	  fdct->divisors[qtblno] = (DCTELEM *)
+-	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-					DCTSIZE2 * SIZEOF(DCTELEM));
+-	}
+-	dtbl = fdct->divisors[qtblno];
+-	for (i = 0; i < DCTSIZE2; i++) {
+-	  dtbl[i] = (DCTELEM)
+-	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+-				  (INT32) aanscales[i]),
+-		    CONST_BITS-3);
+-	}
+-      }
+-      break;
+-#endif
+-#ifdef DCT_FLOAT_SUPPORTED
+-    case JDCT_FLOAT:
+-      {
+-	/* For float AA&N IDCT method, divisors are equal to quantization
+-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+-	 *   scalefactor[0] = 1
+-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+-	 * We apply a further scale factor of 8.
+-	 * What's actually stored is 1/divisor so that the inner loop can
+-	 * use a multiplication rather than a division.
+-	 */
+-	FAST_FLOAT * fdtbl;
+-	int row, col;
+-	static const double aanscalefactor[DCTSIZE] = {
+-	  1.0, 1.387039845, 1.306562965, 1.175875602,
+-	  1.0, 0.785694958, 0.541196100, 0.275899379
+-	};
+-
+-	if (fdct->float_divisors[qtblno] == NULL) {
+-	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
+-	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-					DCTSIZE2 * SIZEOF(FAST_FLOAT));
+-	}
+-	fdtbl = fdct->float_divisors[qtblno];
+-	i = 0;
+-	for (row = 0; row < DCTSIZE; row++) {
+-	  for (col = 0; col < DCTSIZE; col++) {
+-	    fdtbl[i] = (FAST_FLOAT)
+-	      (1.0 / (((double) qtbl->quantval[i] *
+-		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
+-	    i++;
+-	  }
+-	}
+-      }
+-      break;
+-#endif
+-    default:
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-      break;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Perform forward DCT on one or more blocks of a component.
+- *
+- * The input samples are taken from the sample_data[] array starting at
+- * position start_row/start_col, and moving to the right for any additional
+- * blocks. The quantized coefficients are returned in coef_blocks[].
+- */
+-
+-METHODDEF(void)
+-forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+-	     JDIMENSION start_row, JDIMENSION start_col,
+-	     JDIMENSION num_blocks)
+-/* This version is used for integer DCT implementations. */
+-{
+-  /* This routine is heavily used, so it's worth coding it tightly. */
+-  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+-  forward_DCT_method_ptr do_dct = fdct->do_dct;
+-  DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
+-  DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
+-  JDIMENSION bi;
+-
+-  sample_data += start_row;	/* fold in the vertical offset once */
+-
+-  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
+-    /* Load data into workspace, applying unsigned->signed conversion */
+-    { register DCTELEM *workspaceptr;
+-      register JSAMPROW elemptr;
+-      register int elemr;
+-
+-      workspaceptr = workspace;
+-      for (elemr = 0; elemr < DCTSIZE; elemr++) {
+-	elemptr = sample_data[elemr] + start_col;
+-#if DCTSIZE == 8		/* unroll the inner loop */
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-#else
+-	{ register int elemc;
+-	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
+-	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
+-	  }
+-	}
+-#endif
+-      }
+-    }
+-
+-    /* Perform the DCT */
+-    (*do_dct) (workspace);
+-
+-    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+-    { register DCTELEM temp, qval;
+-      register int i;
+-      register JCOEFPTR output_ptr = coef_blocks[bi];
+-
+-      for (i = 0; i < DCTSIZE2; i++) {
+-	qval = divisors[i];
+-	temp = workspace[i];
+-	/* Divide the coefficient value by qval, ensuring proper rounding.
+-	 * Since C does not specify the direction of rounding for negative
+-	 * quotients, we have to force the dividend positive for portability.
+-	 *
+-	 * In most files, at least half of the output values will be zero
+-	 * (at default quantization settings, more like three-quarters...)
+-	 * so we should ensure that this case is fast.  On many machines,
+-	 * a comparison is enough cheaper than a divide to make a special test
+-	 * a win.  Since both inputs will be nonnegative, we need only test
+-	 * for a < b to discover whether a/b is 0.
+-	 * If your machine's division is fast enough, define FAST_DIVIDE.
+-	 */
+-#ifdef FAST_DIVIDE
+-#define DIVIDE_BY(a,b)	a /= b
+-#else
+-#define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
+-#endif
+-	if (temp < 0) {
+-	  temp = -temp;
+-	  temp += qval>>1;	/* for rounding */
+-	  DIVIDE_BY(temp, qval);
+-	  temp = -temp;
+-	} else {
+-	  temp += qval>>1;	/* for rounding */
+-	  DIVIDE_BY(temp, qval);
+-	}
+-	output_ptr[i] = (JCOEF) temp;
+-      }
+-    }
+-  }
+-}
+-
+-
+-#ifdef DCT_FLOAT_SUPPORTED
+-
+-METHODDEF(void)
+-forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+-		   JDIMENSION start_row, JDIMENSION start_col,
+-		   JDIMENSION num_blocks)
+-/* This version is used for floating-point DCT implementations. */
+-{
+-  /* This routine is heavily used, so it's worth coding it tightly. */
+-  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
+-  float_DCT_method_ptr do_dct = fdct->do_float_dct;
+-  FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
+-  FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
+-  JDIMENSION bi;
+-
+-  sample_data += start_row;	/* fold in the vertical offset once */
+-
+-  for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
+-    /* Load data into workspace, applying unsigned->signed conversion */
+-    { register FAST_FLOAT *workspaceptr;
+-      register JSAMPROW elemptr;
+-      register int elemr;
+-
+-      workspaceptr = workspace;
+-      for (elemr = 0; elemr < DCTSIZE; elemr++) {
+-	elemptr = sample_data[elemr] + start_col;
+-#if DCTSIZE == 8		/* unroll the inner loop */
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-#else
+-	{ register int elemc;
+-	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
+-	    *workspaceptr++ = (FAST_FLOAT)
+-	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
+-	  }
+-	}
+-#endif
+-      }
+-    }
+-
+-    /* Perform the DCT */
+-    (*do_dct) (workspace);
+-
+-    /* Quantize/descale the coefficients, and store into coef_blocks[] */
+-    { register FAST_FLOAT temp;
+-      register int i;
+-      register JCOEFPTR output_ptr = coef_blocks[bi];
+-
+-      for (i = 0; i < DCTSIZE2; i++) {
+-	/* Apply the quantization and scaling factor */
+-	temp = workspace[i] * divisors[i];
+-	/* Round to nearest integer.
+-	 * Since C does not specify the direction of rounding for negative
+-	 * quotients, we have to force the dividend positive for portability.
+-	 * The maximum coefficient size is +-16K (for 12-bit data), so this
+-	 * code should work for either 16-bit or 32-bit ints.
+-	 */
+-	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
+-      }
+-    }
+-  }
+-}
+-
+-#endif /* DCT_FLOAT_SUPPORTED */
+-
+-
+-/*
+- * Initialize FDCT manager.
+- */
+-
+-GLOBAL(void)
+-jinit_forward_dct (j_compress_ptr cinfo)
+-{
+-  my_fdct_ptr fdct;
+-  int i;
+-
+-  fdct = (my_fdct_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_fdct_controller));
+-  cinfo->fdct = (struct jpeg_forward_dct *) fdct;
+-  fdct->pub.start_pass = start_pass_fdctmgr;
+-
+-  switch (cinfo->dct_method) {
+-#ifdef DCT_ISLOW_SUPPORTED
+-  case JDCT_ISLOW:
+-    fdct->pub.forward_DCT = forward_DCT;
+-    fdct->do_dct = jpeg_fdct_islow;
+-    break;
+-#endif
+-#ifdef DCT_IFAST_SUPPORTED
+-  case JDCT_IFAST:
+-    fdct->pub.forward_DCT = forward_DCT;
+-    fdct->do_dct = jpeg_fdct_ifast;
+-    break;
+-#endif
+-#ifdef DCT_FLOAT_SUPPORTED
+-  case JDCT_FLOAT:
+-    fdct->pub.forward_DCT = forward_DCT_float;
+-    fdct->do_float_dct = jpeg_fdct_float;
+-    break;
+-#endif
+-  default:
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-    break;
+-  }
+-
+-  /* Mark divisor tables unallocated */
+-  for (i = 0; i < NUM_QUANT_TBLS; i++) {
+-    fdct->divisors[i] = NULL;
+-#ifdef DCT_FLOAT_SUPPORTED
+-    fdct->float_divisors[i] = NULL;
+-#endif
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jchuff.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jchuff.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jchuff.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jchuff.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,913 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jchuff.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains Huffman entropy encoding routines.
+- *
+- * Much of the complexity here has to do with supporting output suspension.
+- * If the data destination module demands suspension, we want to be able to
+- * back up to the start of the current MCU.  To do this, we copy state
+- * variables into local working storage, and update them back to the
+- * permanent JPEG objects only upon successful completion of an MCU.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jchuff.h"		/* Declarations shared with jcphuff.c */
+-
+-
+-/* Expanded entropy encoder object for Huffman encoding.
+- *
+- * The savable_state subrecord contains fields that change within an MCU,
+- * but must not be updated permanently until we complete the MCU.
+- */
+-
+-typedef struct {
+-  INT32 put_buffer;		/* current bit-accumulation buffer */
+-  int put_bits;			/* # of bits now in it */
+-  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+-} savable_state;
+-
+-/* This macro is to work around compilers with missing or broken
+- * structure assignment.  You'll need to fix this code if you have
+- * such a compiler and you change MAX_COMPS_IN_SCAN.
+- */
+-
+-#ifndef NO_STRUCT_ASSIGN
+-#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+-#else
+-#if MAX_COMPS_IN_SCAN == 4
+-#define ASSIGN_STATE(dest,src)  \
+-	((dest).put_buffer = (src).put_buffer, \
+-	 (dest).put_bits = (src).put_bits, \
+-	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
+-	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+-	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+-	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+-#endif
+-#endif
+-
+-
+-typedef struct {
+-  struct jpeg_entropy_encoder pub; /* public fields */
+-
+-  savable_state saved;		/* Bit buffer & DC state at start of MCU */
+-
+-  /* These fields are NOT loaded into local working state. */
+-  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+-  int next_restart_num;		/* next restart number to write (0-7) */
+-
+-  /* Pointers to derived tables (these workspaces have image lifespan) */
+-  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+-  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+-
+-#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
+-  long * dc_count_ptrs[NUM_HUFF_TBLS];
+-  long * ac_count_ptrs[NUM_HUFF_TBLS];
+-#endif
+-} huff_entropy_encoder;
+-
+-typedef huff_entropy_encoder * huff_entropy_ptr;
+-
+-/* Working state while writing an MCU.
+- * This struct contains all the fields that are needed by subroutines.
+- */
+-
+-typedef struct {
+-  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+-  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+-  savable_state cur;		/* Current bit buffer & DC state */
+-  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
+-} working_state;
+-
+-
+-/* Forward declarations */
+-METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
+-					JBLOCKROW *MCU_data));
+-METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
+-#ifdef ENTROPY_OPT_SUPPORTED
+-METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
+-					  JBLOCKROW *MCU_data));
+-METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
+-#endif
+-
+-
+-/*
+- * Initialize for a Huffman-compressed scan.
+- * If gather_statistics is TRUE, we do not output anything during the scan,
+- * just count the Huffman symbols used and generate Huffman code tables.
+- */
+-
+-METHODDEF(void)
+-start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int ci, dctbl, actbl;
+-  jpeg_component_info * compptr;
+-
+-  if (gather_statistics) {
+-#ifdef ENTROPY_OPT_SUPPORTED
+-    entropy->pub.encode_mcu = encode_mcu_gather;
+-    entropy->pub.finish_pass = finish_pass_gather;
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-  } else {
+-    entropy->pub.encode_mcu = encode_mcu_huff;
+-    entropy->pub.finish_pass = finish_pass_huff;
+-  }
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    dctbl = compptr->dc_tbl_no;
+-    actbl = compptr->ac_tbl_no;
+-    if (gather_statistics) {
+-#ifdef ENTROPY_OPT_SUPPORTED
+-      /* Check for invalid table indexes */
+-      /* (make_c_derived_tbl does this in the other path) */
+-      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
+-	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
+-      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
+-	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
+-      /* Allocate and zero the statistics tables */
+-      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+-      if (entropy->dc_count_ptrs[dctbl] == NULL)
+-	entropy->dc_count_ptrs[dctbl] = (long *)
+-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				      257 * SIZEOF(long));
+-      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
+-      if (entropy->ac_count_ptrs[actbl] == NULL)
+-	entropy->ac_count_ptrs[actbl] = (long *)
+-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				      257 * SIZEOF(long));
+-      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
+-#endif
+-    } else {
+-      /* Compute derived values for Huffman tables */
+-      /* We may do this more than once for a table, but it's not expensive */
+-      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
+-			      & entropy->dc_derived_tbls[dctbl]);
+-      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
+-			      & entropy->ac_derived_tbls[actbl]);
+-    }
+-    /* Initialize DC predictions to 0 */
+-    entropy->saved.last_dc_val[ci] = 0;
+-  }
+-
+-  /* Initialize bit buffer to empty */
+-  entropy->saved.put_buffer = 0;
+-  entropy->saved.put_bits = 0;
+-
+-  /* Initialize restart stuff */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-  entropy->next_restart_num = 0;
+-}
+-
+-
+-/*
+- * Compute the derived values for a Huffman table.
+- * This routine also performs some validation checks on the table.
+- *
+- * Note this is also used by jcphuff.c.
+- */
+-
+-GLOBAL(void)
+-jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
+-			 c_derived_tbl ** pdtbl)
+-{
+-  JHUFF_TBL *htbl;
+-  c_derived_tbl *dtbl;
+-  int p, i, l, lastp, si, maxsymbol;
+-  char huffsize[257];
+-  unsigned int huffcode[257];
+-  unsigned int code;
+-
+-  /* Note that huffsize[] and huffcode[] are filled in code-length order,
+-   * paralleling the order of the symbols themselves in htbl->huffval[].
+-   */
+-
+-  /* Find the input Huffman table */
+-  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+-    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+-  htbl =
+-    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+-  if (htbl == NULL)
+-    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+-
+-  /* Allocate a workspace if we haven't already done so. */
+-  if (*pdtbl == NULL)
+-    *pdtbl = (c_derived_tbl *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(c_derived_tbl));
+-  dtbl = *pdtbl;
+-  
+-  /* Figure C.1: make table of Huffman code length for each symbol */
+-
+-  p = 0;
+-  for (l = 1; l <= 16; l++) {
+-    i = (int) htbl->bits[l];
+-    if (i < 0 || p + i > 256)	/* protect against table overrun */
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    while (i--)
+-      huffsize[p++] = (char) l;
+-  }
+-  huffsize[p] = 0;
+-  lastp = p;
+-  
+-  /* Figure C.2: generate the codes themselves */
+-  /* We also validate that the counts represent a legal Huffman code tree. */
+-
+-  code = 0;
+-  si = huffsize[0];
+-  p = 0;
+-  while (huffsize[p]) {
+-    while (((int) huffsize[p]) == si) {
+-      huffcode[p++] = code;
+-      code++;
+-    }
+-    /* code is now 1 more than the last code used for codelength si; but
+-     * it must still fit in si bits, since no code is allowed to be all ones.
+-     */
+-    if (((INT32) code) >= (((INT32) 1) << si))
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    code <<= 1;
+-    si++;
+-  }
+-  
+-  /* Figure C.3: generate encoding tables */
+-  /* These are code and size indexed by symbol value */
+-
+-  /* Set all codeless symbols to have code length 0;
+-   * this lets us detect duplicate VAL entries here, and later
+-   * allows emit_bits to detect any attempt to emit such symbols.
+-   */
+-  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
+-
+-  /* This is also a convenient place to check for out-of-range
+-   * and duplicated VAL entries.  We allow 0..255 for AC symbols
+-   * but only 0..15 for DC.  (We could constrain them further
+-   * based on data depth and mode, but this seems enough.)
+-   */
+-  maxsymbol = isDC ? 15 : 255;
+-
+-  for (p = 0; p < lastp; p++) {
+-    i = htbl->huffval[p];
+-    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    dtbl->ehufco[i] = huffcode[p];
+-    dtbl->ehufsi[i] = huffsize[p];
+-  }
+-}
+-
+-
+-/* Outputting bytes to the file */
+-
+-/* Emit a byte, taking 'action' if must suspend. */
+-#define emit_byte(state,val,action)  \
+-	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
+-	  if (--(state)->free_in_buffer == 0)  \
+-	    if (! dump_buffer(state))  \
+-	      { action; } }
+-
+-
+-LOCAL(boolean)
+-dump_buffer (working_state * state)
+-/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
+-{
+-  struct jpeg_destination_mgr * dest = state->cinfo->dest;
+-
+-  if (! (*dest->empty_output_buffer) (state->cinfo))
+-    return FALSE;
+-  /* After a successful buffer dump, must reset buffer pointers */
+-  state->next_output_byte = dest->next_output_byte;
+-  state->free_in_buffer = dest->free_in_buffer;
+-  return TRUE;
+-}
+-
+-
+-/* Outputting bits to the file */
+-
+-/* Only the right 24 bits of put_buffer are used; the valid bits are
+- * left-justified in this part.  At most 16 bits can be passed to emit_bits
+- * in one call, and we never retain more than 7 bits in put_buffer
+- * between calls, so 24 bits are sufficient.
+- */
+-
+-INLINE
+-LOCAL(boolean)
+-emit_bits (working_state * state, unsigned int code, int size)
+-/* Emit some bits; return TRUE if successful, FALSE if must suspend */
+-{
+-  /* This routine is heavily used, so it's worth coding tightly. */
+-  register INT32 put_buffer = (INT32) code;
+-  register int put_bits = state->cur.put_bits;
+-
+-  /* if size is 0, caller used an invalid Huffman table entry */
+-  if (size == 0)
+-    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
+-
+-  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+-  
+-  put_bits += size;		/* new number of bits in buffer */
+-  
+-  put_buffer <<= 24 - put_bits; /* align incoming bits */
+-
+-  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
+-  
+-  while (put_bits >= 8) {
+-    int c = (int) ((put_buffer >> 16) & 0xFF);
+-    
+-    emit_byte(state, c, return FALSE);
+-    if (c == 0xFF) {		/* need to stuff a zero byte? */
+-      emit_byte(state, 0, return FALSE);
+-    }
+-    put_buffer <<= 8;
+-    put_bits -= 8;
+-  }
+-
+-  state->cur.put_buffer = put_buffer; /* update state variables */
+-  state->cur.put_bits = put_bits;
+-
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-flush_bits (working_state * state)
+-{
+-  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
+-    return FALSE;
+-  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
+-  state->cur.put_bits = 0;
+-  return TRUE;
+-}
+-
+-
+-/* Encode a single block's worth of coefficients */
+-
+-LOCAL(boolean)
+-encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
+-		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
+-{
+-  register int temp, temp2;
+-  register int nbits;
+-  register int k, r, i;
+-  
+-  /* Encode the DC coefficient difference per section F.1.2.1 */
+-  
+-  temp = temp2 = block[0] - last_dc_val;
+-
+-  if (temp < 0) {
+-    temp = -temp;		/* temp is abs value of input */
+-    /* For a negative input, want temp2 = bitwise complement of abs(input) */
+-    /* This code assumes we are on a two's complement machine */
+-    temp2--;
+-  }
+-  
+-  /* Find the number of bits needed for the magnitude of the coefficient */
+-  nbits = 0;
+-  while (temp) {
+-    nbits++;
+-    temp >>= 1;
+-  }
+-  /* Check for out-of-range coefficient values.
+-   * Since we're encoding a difference, the range limit is twice as much.
+-   */
+-  if (nbits > MAX_COEF_BITS+1)
+-    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+-  
+-  /* Emit the Huffman-coded symbol for the number of bits */
+-  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
+-    return FALSE;
+-
+-  /* Emit that number of bits of the value, if positive, */
+-  /* or the complement of its magnitude, if negative. */
+-  if (nbits)			/* emit_bits rejects calls with size 0 */
+-    if (! emit_bits(state, (unsigned int) temp2, nbits))
+-      return FALSE;
+-
+-  /* Encode the AC coefficients per section F.1.2.2 */
+-  
+-  r = 0;			/* r = run length of zeros */
+-  
+-  for (k = 1; k < DCTSIZE2; k++) {
+-    if ((temp = block[jpeg_natural_order[k]]) == 0) {
+-      r++;
+-    } else {
+-      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+-      while (r > 15) {
+-	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
+-	  return FALSE;
+-	r -= 16;
+-      }
+-
+-      temp2 = temp;
+-      if (temp < 0) {
+-	temp = -temp;		/* temp is abs value of input */
+-	/* This code assumes we are on a two's complement machine */
+-	temp2--;
+-      }
+-      
+-      /* Find the number of bits needed for the magnitude of the coefficient */
+-      nbits = 1;		/* there must be at least one 1 bit */
+-      while ((temp >>= 1))
+-	nbits++;
+-      /* Check for out-of-range coefficient values */
+-      if (nbits > MAX_COEF_BITS)
+-	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
+-      
+-      /* Emit Huffman symbol for run length / number of bits */
+-      i = (r << 4) + nbits;
+-      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
+-	return FALSE;
+-
+-      /* Emit that number of bits of the value, if positive, */
+-      /* or the complement of its magnitude, if negative. */
+-      if (! emit_bits(state, (unsigned int) temp2, nbits))
+-	return FALSE;
+-      
+-      r = 0;
+-    }
+-  }
+-
+-  /* If the last coef(s) were zero, emit an end-of-block code */
+-  if (r > 0)
+-    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
+-      return FALSE;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Emit a restart marker & resynchronize predictions.
+- */
+-
+-LOCAL(boolean)
+-emit_restart (working_state * state, int restart_num)
+-{
+-  int ci;
+-
+-  if (! flush_bits(state))
+-    return FALSE;
+-
+-  emit_byte(state, 0xFF, return FALSE);
+-  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
+-
+-  /* Re-initialize DC predictions to 0 */
+-  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
+-    state->cur.last_dc_val[ci] = 0;
+-
+-  /* The restart counter is not updated until we successfully write the MCU. */
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Encode and output one MCU's worth of Huffman-compressed coefficients.
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  working_state state;
+-  int blkn, ci;
+-  jpeg_component_info * compptr;
+-
+-  /* Load up working state */
+-  state.next_output_byte = cinfo->dest->next_output_byte;
+-  state.free_in_buffer = cinfo->dest->free_in_buffer;
+-  ASSIGN_STATE(state.cur, entropy->saved);
+-  state.cinfo = cinfo;
+-
+-  /* Emit restart marker if needed */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! emit_restart(&state, entropy->next_restart_num))
+-	return FALSE;
+-  }
+-
+-  /* Encode the MCU data blocks */
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    ci = cinfo->MCU_membership[blkn];
+-    compptr = cinfo->cur_comp_info[ci];
+-    if (! encode_one_block(&state,
+-			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
+-			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
+-			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
+-      return FALSE;
+-    /* Update last_dc_val */
+-    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
+-  }
+-
+-  /* Completed MCU, so update state */
+-  cinfo->dest->next_output_byte = state.next_output_byte;
+-  cinfo->dest->free_in_buffer = state.free_in_buffer;
+-  ASSIGN_STATE(entropy->saved, state.cur);
+-
+-  /* Update restart-interval state too */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-      entropy->next_restart_num++;
+-      entropy->next_restart_num &= 7;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Finish up at the end of a Huffman-compressed scan.
+- */
+-
+-METHODDEF(void)
+-finish_pass_huff (j_compress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  working_state state;
+-
+-  /* Load up working state ... flush_bits needs it */
+-  state.next_output_byte = cinfo->dest->next_output_byte;
+-  state.free_in_buffer = cinfo->dest->free_in_buffer;
+-  ASSIGN_STATE(state.cur, entropy->saved);
+-  state.cinfo = cinfo;
+-
+-  /* Flush out the last data */
+-  if (! flush_bits(&state))
+-    ERREXIT(cinfo, JERR_CANT_SUSPEND);
+-
+-  /* Update state */
+-  cinfo->dest->next_output_byte = state.next_output_byte;
+-  cinfo->dest->free_in_buffer = state.free_in_buffer;
+-  ASSIGN_STATE(entropy->saved, state.cur);
+-}
+-
+-
+-/*
+- * Huffman coding optimization.
+- *
+- * We first scan the supplied data and count the number of uses of each symbol
+- * that is to be Huffman-coded. (This process MUST agree with the code above.)
+- * Then we build a Huffman coding tree for the observed counts.
+- * Symbols which are not needed at all for the particular image are not
+- * assigned any code, which saves space in the DHT marker as well as in
+- * the compressed data.
+- */
+-
+-#ifdef ENTROPY_OPT_SUPPORTED
+-
+-
+-/* Process a single block's worth of coefficients */
+-
+-LOCAL(void)
+-htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
+-		 long dc_counts[], long ac_counts[])
+-{
+-  register int temp;
+-  register int nbits;
+-  register int k, r;
+-  
+-  /* Encode the DC coefficient difference per section F.1.2.1 */
+-  
+-  temp = block[0] - last_dc_val;
+-  if (temp < 0)
+-    temp = -temp;
+-  
+-  /* Find the number of bits needed for the magnitude of the coefficient */
+-  nbits = 0;
+-  while (temp) {
+-    nbits++;
+-    temp >>= 1;
+-  }
+-  /* Check for out-of-range coefficient values.
+-   * Since we're encoding a difference, the range limit is twice as much.
+-   */
+-  if (nbits > MAX_COEF_BITS+1)
+-    ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+-
+-  /* Count the Huffman symbol for the number of bits */
+-  dc_counts[nbits]++;
+-  
+-  /* Encode the AC coefficients per section F.1.2.2 */
+-  
+-  r = 0;			/* r = run length of zeros */
+-  
+-  for (k = 1; k < DCTSIZE2; k++) {
+-    if ((temp = block[jpeg_natural_order[k]]) == 0) {
+-      r++;
+-    } else {
+-      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+-      while (r > 15) {
+-	ac_counts[0xF0]++;
+-	r -= 16;
+-      }
+-      
+-      /* Find the number of bits needed for the magnitude of the coefficient */
+-      if (temp < 0)
+-	temp = -temp;
+-      
+-      /* Find the number of bits needed for the magnitude of the coefficient */
+-      nbits = 1;		/* there must be at least one 1 bit */
+-      while ((temp >>= 1))
+-	nbits++;
+-      /* Check for out-of-range coefficient values */
+-      if (nbits > MAX_COEF_BITS)
+-	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+-      
+-      /* Count Huffman symbol for run length / number of bits */
+-      ac_counts[(r << 4) + nbits]++;
+-      
+-      r = 0;
+-    }
+-  }
+-
+-  /* If the last coef(s) were zero, emit an end-of-block code */
+-  if (r > 0)
+-    ac_counts[0]++;
+-}
+-
+-
+-/*
+- * Trial-encode one MCU's worth of Huffman-compressed coefficients.
+- * No data is actually output, so no suspension return is possible.
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int blkn, ci;
+-  jpeg_component_info * compptr;
+-
+-  /* Take care of restart intervals if needed */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      /* Re-initialize DC predictions to 0 */
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+-	entropy->saved.last_dc_val[ci] = 0;
+-      /* Update restart state */
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    ci = cinfo->MCU_membership[blkn];
+-    compptr = cinfo->cur_comp_info[ci];
+-    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
+-		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
+-		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
+-    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Generate the best Huffman code table for the given counts, fill htbl.
+- * Note this is also used by jcphuff.c.
+- *
+- * The JPEG standard requires that no symbol be assigned a codeword of all
+- * one bits (so that padding bits added at the end of a compressed segment
+- * can't look like a valid code).  Because of the canonical ordering of
+- * codewords, this just means that there must be an unused slot in the
+- * longest codeword length category.  Section K.2 of the JPEG spec suggests
+- * reserving such a slot by pretending that symbol 256 is a valid symbol
+- * with count 1.  In theory that's not optimal; giving it count zero but
+- * including it in the symbol set anyway should give a better Huffman code.
+- * But the theoretically better code actually seems to come out worse in
+- * practice, because it produces more all-ones bytes (which incur stuffed
+- * zero bytes in the final file).  In any case the difference is tiny.
+- *
+- * The JPEG standard requires Huffman codes to be no more than 16 bits long.
+- * If some symbols have a very small but nonzero probability, the Huffman tree
+- * must be adjusted to meet the code length restriction.  We currently use
+- * the adjustment method suggested in JPEG section K.2.  This method is *not*
+- * optimal; it may not choose the best possible limited-length code.  But
+- * typically only very-low-frequency symbols will be given less-than-optimal
+- * lengths, so the code is almost optimal.  Experimental comparisons against
+- * an optimal limited-length-code algorithm indicate that the difference is
+- * microscopic --- usually less than a hundredth of a percent of total size.
+- * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
+- */
+-
+-GLOBAL(void)
+-jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
+-{
+-#define MAX_CLEN 32		/* assumed maximum initial code length */
+-  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
+-  int codesize[257];		/* codesize[k] = code length of symbol k */
+-  int others[257];		/* next symbol in current branch of tree */
+-  int c1, c2;
+-  int p, i, j;
+-  long v;
+-
+-  /* This algorithm is explained in section K.2 of the JPEG standard */
+-
+-  MEMZERO(bits, SIZEOF(bits));
+-  MEMZERO(codesize, SIZEOF(codesize));
+-  for (i = 0; i < 257; i++)
+-    others[i] = -1;		/* init links to empty */
+-  
+-  freq[256] = 1;		/* make sure 256 has a nonzero count */
+-  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
+-   * that no real symbol is given code-value of all ones, because 256
+-   * will be placed last in the largest codeword category.
+-   */
+-
+-  /* Huffman's basic algorithm to assign optimal code lengths to symbols */
+-
+-  for (;;) {
+-    /* Find the smallest nonzero frequency, set c1 = its symbol */
+-    /* In case of ties, take the larger symbol number */
+-    c1 = -1;
+-    v = 1000000000L;
+-    for (i = 0; i <= 256; i++) {
+-      if (freq[i] && freq[i] <= v) {
+-	v = freq[i];
+-	c1 = i;
+-      }
+-    }
+-
+-    /* Find the next smallest nonzero frequency, set c2 = its symbol */
+-    /* In case of ties, take the larger symbol number */
+-    c2 = -1;
+-    v = 1000000000L;
+-    for (i = 0; i <= 256; i++) {
+-      if (freq[i] && freq[i] <= v && i != c1) {
+-	v = freq[i];
+-	c2 = i;
+-      }
+-    }
+-
+-    /* Done if we've merged everything into one frequency */
+-    if (c2 < 0)
+-      break;
+-    
+-    /* Else merge the two counts/trees */
+-    freq[c1] += freq[c2];
+-    freq[c2] = 0;
+-
+-    /* Increment the codesize of everything in c1's tree branch */
+-    codesize[c1]++;
+-    while (others[c1] >= 0) {
+-      c1 = others[c1];
+-      codesize[c1]++;
+-    }
+-    
+-    others[c1] = c2;		/* chain c2 onto c1's tree branch */
+-    
+-    /* Increment the codesize of everything in c2's tree branch */
+-    codesize[c2]++;
+-    while (others[c2] >= 0) {
+-      c2 = others[c2];
+-      codesize[c2]++;
+-    }
+-  }
+-
+-  /* Now count the number of symbols of each code length */
+-  for (i = 0; i <= 256; i++) {
+-    if (codesize[i]) {
+-      /* The JPEG standard seems to think that this can't happen, */
+-      /* but I'm paranoid... */
+-      if (codesize[i] > MAX_CLEN)
+-	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
+-
+-      bits[codesize[i]]++;
+-    }
+-  }
+-
+-  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
+-   * Huffman procedure assigned any such lengths, we must adjust the coding.
+-   * Here is what the JPEG spec says about how this next bit works:
+-   * Since symbols are paired for the longest Huffman code, the symbols are
+-   * removed from this length category two at a time.  The prefix for the pair
+-   * (which is one bit shorter) is allocated to one of the pair; then,
+-   * skipping the BITS entry for that prefix length, a code word from the next
+-   * shortest nonzero BITS entry is converted into a prefix for two code words
+-   * one bit longer.
+-   */
+-  
+-  for (i = MAX_CLEN; i > 16; i--) {
+-    while (bits[i] > 0) {
+-      j = i - 2;		/* find length of new prefix to be used */
+-      while (bits[j] == 0)
+-	j--;
+-      
+-      bits[i] -= 2;		/* remove two symbols */
+-      bits[i-1]++;		/* one goes in this length */
+-      bits[j+1] += 2;		/* two new symbols in this length */
+-      bits[j]--;		/* symbol of this length is now a prefix */
+-    }
+-  }
+-
+-  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
+-  while (bits[i] == 0)		/* find largest codelength still in use */
+-    i--;
+-  bits[i]--;
+-  
+-  /* Return final symbol counts (only for lengths 0..16) */
+-  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
+-  
+-  /* Return a list of the symbols sorted by code length */
+-  /* It's not real clear to me why we don't need to consider the codelength
+-   * changes made above, but the JPEG spec seems to think this works.
+-   */
+-  p = 0;
+-  for (i = 1; i <= MAX_CLEN; i++) {
+-    for (j = 0; j <= 255; j++) {
+-      if (codesize[j] == i) {
+-	htbl->huffval[p] = (UINT8) j;
+-	p++;
+-      }
+-    }
+-  }
+-
+-  /* Set sent_table FALSE so updated table will be written to JPEG file. */
+-  htbl->sent_table = FALSE;
+-}
+-
+-
+-/*
+- * Finish up a statistics-gathering pass and create the new Huffman tables.
+- */
+-
+-METHODDEF(void)
+-finish_pass_gather (j_compress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int ci, dctbl, actbl;
+-  jpeg_component_info * compptr;
+-  JHUFF_TBL **htblptr;
+-  boolean did_dc[NUM_HUFF_TBLS];
+-  boolean did_ac[NUM_HUFF_TBLS];
+-
+-  /* It's important not to apply jpeg_gen_optimal_table more than once
+-   * per table, because it clobbers the input frequency counts!
+-   */
+-  MEMZERO(did_dc, SIZEOF(did_dc));
+-  MEMZERO(did_ac, SIZEOF(did_ac));
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    dctbl = compptr->dc_tbl_no;
+-    actbl = compptr->ac_tbl_no;
+-    if (! did_dc[dctbl]) {
+-      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
+-      if (*htblptr == NULL)
+-	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+-      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
+-      did_dc[dctbl] = TRUE;
+-    }
+-    if (! did_ac[actbl]) {
+-      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
+-      if (*htblptr == NULL)
+-	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+-      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
+-      did_ac[actbl] = TRUE;
+-    }
+-  }
+-}
+-
+-
+-#endif /* ENTROPY_OPT_SUPPORTED */
+-
+-
+-/*
+- * Module initialization routine for Huffman entropy encoding.
+- */
+-
+-GLOBAL(void)
+-jinit_huff_encoder (j_compress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy;
+-  int i;
+-
+-  entropy = (huff_entropy_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(huff_entropy_encoder));
+-  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+-  entropy->pub.start_pass = start_pass_huff;
+-
+-  /* Mark tables unallocated */
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+-#ifdef ENTROPY_OPT_SUPPORTED
+-    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
+-#endif
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jchuff.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jchuff.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jchuff.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jchuff.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,51 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jchuff.h
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains declarations for Huffman entropy encoding routines
+- * that are shared between the sequential encoder (jchuff.c) and the
+- * progressive encoder (jcphuff.c).  No other modules need to see these.
+- */
+-
+-/* The legal range of a DCT coefficient is
+- *  -1024 .. +1023  for 8-bit data;
+- * -16384 .. +16383 for 12-bit data.
+- * Hence the magnitude should always fit in 10 or 14 bits respectively.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define MAX_COEF_BITS 10
+-#else
+-#define MAX_COEF_BITS 14
+-#endif
+-
+-/* Derived data constructed for each Huffman table */
+-
+-typedef struct {
+-  unsigned int ehufco[256];	/* code for each symbol */
+-  char ehufsi[256];		/* length of code for each symbol */
+-  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
+-} c_derived_tbl;
+-
+-/* Short forms of external names for systems with brain-damaged linkers. */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_make_c_derived_tbl	jMkCDerived
+-#define jpeg_gen_optimal_table	jGenOptTbl
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-/* Expand a Huffman table definition into the derived format */
+-EXTERN(void) jpeg_make_c_derived_tbl
+-	JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
+-	     c_derived_tbl ** pdtbl));
+-
+-/* Generate an optimal table definition given the specified counts */
+-EXTERN(void) jpeg_gen_optimal_table
+-	JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcinit.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcinit.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcinit.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcinit.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,76 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcinit.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains initialization logic for the JPEG compressor.
+- * This routine is in charge of selecting the modules to be executed and
+- * making an initialization call to each one.
+- *
+- * Logically, this code belongs in jcmaster.c.  It's split out because
+- * linking this routine implies linking the entire compression library.
+- * For a transcoding-only application, we want to be able to use jcmaster.c
+- * without linking in the whole library.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Master selection of compression modules.
+- * This is done once at the start of processing an image.  We determine
+- * which modules will be used and give them appropriate initialization calls.
+- */
+-
+-GLOBAL(void)
+-jinit_compress_master (j_compress_ptr cinfo)
+-{
+-  /* Initialize master control (includes parameter checking/processing) */
+-  jinit_c_master_control(cinfo, FALSE /* full compression */);
+-
+-  /* Preprocessing */
+-  if (! cinfo->raw_data_in) {
+-    jinit_color_converter(cinfo);
+-    jinit_downsampler(cinfo);
+-    jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
+-  }
+-  /* Forward DCT */
+-  jinit_forward_dct(cinfo);
+-  /* Entropy encoding: either Huffman or arithmetic coding. */
+-  if (cinfo->arith_code) {
+-    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+-  } else {
+-    if (cinfo->progressive_mode) {
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-      jinit_phuff_encoder(cinfo);
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    } else
+-      jinit_huff_encoder(cinfo);
+-  }
+-
+-  /* Need a full-image coefficient buffer in any multi-pass mode. */
+-  jinit_c_coef_controller(cinfo,
+-		(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
+-  jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
+-
+-  jinit_marker_writer(cinfo);
+-
+-  /* We can now tell the memory manager to allocate virtual arrays. */
+-  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+-
+-  /* Write the datastream header (SOI) immediately.
+-   * Frame and scan headers are postponed till later.
+-   * This lets application insert special markers after the SOI.
+-   */
+-  (*cinfo->marker->write_file_header) (cinfo);
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmainct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmainct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmainct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmainct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,297 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcmainct.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the main buffer controller for compression.
+- * The main buffer lies between the pre-processor and the JPEG
+- * compressor proper; it holds downsampled data in the JPEG colorspace.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Note: currently, there is no operating mode in which a full-image buffer
+- * is needed at this step.  If there were, that mode could not be used with
+- * "raw data" input, since this module is bypassed in that case.  However,
+- * we've left the code here for possible use in special applications.
+- */
+-#undef FULL_MAIN_BUFFER_SUPPORTED
+-
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_c_main_controller pub; /* public fields */
+-
+-  JDIMENSION cur_iMCU_row;	/* number of current iMCU row */
+-  JDIMENSION rowgroup_ctr;	/* counts row groups received in iMCU row */
+-  boolean suspended;		/* remember if we suspended output */
+-  J_BUF_MODE pass_mode;		/* current operating mode */
+-
+-  /* If using just a strip buffer, this points to the entire set of buffers
+-   * (we allocate one for each component).  In the full-image case, this
+-   * points to the currently accessible strips of the virtual arrays.
+-   */
+-  JSAMPARRAY buffer[MAX_COMPONENTS];
+-
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-  /* If using full-image storage, this array holds pointers to virtual-array
+-   * control blocks for each component.  Unused if not full-image storage.
+-   */
+-  jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
+-#endif
+-} my_main_controller;
+-
+-typedef my_main_controller * my_main_ptr;
+-
+-
+-/* Forward declarations */
+-METHODDEF(void) process_data_simple_main
+-	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+-	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-METHODDEF(void) process_data_buffer_main
+-	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
+-	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
+-#endif
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-
+-  /* Do nothing in raw-data mode. */
+-  if (cinfo->raw_data_in)
+-    return;
+-
+-  _main->cur_iMCU_row = 0;	/* initialize counters */
+-  _main->rowgroup_ctr = 0;
+-  _main->suspended = FALSE;
+-  _main->pass_mode = pass_mode;	/* save mode for use by process_data */
+-
+-  switch (pass_mode) {
+-  case JBUF_PASS_THRU:
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-    if (_main->whole_image[0] != NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-#endif
+-    _main->pub.process_data = process_data_simple_main;
+-    break;
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-  case JBUF_SAVE_SOURCE:
+-  case JBUF_CRANK_DEST:
+-  case JBUF_SAVE_AND_PASS:
+-    if (_main->whole_image[0] == NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    _main->pub.process_data = process_data_buffer_main;
+-    break;
+-#endif
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    break;
+-  }
+-}
+-
+-
+-/*
+- * Process some data.
+- * This routine handles the simple pass-through mode,
+- * where we have only a strip buffer.
+- */
+-
+-METHODDEF(void)
+-process_data_simple_main (j_compress_ptr cinfo,
+-			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+-			  JDIMENSION in_rows_avail)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-
+-  while (_main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+-    /* Read input data if we haven't filled the main buffer yet */
+-    if (_main->rowgroup_ctr < DCTSIZE)
+-      (*cinfo->prep->pre_process_data) (cinfo,
+-					input_buf, in_row_ctr, in_rows_avail,
+-					_main->buffer, &_main->rowgroup_ctr,
+-					(JDIMENSION) DCTSIZE);
+-
+-    /* If we don't have a full iMCU row buffered, return to application for
+-     * more data.  Note that preprocessor will always pad to fill the iMCU row
+-     * at the bottom of the image.
+-     */
+-    if (_main->rowgroup_ctr != DCTSIZE)
+-      return;
+-
+-    /* Send the completed row to the compressor */
+-    if (! (*cinfo->coef->compress_data) (cinfo, _main->buffer)) {
+-      /* If compressor did not consume the whole row, then we must need to
+-       * suspend processing and return to the application.  In this situation
+-       * we pretend we didn't yet consume the last input row; otherwise, if
+-       * it happened to be the last row of the image, the application would
+-       * think we were done.
+-       */
+-      if (! _main->suspended) {
+-	(*in_row_ctr)--;
+-	_main->suspended = TRUE;
+-      }
+-      return;
+-    }
+-    /* We did finish the row.  Undo our little suspension hack if a previous
+-     * call suspended; then mark the main buffer empty.
+-     */
+-    if (_main->suspended) {
+-      (*in_row_ctr)++;
+-      _main->suspended = FALSE;
+-    }
+-    _main->rowgroup_ctr = 0;
+-    _main->cur_iMCU_row++;
+-  }
+-}
+-
+-
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-
+-/*
+- * Process some data.
+- * This routine handles all of the modes that use a full-size buffer.
+- */
+-
+-METHODDEF(void)
+-process_data_buffer_main (j_compress_ptr cinfo,
+-			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+-			  JDIMENSION in_rows_avail)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  int ci;
+-  jpeg_component_info *compptr;
+-  boolean writing = (_main->pass_mode != JBUF_CRANK_DEST);
+-
+-  while (_main->cur_iMCU_row < cinfo->total_iMCU_rows) {
+-    /* Realign the virtual buffers if at the start of an iMCU row. */
+-    if (_main->rowgroup_ctr == 0) {
+-      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	   ci++, compptr++) {
+-	_main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
+-	  ((j_common_ptr) cinfo, _main->whole_image[ci],
+-	   _main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
+-	   (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
+-      }
+-      /* In a read pass, pretend we just read some source data. */
+-      if (! writing) {
+-	*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
+-	_main->rowgroup_ctr = DCTSIZE;
+-      }
+-    }
+-
+-    /* If a write pass, read input data until the current iMCU row is full. */
+-    /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
+-    if (writing) {
+-      (*cinfo->prep->pre_process_data) (cinfo,
+-					input_buf, in_row_ctr, in_rows_avail,
+-					_main->buffer, &_main->rowgroup_ctr,
+-					(JDIMENSION) DCTSIZE);
+-      /* Return to application if we need more data to fill the iMCU row. */
+-      if (_main->rowgroup_ctr < DCTSIZE)
+-	return;
+-    }
+-
+-    /* Emit data, unless this is a sink-only pass. */
+-    if (_main->pass_mode != JBUF_SAVE_SOURCE) {
+-      if (! (*cinfo->coef->compress_data) (cinfo, _main->buffer)) {
+-	/* If compressor did not consume the whole row, then we must need to
+-	 * suspend processing and return to the application.  In this situation
+-	 * we pretend we didn't yet consume the last input row; otherwise, if
+-	 * it happened to be the last row of the image, the application would
+-	 * think we were done.
+-	 */
+-	if (! _main->suspended) {
+-	  (*in_row_ctr)--;
+-	  _main->suspended = TRUE;
+-	}
+-	return;
+-      }
+-      /* We did finish the row.  Undo our little suspension hack if a previous
+-       * call suspended; then mark the main buffer empty.
+-       */
+-      if (_main->suspended) {
+-	(*in_row_ctr)++;
+-	_main->suspended = FALSE;
+-      }
+-    }
+-
+-    /* If get here, we are done with this iMCU row.  Mark buffer empty. */
+-    _main->rowgroup_ctr = 0;
+-    _main->cur_iMCU_row++;
+-  }
+-}
+-
+-#endif /* FULL_MAIN_BUFFER_SUPPORTED */
+-
+-
+-/*
+- * Initialize main buffer controller.
+- */
+-
+-GLOBAL(void)
+-jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_main_ptr _main;
+-  int ci;
+-  jpeg_component_info *compptr;
+-
+-  _main = (my_main_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_main_controller));
+-  cinfo->main = (struct jpeg_c_main_controller *) _main;
+-  _main->pub.start_pass = start_pass_main;
+-
+-  /* We don't need to create a buffer in raw-data mode. */
+-  if (cinfo->raw_data_in)
+-    return;
+-
+-  /* Create the buffer.  It holds downsampled data, so each component
+-   * may be of a different size.
+-   */
+-  if (need_full_buffer) {
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-    /* Allocate a full-image virtual array for each component */
+-    /* Note we pad the bottom to a multiple of the iMCU height */
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      _main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+-	 compptr->width_in_blocks * DCTSIZE,
+-	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+-				(long) compptr->v_samp_factor) * DCTSIZE,
+-	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
+-    }
+-#else
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-#endif
+-  } else {
+-#ifdef FULL_MAIN_BUFFER_SUPPORTED
+-    _main->whole_image[0] = NULL; /* flag for no virtual arrays */
+-#endif
+-    /* Allocate a strip buffer for each component */
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      _main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE,
+-	 compptr->width_in_blocks * DCTSIZE,
+-	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
+-    }
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmarker.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmarker.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmarker.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmarker.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,682 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcmarker.c
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains routines to write JPEG datastream markers.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-typedef enum {			/* JPEG marker codes */
+-  M_SOF0  = 0xc0,
+-  M_SOF1  = 0xc1,
+-  M_SOF2  = 0xc2,
+-  M_SOF3  = 0xc3,
+-  
+-  M_SOF5  = 0xc5,
+-  M_SOF6  = 0xc6,
+-  M_SOF7  = 0xc7,
+-  
+-  M_JPG   = 0xc8,
+-  M_SOF9  = 0xc9,
+-  M_SOF10 = 0xca,
+-  M_SOF11 = 0xcb,
+-  
+-  M_SOF13 = 0xcd,
+-  M_SOF14 = 0xce,
+-  M_SOF15 = 0xcf,
+-  
+-  M_DHT   = 0xc4,
+-  
+-  M_DAC   = 0xcc,
+-  
+-  M_RST0  = 0xd0,
+-  M_RST1  = 0xd1,
+-  M_RST2  = 0xd2,
+-  M_RST3  = 0xd3,
+-  M_RST4  = 0xd4,
+-  M_RST5  = 0xd5,
+-  M_RST6  = 0xd6,
+-  M_RST7  = 0xd7,
+-  
+-  M_SOI   = 0xd8,
+-  M_EOI   = 0xd9,
+-  M_SOS   = 0xda,
+-  M_DQT   = 0xdb,
+-  M_DNL   = 0xdc,
+-  M_DRI   = 0xdd,
+-  M_DHP   = 0xde,
+-  M_EXP   = 0xdf,
+-  
+-  M_APP0  = 0xe0,
+-  M_APP1  = 0xe1,
+-  M_APP2  = 0xe2,
+-  M_APP3  = 0xe3,
+-  M_APP4  = 0xe4,
+-  M_APP5  = 0xe5,
+-  M_APP6  = 0xe6,
+-  M_APP7  = 0xe7,
+-  M_APP8  = 0xe8,
+-  M_APP9  = 0xe9,
+-  M_APP10 = 0xea,
+-  M_APP11 = 0xeb,
+-  M_APP12 = 0xec,
+-  M_APP13 = 0xed,
+-  M_APP14 = 0xee,
+-  M_APP15 = 0xef,
+-  
+-  M_JPG0  = 0xf0,
+-  M_JPG13 = 0xfd,
+-  M_COM   = 0xfe,
+-  
+-  M_TEM   = 0x01,
+-  
+-  M_ERROR = 0x100
+-} JPEG_MARKER;
+-
+-
+-/* Private state */
+-
+-typedef struct {
+-  struct jpeg_marker_writer pub; /* public fields */
+-
+-  unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
+-} my_marker_writer;
+-
+-typedef my_marker_writer * my_marker_ptr;
+-
+-
+-/*
+- * Basic output routines.
+- *
+- * Note that we do not support suspension while writing a marker.
+- * Therefore, an application using suspension must ensure that there is
+- * enough buffer space for the initial markers (typ. 600-700 bytes) before
+- * calling jpeg_start_compress, and enough space to write the trailing EOI
+- * (a few bytes) before calling jpeg_finish_compress.  Multipass compression
+- * modes are not supported at all with suspension, so those two are the only
+- * points where markers will be written.
+- */
+-
+-LOCAL(void)
+-emit_byte (j_compress_ptr cinfo, int val)
+-/* Emit a byte */
+-{
+-  struct jpeg_destination_mgr * dest = cinfo->dest;
+-
+-  *(dest->next_output_byte)++ = (JOCTET) val;
+-  if (--dest->free_in_buffer == 0) {
+-    if (! (*dest->empty_output_buffer) (cinfo))
+-      ERREXIT(cinfo, JERR_CANT_SUSPEND);
+-  }
+-}
+-
+-
+-LOCAL(void)
+-emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
+-/* Emit a marker code */
+-{
+-  emit_byte(cinfo, 0xFF);
+-  emit_byte(cinfo, (int) mark);
+-}
+-
+-
+-LOCAL(void)
+-emit_2bytes (j_compress_ptr cinfo, int value)
+-/* Emit a 2-byte integer; these are always MSB first in JPEG files */
+-{
+-  emit_byte(cinfo, (value >> 8) & 0xFF);
+-  emit_byte(cinfo, value & 0xFF);
+-}
+-
+-
+-/*
+- * Routines to write specific marker types.
+- */
+-
+-LOCAL(int)
+-emit_dqt (j_compress_ptr cinfo, int index)
+-/* Emit a DQT marker */
+-/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
+-{
+-  JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
+-  int prec;
+-  int i;
+-
+-  if (qtbl == NULL)
+-    ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
+-
+-  prec = 0;
+-  for (i = 0; i < DCTSIZE2; i++) {
+-    if (qtbl->quantval[i] > 255)
+-      prec = 1;
+-  }
+-
+-  if (! qtbl->sent_table) {
+-    emit_marker(cinfo, M_DQT);
+-
+-    emit_2bytes(cinfo, prec ? DCTSIZE2*2 + 1 + 2 : DCTSIZE2 + 1 + 2);
+-
+-    emit_byte(cinfo, index + (prec<<4));
+-
+-    for (i = 0; i < DCTSIZE2; i++) {
+-      /* The table entries must be emitted in zigzag order. */
+-      unsigned int qval = qtbl->quantval[jpeg_natural_order[i]];
+-      if (prec)
+-	emit_byte(cinfo, (int) (qval >> 8));
+-      emit_byte(cinfo, (int) (qval & 0xFF));
+-    }
+-
+-    qtbl->sent_table = TRUE;
+-  }
+-
+-  return prec;
+-}
+-
+-
+-LOCAL(void)
+-emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
+-/* Emit a DHT marker */
+-{
+-  JHUFF_TBL * htbl;
+-  int length, i;
+-  
+-  if (is_ac) {
+-    htbl = cinfo->ac_huff_tbl_ptrs[index];
+-    index += 0x10;		/* output index has AC bit set */
+-  } else {
+-    htbl = cinfo->dc_huff_tbl_ptrs[index];
+-  }
+-
+-  if (htbl == NULL)
+-    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
+-  
+-  if (! htbl->sent_table) {
+-    emit_marker(cinfo, M_DHT);
+-    
+-    length = 0;
+-    for (i = 1; i <= 16; i++)
+-      length += htbl->bits[i];
+-    
+-    emit_2bytes(cinfo, length + 2 + 1 + 16);
+-    emit_byte(cinfo, index);
+-    
+-    for (i = 1; i <= 16; i++)
+-      emit_byte(cinfo, htbl->bits[i]);
+-    
+-    for (i = 0; i < length; i++)
+-      emit_byte(cinfo, htbl->huffval[i]);
+-    
+-    htbl->sent_table = TRUE;
+-  }
+-}
+-
+-
+-LOCAL(void)
+-emit_dac (j_compress_ptr cinfo)
+-/* Emit a DAC marker */
+-/* Since the useful info is so small, we want to emit all the tables in */
+-/* one DAC marker.  Therefore this routine does its own scan of the table. */
+-{
+-#ifdef C_ARITH_CODING_SUPPORTED
+-  char dc_in_use[NUM_ARITH_TBLS];
+-  char ac_in_use[NUM_ARITH_TBLS];
+-  int length, i;
+-  jpeg_component_info *compptr;
+-  
+-  for (i = 0; i < NUM_ARITH_TBLS; i++)
+-    dc_in_use[i] = ac_in_use[i] = 0;
+-  
+-  for (i = 0; i < cinfo->comps_in_scan; i++) {
+-    compptr = cinfo->cur_comp_info[i];
+-    dc_in_use[compptr->dc_tbl_no] = 1;
+-    ac_in_use[compptr->ac_tbl_no] = 1;
+-  }
+-  
+-  length = 0;
+-  for (i = 0; i < NUM_ARITH_TBLS; i++)
+-    length += dc_in_use[i] + ac_in_use[i];
+-  
+-  emit_marker(cinfo, M_DAC);
+-  
+-  emit_2bytes(cinfo, length*2 + 2);
+-  
+-  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+-    if (dc_in_use[i]) {
+-      emit_byte(cinfo, i);
+-      emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
+-    }
+-    if (ac_in_use[i]) {
+-      emit_byte(cinfo, i + 0x10);
+-      emit_byte(cinfo, cinfo->arith_ac_K[i]);
+-    }
+-  }
+-#endif /* C_ARITH_CODING_SUPPORTED */
+-}
+-
+-
+-LOCAL(void)
+-emit_dri (j_compress_ptr cinfo)
+-/* Emit a DRI marker */
+-{
+-  emit_marker(cinfo, M_DRI);
+-  
+-  emit_2bytes(cinfo, 4);	/* fixed length */
+-
+-  emit_2bytes(cinfo, (int) cinfo->restart_interval);
+-}
+-
+-
+-LOCAL(void)
+-emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
+-/* Emit a SOF marker */
+-{
+-  int ci;
+-  jpeg_component_info *compptr;
+-  
+-  emit_marker(cinfo, code);
+-  
+-  emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
+-
+-  /* Make sure image isn't bigger than SOF field can handle */
+-  if ((long) cinfo->image_height > 65535L ||
+-      (long) cinfo->image_width > 65535L)
+-    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
+-
+-  emit_byte(cinfo, cinfo->data_precision);
+-  emit_2bytes(cinfo, (int) cinfo->image_height);
+-  emit_2bytes(cinfo, (int) cinfo->image_width);
+-
+-  emit_byte(cinfo, cinfo->num_components);
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    emit_byte(cinfo, compptr->component_id);
+-    emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
+-    emit_byte(cinfo, compptr->quant_tbl_no);
+-  }
+-}
+-
+-
+-LOCAL(void)
+-emit_sos (j_compress_ptr cinfo)
+-/* Emit a SOS marker */
+-{
+-  int i, td, ta;
+-  jpeg_component_info *compptr;
+-  
+-  emit_marker(cinfo, M_SOS);
+-  
+-  emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
+-  
+-  emit_byte(cinfo, cinfo->comps_in_scan);
+-  
+-  for (i = 0; i < cinfo->comps_in_scan; i++) {
+-    compptr = cinfo->cur_comp_info[i];
+-    emit_byte(cinfo, compptr->component_id);
+-    td = compptr->dc_tbl_no;
+-    ta = compptr->ac_tbl_no;
+-    if (cinfo->progressive_mode) {
+-      /* Progressive mode: only DC or only AC tables are used in one scan;
+-       * furthermore, Huffman coding of DC refinement uses no table at all.
+-       * We emit 0 for unused field(s); this is recommended by the P&M text
+-       * but does not seem to be specified in the standard.
+-       */
+-      if (cinfo->Ss == 0) {
+-	ta = 0;			/* DC scan */
+-	if (cinfo->Ah != 0 && !cinfo->arith_code)
+-	  td = 0;		/* no DC table either */
+-      } else {
+-	td = 0;			/* AC scan */
+-      }
+-    }
+-    emit_byte(cinfo, (td << 4) + ta);
+-  }
+-
+-  emit_byte(cinfo, cinfo->Ss);
+-  emit_byte(cinfo, cinfo->Se);
+-  emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
+-}
+-
+-
+-LOCAL(void)
+-emit_jfif_app0 (j_compress_ptr cinfo)
+-/* Emit a JFIF-compliant APP0 marker */
+-{
+-  /*
+-   * Length of APP0 block	(2 bytes)
+-   * Block ID			(4 bytes - ASCII "JFIF")
+-   * Zero byte			(1 byte to terminate the ID string)
+-   * Version Major, Minor	(2 bytes - major first)
+-   * Units			(1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
+-   * Xdpu			(2 bytes - dots per unit horizontal)
+-   * Ydpu			(2 bytes - dots per unit vertical)
+-   * Thumbnail X size		(1 byte)
+-   * Thumbnail Y size		(1 byte)
+-   */
+-  
+-  emit_marker(cinfo, M_APP0);
+-  
+-  emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
+-
+-  emit_byte(cinfo, 0x4A);	/* Identifier: ASCII "JFIF" */
+-  emit_byte(cinfo, 0x46);
+-  emit_byte(cinfo, 0x49);
+-  emit_byte(cinfo, 0x46);
+-  emit_byte(cinfo, 0);
+-  emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
+-  emit_byte(cinfo, cinfo->JFIF_minor_version);
+-  emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
+-  emit_2bytes(cinfo, (int) cinfo->X_density);
+-  emit_2bytes(cinfo, (int) cinfo->Y_density);
+-  emit_byte(cinfo, 0);		/* No thumbnail image */
+-  emit_byte(cinfo, 0);
+-}
+-
+-
+-LOCAL(void)
+-emit_adobe_app14 (j_compress_ptr cinfo)
+-/* Emit an Adobe APP14 marker */
+-{
+-  /*
+-   * Length of APP14 block	(2 bytes)
+-   * Block ID			(5 bytes - ASCII "Adobe")
+-   * Version Number		(2 bytes - currently 100)
+-   * Flags0			(2 bytes - currently 0)
+-   * Flags1			(2 bytes - currently 0)
+-   * Color transform		(1 byte)
+-   *
+-   * Although Adobe TN 5116 mentions Version = 101, all the Adobe files
+-   * now in circulation seem to use Version = 100, so that's what we write.
+-   *
+-   * We write the color transform byte as 1 if the JPEG color space is
+-   * YCbCr, 2 if it's YCCK, 0 otherwise.  Adobe's definition has to do with
+-   * whether the encoder performed a transformation, which is pretty useless.
+-   */
+-  
+-  emit_marker(cinfo, M_APP14);
+-  
+-  emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
+-
+-  emit_byte(cinfo, 0x41);	/* Identifier: ASCII "Adobe" */
+-  emit_byte(cinfo, 0x64);
+-  emit_byte(cinfo, 0x6F);
+-  emit_byte(cinfo, 0x62);
+-  emit_byte(cinfo, 0x65);
+-  emit_2bytes(cinfo, 100);	/* Version */
+-  emit_2bytes(cinfo, 0);	/* Flags0 */
+-  emit_2bytes(cinfo, 0);	/* Flags1 */
+-  switch (cinfo->jpeg_color_space) {
+-  case JCS_YCbCr:
+-    emit_byte(cinfo, 1);	/* Color transform = 1 */
+-    break;
+-  case JCS_YCCK:
+-    emit_byte(cinfo, 2);	/* Color transform = 2 */
+-    break;
+-  default:
+-    emit_byte(cinfo, 0);	/* Color transform = 0 */
+-    break;
+-  }
+-}
+-
+-
+-/*
+- * These routines allow writing an arbitrary marker with parameters.
+- * The only intended use is to emit COM or APPn markers after calling
+- * write_file_header and before calling write_frame_header.
+- * Other uses are not guaranteed to produce desirable results.
+- * Counting the parameter bytes properly is the caller's responsibility.
+- */
+-
+-METHODDEF(void)
+-write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
+-/* Emit an arbitrary marker header */
+-{
+-  if (datalen > (unsigned int) 65533)		/* safety check */
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  emit_marker(cinfo, (JPEG_MARKER) marker);
+-
+-  emit_2bytes(cinfo, (int) (datalen + 2));	/* total length */
+-}
+-
+-METHODDEF(void)
+-write_marker_byte (j_compress_ptr cinfo, int val)
+-/* Emit one byte of marker parameters following write_marker_header */
+-{
+-  emit_byte(cinfo, val);
+-}
+-
+-
+-/*
+- * Write datastream header.
+- * This consists of an SOI and optional APPn markers.
+- * We recommend use of the JFIF marker, but not the Adobe marker,
+- * when using YCbCr or grayscale data.  The JFIF marker should NOT
+- * be used for any other JPEG colorspace.  The Adobe marker is helpful
+- * to distinguish RGB, CMYK, and YCCK colorspaces.
+- * Note that an application can write additional header markers after
+- * jpeg_start_compress returns.
+- */
+-
+-METHODDEF(void)
+-write_file_header (j_compress_ptr cinfo)
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-
+-  emit_marker(cinfo, M_SOI);	/* first the SOI */
+-
+-  /* SOI is defined to reset restart interval to 0 */
+-  marker->last_restart_interval = 0;
+-
+-  if (cinfo->write_JFIF_header)	/* next an optional JFIF APP0 */
+-    emit_jfif_app0(cinfo);
+-  if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
+-    emit_adobe_app14(cinfo);
+-}
+-
+-
+-/*
+- * Write frame header.
+- * This consists of DQT and SOFn markers.
+- * Note that we do not emit the SOF until we have emitted the DQT(s).
+- * This avoids compatibility problems with incorrect implementations that
+- * try to error-check the quant table numbers as soon as they see the SOF.
+- */
+-
+-METHODDEF(void)
+-write_frame_header (j_compress_ptr cinfo)
+-{
+-  int ci, prec;
+-  boolean is_baseline;
+-  jpeg_component_info *compptr;
+-  
+-  /* Emit DQT for each quantization table.
+-   * Note that emit_dqt() suppresses any duplicate tables.
+-   */
+-  prec = 0;
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    prec += emit_dqt(cinfo, compptr->quant_tbl_no);
+-  }
+-  /* now prec is nonzero iff there are any 16-bit quant tables. */
+-
+-  /* Check for a non-baseline specification.
+-   * Note we assume that Huffman table numbers won't be changed later.
+-   */
+-  if (cinfo->arith_code || cinfo->progressive_mode ||
+-      cinfo->data_precision != 8) {
+-    is_baseline = FALSE;
+-  } else {
+-    is_baseline = TRUE;
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
+-	is_baseline = FALSE;
+-    }
+-    if (prec && is_baseline) {
+-      is_baseline = FALSE;
+-      /* If it's baseline except for quantizer size, warn the user */
+-      TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
+-    }
+-  }
+-
+-  /* Emit the proper SOF marker */
+-  if (cinfo->arith_code) {
+-    emit_sof(cinfo, M_SOF9);	/* SOF code for arithmetic coding */
+-  } else {
+-    if (cinfo->progressive_mode)
+-      emit_sof(cinfo, M_SOF2);	/* SOF code for progressive Huffman */
+-    else if (is_baseline)
+-      emit_sof(cinfo, M_SOF0);	/* SOF code for baseline implementation */
+-    else
+-      emit_sof(cinfo, M_SOF1);	/* SOF code for non-baseline Huffman file */
+-  }
+-}
+-
+-
+-/*
+- * Write scan header.
+- * This consists of DHT or DAC markers, optional DRI, and SOS.
+- * Compressed data will be written following the SOS.
+- */
+-
+-METHODDEF(void)
+-write_scan_header (j_compress_ptr cinfo)
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-  int i;
+-  jpeg_component_info *compptr;
+-
+-  if (cinfo->arith_code) {
+-    /* Emit arith conditioning info.  We may have some duplication
+-     * if the file has multiple scans, but it's so small it's hardly
+-     * worth worrying about.
+-     */
+-    emit_dac(cinfo);
+-  } else {
+-    /* Emit Huffman tables.
+-     * Note that emit_dht() suppresses any duplicate tables.
+-     */
+-    for (i = 0; i < cinfo->comps_in_scan; i++) {
+-      compptr = cinfo->cur_comp_info[i];
+-      if (cinfo->progressive_mode) {
+-	/* Progressive mode: only DC or only AC tables are used in one scan */
+-	if (cinfo->Ss == 0) {
+-	  if (cinfo->Ah == 0)	/* DC needs no table for refinement scan */
+-	    emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+-	} else {
+-	  emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+-	}
+-      } else {
+-	/* Sequential mode: need both DC and AC tables */
+-	emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
+-	emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
+-      }
+-    }
+-  }
+-
+-  /* Emit DRI if required --- note that DRI value could change for each scan.
+-   * We avoid wasting space with unnecessary DRIs, however.
+-   */
+-  if (cinfo->restart_interval != marker->last_restart_interval) {
+-    emit_dri(cinfo);
+-    marker->last_restart_interval = cinfo->restart_interval;
+-  }
+-
+-  emit_sos(cinfo);
+-}
+-
+-
+-/*
+- * Write datastream trailer.
+- */
+-
+-METHODDEF(void)
+-write_file_trailer (j_compress_ptr cinfo)
+-{
+-  emit_marker(cinfo, M_EOI);
+-}
+-
+-
+-/*
+- * Write an abbreviated table-specification datastream.
+- * This consists of SOI, DQT and DHT tables, and EOI.
+- * Any table that is defined and not marked sent_table = TRUE will be
+- * emitted.  Note that all tables will be marked sent_table = TRUE at exit.
+- */
+-
+-METHODDEF(void)
+-write_tables_only (j_compress_ptr cinfo)
+-{
+-  int i;
+-  
+-  emit_marker(cinfo, M_SOI);
+-
+-  /* Emit DQT for each quantization table.
+-   * Only emit those tables that are actually associated with image components,
+-   * if there are any image components, which will usually not be the case.
+-   * Note that emit_dqt() suppresses any duplicate tables.
+-   */
+-  if (cinfo->num_components > 0) {
+-      int ci;
+-      jpeg_component_info *compptr;
+-      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-           ci++, compptr++) {
+-          (void) emit_dqt(cinfo, compptr->quant_tbl_no);
+-      }
+-  } else {
+-      for (i = 0; i < NUM_QUANT_TBLS; i++) {
+-          if (cinfo->quant_tbl_ptrs[i] != NULL)
+-              (void) emit_dqt(cinfo, i);
+-      }
+-  }
+-
+-  if (! cinfo->arith_code) {
+-    for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-      if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
+-	emit_dht(cinfo, i, FALSE);
+-      if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
+-	emit_dht(cinfo, i, TRUE);
+-    }
+-  }
+-
+-  emit_marker(cinfo, M_EOI);
+-}
+-
+-
+-/*
+- * Initialize the marker writer module.
+- */
+-
+-GLOBAL(void)
+-jinit_marker_writer (j_compress_ptr cinfo)
+-{
+-  my_marker_ptr marker;
+-
+-  /* Create the subobject */
+-  marker = (my_marker_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_marker_writer));
+-  cinfo->marker = (struct jpeg_marker_writer *) marker;
+-  /* Initialize method pointers */
+-  marker->pub.write_file_header = write_file_header;
+-  marker->pub.write_frame_header = write_frame_header;
+-  marker->pub.write_scan_header = write_scan_header;
+-  marker->pub.write_file_trailer = write_file_trailer;
+-  marker->pub.write_tables_only = write_tables_only;
+-  marker->pub.write_marker_header = write_marker_header;
+-  marker->pub.write_marker_byte = write_marker_byte;
+-  /* Initialize private state */
+-  marker->last_restart_interval = 0;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmaster.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmaster.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcmaster.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcmaster.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,594 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcmaster.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains master control logic for the JPEG compressor.
+- * These routines are concerned with parameter validation, initial setup,
+- * and inter-pass control (determining the number of passes and the work 
+- * to be done in each pass).
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private state */
+-
+-typedef enum {
+-	main_pass,		/* input data, also do first output step */
+-	huff_opt_pass,		/* Huffman code optimization pass */
+-	output_pass		/* data output pass */
+-} c_pass_type;
+-
+-typedef struct {
+-  struct jpeg_comp_master pub;	/* public fields */
+-
+-  c_pass_type pass_type;	/* the type of the current pass */
+-
+-  int pass_number;		/* # of passes completed */
+-  int total_passes;		/* total # of passes needed */
+-
+-  int scan_number;		/* current index in scan_info[] */
+-} my_comp_master;
+-
+-typedef my_comp_master * my_master_ptr;
+-
+-
+-/*
+- * Support routines that do various essential calculations.
+- */
+-
+-LOCAL(void)
+-initial_setup (j_compress_ptr cinfo)
+-/* Do computations that are needed before master selection phase */
+-{
+-  int ci;
+-  jpeg_component_info *compptr;
+-  long samplesperrow;
+-  JDIMENSION jd_samplesperrow;
+-
+-  /* Sanity check on image dimensions */
+-  if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+-      || cinfo->num_components <= 0 || cinfo->input_components <= 0)
+-    ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+-
+-  /* Make sure image isn't bigger than I can handle */
+-  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+-      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+-    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+-
+-  /* Width of an input scanline must be representable as JDIMENSION. */
+-  samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
+-  jd_samplesperrow = (JDIMENSION) samplesperrow;
+-  if ((long) jd_samplesperrow != samplesperrow)
+-    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+-
+-  /* For now, precision must match compiled-in value... */
+-  if (cinfo->data_precision != BITS_IN_JSAMPLE)
+-    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+-
+-  /* Check that number of components won't exceed internal array sizes */
+-  if (cinfo->num_components > MAX_COMPONENTS)
+-    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+-	     MAX_COMPONENTS);
+-
+-  /* Compute maximum sampling factors; check factor validity */
+-  cinfo->max_h_samp_factor = 1;
+-  cinfo->max_v_samp_factor = 1;
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+-	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+-      ERREXIT(cinfo, JERR_BAD_SAMPLING);
+-    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+-				   compptr->h_samp_factor);
+-    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+-				   compptr->v_samp_factor);
+-  }
+-
+-  /* Compute dimensions of components */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Fill in the correct component_index value; don't rely on application */
+-    compptr->component_index = ci;
+-    /* For compression, we never do DCT scaling. */
+-    compptr->DCT_scaled_size = DCTSIZE;
+-    /* Size in DCT blocks */
+-    compptr->width_in_blocks = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+-		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+-    compptr->height_in_blocks = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+-		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+-    /* Size in samples */
+-    compptr->downsampled_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+-		    (long) cinfo->max_h_samp_factor);
+-    compptr->downsampled_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+-		    (long) cinfo->max_v_samp_factor);
+-    /* Mark component needed (this flag isn't actually used for compression) */
+-    compptr->component_needed = TRUE;
+-  }
+-
+-  /* Compute number of fully interleaved MCU rows (number of times that
+-   * main controller will call coefficient controller).
+-   */
+-  cinfo->total_iMCU_rows = (JDIMENSION)
+-    jdiv_round_up((long) cinfo->image_height,
+-		  (long) (cinfo->max_v_samp_factor*DCTSIZE));
+-}
+-
+-
+-#ifdef C_MULTISCAN_FILES_SUPPORTED
+-
+-LOCAL(void)
+-validate_script (j_compress_ptr cinfo)
+-/* Verify that the scan script in cinfo->scan_info[] is valid; also
+- * determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
+- */
+-{
+-  const jpeg_scan_info * scanptr;
+-  int scanno, ncomps, ci, coefi, thisi;
+-  int Ss, Se, Ah, Al;
+-  boolean component_sent[MAX_COMPONENTS];
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-  int * last_bitpos_ptr;
+-  int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
+-  /* -1 until that coefficient has been seen; then last Al for it */
+-#endif
+-
+-  if (cinfo->num_scans <= 0)
+-    ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
+-
+-  /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
+-   * for progressive JPEG, no scan can have this.
+-   */
+-  scanptr = cinfo->scan_info;
+-  if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-    cinfo->progressive_mode = TRUE;
+-    last_bitpos_ptr = & last_bitpos[0][0];
+-    for (ci = 0; ci < cinfo->num_components; ci++) 
+-      for (coefi = 0; coefi < DCTSIZE2; coefi++)
+-	*last_bitpos_ptr++ = -1;
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-  } else {
+-    cinfo->progressive_mode = FALSE;
+-    for (ci = 0; ci < cinfo->num_components; ci++) 
+-      component_sent[ci] = FALSE;
+-  }
+-
+-  for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
+-    /* Validate component indexes */
+-    ncomps = scanptr->comps_in_scan;
+-    if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
+-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
+-    for (ci = 0; ci < ncomps; ci++) {
+-      thisi = scanptr->component_index[ci];
+-      if (thisi < 0 || thisi >= cinfo->num_components)
+-	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+-      /* Components must appear in SOF order within each scan */
+-      if (ci > 0 && thisi <= scanptr->component_index[ci-1])
+-	ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+-    }
+-    /* Validate progression parameters */
+-    Ss = scanptr->Ss;
+-    Se = scanptr->Se;
+-    Ah = scanptr->Ah;
+-    Al = scanptr->Al;
+-    if (cinfo->progressive_mode) {
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-      /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
+-       * seems wrong: the upper bound ought to depend on data precision.
+-       * Perhaps they really meant 0..N+1 for N-bit precision.
+-       * Here we allow 0..10 for 8-bit data; Al larger than 10 results in
+-       * out-of-range reconstructed DC values during the first DC scan,
+-       * which might cause problems for some decoders.
+-       */
+-#if BITS_IN_JSAMPLE == 8
+-#define MAX_AH_AL 10
+-#else
+-#define MAX_AH_AL 13
+-#endif
+-      if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
+-	  Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL)
+-	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-      if (Ss == 0) {
+-	if (Se != 0)		/* DC and AC together not OK */
+-	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-      } else {
+-	if (ncomps != 1)	/* AC scans must be for only one component */
+-	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-      }
+-      for (ci = 0; ci < ncomps; ci++) {
+-	last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
+-	if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
+-	  ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-	for (coefi = Ss; coefi <= Se; coefi++) {
+-	  if (last_bitpos_ptr[coefi] < 0) {
+-	    /* first scan of this coefficient */
+-	    if (Ah != 0)
+-	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-	  } else {
+-	    /* not first scan */
+-	    if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
+-	      ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-	  }
+-	  last_bitpos_ptr[coefi] = Al;
+-	}
+-      }
+-#endif
+-    } else {
+-      /* For sequential JPEG, all progression parameters must be these: */
+-      if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
+-	ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
+-      /* Make sure components are not sent twice */
+-      for (ci = 0; ci < ncomps; ci++) {
+-	thisi = scanptr->component_index[ci];
+-	if (component_sent[thisi])
+-	  ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
+-	component_sent[thisi] = TRUE;
+-      }
+-    }
+-  }
+-
+-  /* Now verify that everything got sent. */
+-  if (cinfo->progressive_mode) {
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-    /* For progressive mode, we only check that at least some DC data
+-     * got sent for each component; the spec does not require that all bits
+-     * of all coefficients be transmitted.  Would it be wiser to enforce
+-     * transmission of all coefficient bits??
+-     */
+-    for (ci = 0; ci < cinfo->num_components; ci++) {
+-      if (last_bitpos[ci][0] < 0)
+-	ERREXIT(cinfo, JERR_MISSING_DATA);
+-    }
+-#endif
+-  } else {
+-    for (ci = 0; ci < cinfo->num_components; ci++) {
+-      if (! component_sent[ci])
+-	ERREXIT(cinfo, JERR_MISSING_DATA);
+-    }
+-  }
+-}
+-
+-#endif /* C_MULTISCAN_FILES_SUPPORTED */
+-
+-
+-LOCAL(void)
+-select_scan_parameters (j_compress_ptr cinfo)
+-/* Set up the scan parameters for the current scan */
+-{
+-  int ci;
+-
+-#ifdef C_MULTISCAN_FILES_SUPPORTED
+-  if (cinfo->scan_info != NULL) {
+-    /* Prepare for current scan --- the script is already validated */
+-    my_master_ptr master = (my_master_ptr) cinfo->master;
+-    const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
+-
+-    cinfo->comps_in_scan = scanptr->comps_in_scan;
+-    for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
+-      cinfo->cur_comp_info[ci] =
+-	&cinfo->comp_info[scanptr->component_index[ci]];
+-    }
+-    cinfo->Ss = scanptr->Ss;
+-    cinfo->Se = scanptr->Se;
+-    cinfo->Ah = scanptr->Ah;
+-    cinfo->Al = scanptr->Al;
+-  }
+-  else
+-#endif
+-  {
+-    /* Prepare for single sequential-JPEG scan containing all components */
+-    if (cinfo->num_components > MAX_COMPS_IN_SCAN)
+-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+-	       MAX_COMPS_IN_SCAN);
+-    cinfo->comps_in_scan = cinfo->num_components;
+-    for (ci = 0; ci < cinfo->num_components; ci++) {
+-      cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
+-    }
+-    cinfo->Ss = 0;
+-    cinfo->Se = DCTSIZE2-1;
+-    cinfo->Ah = 0;
+-    cinfo->Al = 0;
+-  }
+-}
+-
+-
+-LOCAL(void)
+-per_scan_setup (j_compress_ptr cinfo)
+-/* Do computations that are needed before processing a JPEG scan */
+-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
+-{
+-  int ci, mcublks, tmp;
+-  jpeg_component_info *compptr;
+-  
+-  if (cinfo->comps_in_scan == 1) {
+-    
+-    /* Noninterleaved (single-component) scan */
+-    compptr = cinfo->cur_comp_info[0];
+-    
+-    /* Overall image size in MCUs */
+-    cinfo->MCUs_per_row = compptr->width_in_blocks;
+-    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+-    
+-    /* For noninterleaved scan, always one block per MCU */
+-    compptr->MCU_width = 1;
+-    compptr->MCU_height = 1;
+-    compptr->MCU_blocks = 1;
+-    compptr->MCU_sample_width = DCTSIZE;
+-    compptr->last_col_width = 1;
+-    /* For noninterleaved scans, it is convenient to define last_row_height
+-     * as the number of block rows present in the last iMCU row.
+-     */
+-    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+-    if (tmp == 0) tmp = compptr->v_samp_factor;
+-    compptr->last_row_height = tmp;
+-    
+-    /* Prepare array describing MCU composition */
+-    cinfo->blocks_in_MCU = 1;
+-    cinfo->MCU_membership[0] = 0;
+-    
+-  } else {
+-    
+-    /* Interleaved (multi-component) scan */
+-    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+-	       MAX_COMPS_IN_SCAN);
+-    
+-    /* Overall image size in MCUs */
+-    cinfo->MCUs_per_row = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width,
+-		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
+-    cinfo->MCU_rows_in_scan = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height,
+-		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
+-    
+-    cinfo->blocks_in_MCU = 0;
+-    
+-    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-      compptr = cinfo->cur_comp_info[ci];
+-      /* Sampling factors give # of blocks of component in each MCU */
+-      compptr->MCU_width = compptr->h_samp_factor;
+-      compptr->MCU_height = compptr->v_samp_factor;
+-      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+-      compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE;
+-      /* Figure number of non-dummy blocks in last MCU column & row */
+-      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+-      if (tmp == 0) tmp = compptr->MCU_width;
+-      compptr->last_col_width = tmp;
+-      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+-      if (tmp == 0) tmp = compptr->MCU_height;
+-      compptr->last_row_height = tmp;
+-      /* Prepare array describing MCU composition */
+-      mcublks = compptr->MCU_blocks;
+-      if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
+-	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+-      while (mcublks-- > 0) {
+-	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+-      }
+-    }
+-    
+-  }
+-
+-  /* Convert restart specified in rows to actual MCU count. */
+-  /* Note that count must fit in 16 bits, so we provide limiting. */
+-  if (cinfo->restart_in_rows > 0) {
+-    long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
+-    cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
+-  }
+-}
+-
+-
+-/*
+- * Per-pass setup.
+- * This is called at the beginning of each pass.  We determine which modules
+- * will be active during this pass and give them appropriate start_pass calls.
+- * We also set is_last_pass to indicate whether any more passes will be
+- * required.
+- */
+-
+-METHODDEF(void)
+-prepare_for_pass (j_compress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-
+-  switch (master->pass_type) {
+-  case main_pass:
+-    /* Initial pass: will collect input data, and do either Huffman
+-     * optimization or data output for the first scan.
+-     */
+-    select_scan_parameters(cinfo);
+-    per_scan_setup(cinfo);
+-    if (! cinfo->raw_data_in) {
+-      (*cinfo->cconvert->start_pass) (cinfo);
+-      (*cinfo->downsample->start_pass) (cinfo);
+-      (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
+-    }
+-    (*cinfo->fdct->start_pass) (cinfo);
+-    (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
+-    (*cinfo->coef->start_pass) (cinfo,
+-				(master->total_passes > 1 ?
+-				 JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+-    (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+-    if (cinfo->optimize_coding) {
+-      /* No immediate data output; postpone writing frame/scan headers */
+-      master->pub.call_pass_startup = FALSE;
+-    } else {
+-      /* Will write frame/scan headers at first jpeg_write_scanlines call */
+-      master->pub.call_pass_startup = TRUE;
+-    }
+-    break;
+-#ifdef ENTROPY_OPT_SUPPORTED
+-  case huff_opt_pass:
+-    /* Do Huffman optimization for a scan after the first one. */
+-    select_scan_parameters(cinfo);
+-    per_scan_setup(cinfo);
+-    if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) {
+-      (*cinfo->entropy->start_pass) (cinfo, TRUE);
+-      (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+-      master->pub.call_pass_startup = FALSE;
+-      break;
+-    }
+-    /* Special case: Huffman DC refinement scans need no Huffman table
+-     * and therefore we can skip the optimization pass for them.
+-     */
+-    master->pass_type = output_pass;
+-    master->pass_number++;
+-    /*FALLTHROUGH*/
+-#endif
+-  case output_pass:
+-    /* Do a data-output pass. */
+-    /* We need not repeat per-scan setup if prior optimization pass did it. */
+-    if (! cinfo->optimize_coding) {
+-      select_scan_parameters(cinfo);
+-      per_scan_setup(cinfo);
+-    }
+-    (*cinfo->entropy->start_pass) (cinfo, FALSE);
+-    (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
+-    /* We emit frame/scan headers now */
+-    if (master->scan_number == 0)
+-      (*cinfo->marker->write_frame_header) (cinfo);
+-    (*cinfo->marker->write_scan_header) (cinfo);
+-    master->pub.call_pass_startup = FALSE;
+-    break;
+-  default:
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-  }
+-
+-  master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
+-
+-  /* Set up progress monitor's pass info if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->completed_passes = master->pass_number;
+-    cinfo->progress->total_passes = master->total_passes;
+-  }
+-}
+-
+-
+-/*
+- * Special start-of-pass hook.
+- * This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
+- * In single-pass processing, we need this hook because we don't want to
+- * write frame/scan headers during jpeg_start_compress; we want to let the
+- * application write COM markers etc. between jpeg_start_compress and the
+- * jpeg_write_scanlines loop.
+- * In multi-pass processing, this routine is not used.
+- */
+-
+-METHODDEF(void)
+-pass_startup (j_compress_ptr cinfo)
+-{
+-  cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
+-
+-  (*cinfo->marker->write_frame_header) (cinfo);
+-  (*cinfo->marker->write_scan_header) (cinfo);
+-}
+-
+-
+-/*
+- * Finish up at end of pass.
+- */
+-
+-METHODDEF(void)
+-finish_pass_master (j_compress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-
+-  /* The entropy coder always needs an end-of-pass call,
+-   * either to analyze statistics or to flush its output buffer.
+-   */
+-  (*cinfo->entropy->finish_pass) (cinfo);
+-
+-  /* Update state for next pass */
+-  switch (master->pass_type) {
+-  case main_pass:
+-    /* next pass is either output of scan 0 (after optimization)
+-     * or output of scan 1 (if no optimization).
+-     */
+-    master->pass_type = output_pass;
+-    if (! cinfo->optimize_coding)
+-      master->scan_number++;
+-    break;
+-  case huff_opt_pass:
+-    /* next pass is always output of current scan */
+-    master->pass_type = output_pass;
+-    break;
+-  case output_pass:
+-    /* next pass is either optimization or output of next scan */
+-    if (cinfo->optimize_coding)
+-      master->pass_type = huff_opt_pass;
+-    master->scan_number++;
+-    break;
+-  }
+-
+-  master->pass_number++;
+-}
+-
+-
+-/*
+- * Initialize master compression control.
+- */
+-
+-GLOBAL(void)
+-jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
+-{
+-  my_master_ptr master;
+-
+-  master = (my_master_ptr)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(my_comp_master));
+-  cinfo->master = (struct jpeg_comp_master *) master;
+-  master->pub.prepare_for_pass = prepare_for_pass;
+-  master->pub.pass_startup = pass_startup;
+-  master->pub.finish_pass = finish_pass_master;
+-  master->pub.is_last_pass = FALSE;
+-
+-  /* Validate parameters, determine derived values */
+-  initial_setup(cinfo);
+-
+-  if (cinfo->scan_info != NULL) {
+-#ifdef C_MULTISCAN_FILES_SUPPORTED
+-    validate_script(cinfo);
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-  } else {
+-    cinfo->progressive_mode = FALSE;
+-    cinfo->num_scans = 1;
+-  }
+-
+-  if (cinfo->progressive_mode)	/*  TEMPORARY HACK ??? */
+-    cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */
+-
+-  /* Initialize my private state */
+-  if (transcode_only) {
+-    /* no main pass in transcoding */
+-    if (cinfo->optimize_coding)
+-      master->pass_type = huff_opt_pass;
+-    else
+-      master->pass_type = output_pass;
+-  } else {
+-    /* for normal compression, first pass is always this type: */
+-    master->pass_type = main_pass;
+-  }
+-  master->scan_number = 0;
+-  master->pass_number = 0;
+-  if (cinfo->optimize_coding)
+-    master->total_passes = cinfo->num_scans * 2;
+-  else
+-    master->total_passes = cinfo->num_scans;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcomapi.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcomapi.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcomapi.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcomapi.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,110 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcomapi.c
+- *
+- * Copyright (C) 1994-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains application interface routines that are used for both
+- * compression and decompression.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Abort processing of a JPEG compression or decompression operation,
+- * but don't destroy the object itself.
+- *
+- * For this, we merely clean up all the nonpermanent memory pools.
+- * Note that temp files (virtual arrays) are not allowed to belong to
+- * the permanent pool, so we will be able to close all temp files here.
+- * Closing a data source or destination, if necessary, is the application's
+- * responsibility.
+- */
+-
+-GLOBAL(void)
+-jpeg_abort (j_common_ptr cinfo)
+-{
+-  int pool;
+-
+-  /* Do nothing if called on a not-initialized or destroyed JPEG object. */
+-  if (cinfo->mem == NULL)
+-    return;
+-
+-  /* Releasing pools in reverse order might help avoid fragmentation
+-   * with some (brain-damaged) malloc libraries.
+-   */
+-  for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
+-    (*cinfo->mem->free_pool) (cinfo, pool);
+-  }
+-
+-  /* Reset overall state for possible reuse of object */
+-  if (cinfo->is_decompressor) {
+-    cinfo->global_state = DSTATE_START;
+-    /* Try to keep application from accessing now-deleted marker list.
+-     * A bit kludgy to do it here, but this is the most central place.
+-     */
+-    ((j_decompress_ptr) cinfo)->marker_list = NULL;
+-  } else {
+-    cinfo->global_state = CSTATE_START;
+-  }
+-}
+-
+-
+-/*
+- * Destruction of a JPEG object.
+- *
+- * Everything gets deallocated except the master jpeg_compress_struct itself
+- * and the error manager struct.  Both of these are supplied by the application
+- * and must be freed, if necessary, by the application.  (Often they are on
+- * the stack and so don't need to be freed anyway.)
+- * Closing a data source or destination, if necessary, is the application's
+- * responsibility.
+- */
+-
+-GLOBAL(void)
+-jpeg_destroy (j_common_ptr cinfo)
+-{
+-  /* We need only tell the memory manager to release everything. */
+-  /* NB: mem pointer is NULL if memory mgr failed to initialize. */
+-  if (cinfo->mem != NULL)
+-    (*cinfo->mem->self_destruct) (cinfo);
+-  cinfo->mem = NULL;		/* be safe if jpeg_destroy is called twice */
+-  cinfo->global_state = 0;	/* mark it destroyed */
+-}
+-
+-
+-/*
+- * Convenience routines for allocating quantization and Huffman tables.
+- * (Would jutils.c be a more reasonable place to put these?)
+- */
+-
+-GLOBAL(JQUANT_TBL *)
+-jpeg_alloc_quant_table (j_common_ptr cinfo)
+-{
+-  JQUANT_TBL *tbl;
+-
+-  tbl = (JQUANT_TBL *)
+-    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
+-  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
+-  return tbl;
+-}
+-
+-
+-GLOBAL(JHUFF_TBL *)
+-jpeg_alloc_huff_table (j_common_ptr cinfo)
+-{
+-  JHUFF_TBL *tbl;
+-
+-  tbl = (JHUFF_TBL *)
+-    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
+-  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
+-  return tbl;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jconfig.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jconfig.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jconfig.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jconfig.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,43 +0,0 @@
+-/* jconfig.cfg --- source file edited by configure script */
+-/* see jconfig.doc for explanations */
+-
+-#define HAVE_PROTOTYPES 
+-#define HAVE_UNSIGNED_CHAR 
+-#define HAVE_UNSIGNED_SHORT 
+-#undef void
+-#undef const
+-#undef CHAR_IS_UNSIGNED
+-#define HAVE_STDDEF_H 
+-#define HAVE_STDLIB_H 
+-#undef NEED_BSD_STRINGS
+-#undef NEED_SYS_TYPES_H
+-#undef NEED_FAR_POINTERS
+-#define NEED_SHORT_EXTERNAL_NAMES 
+-/* Define this if you get warnings about undefined structures. */
+-#undef INCOMPLETE_TYPES_BROKEN
+-
+-#ifdef JPEG_INTERNALS
+-
+-#undef RIGHT_SHIFT_IS_UNSIGNED
+-/* These are for configuring the JPEG memory manager. */
+-#undef DEFAULT_MAX_MEM
+-#undef NO_MKTEMP
+-
+-#endif /* JPEG_INTERNALS */
+-
+-#ifdef JPEG_CJPEG_DJPEG
+-
+-#define BMP_SUPPORTED		/* BMP image file format */
+-#define GIF_SUPPORTED		/* GIF image file format */
+-#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
+-#undef RLE_SUPPORTED		/* Utah RLE image file format */
+-#define TARGA_SUPPORTED		/* Targa image file format */
+-
+-#undef TWO_FILE_COMMANDLINE
+-#undef NEED_SIGNAL_CATCHER
+-#undef DONT_USE_B_MODE
+-
+-/* Define this if you want percent-done progress reports from cjpeg/djpeg. */
+-#undef PROGRESS_REPORT
+-
+-#endif /* JPEG_CJPEG_DJPEG */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcparam.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcparam.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcparam.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcparam.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,614 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcparam.c
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains optional default-setting code for the JPEG compressor.
+- * Applications do not have to use this file, but those that don't use it
+- * must know a lot more about the innards of the JPEG code.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Quantization table setup routines
+- */
+-
+-GLOBAL(void)
+-jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
+-		      const unsigned int *basic_table,
+-		      int scale_factor, boolean force_baseline)
+-/* Define a quantization table equal to the basic_table times
+- * a scale factor (given as a percentage).
+- * If force_baseline is TRUE, the computed quantization table entries
+- * are limited to 1..255 for JPEG baseline compatibility.
+- */
+-{
+-  JQUANT_TBL ** qtblptr;
+-  int i;
+-  long temp;
+-
+-  /* Safety check to ensure start_compress not called yet. */
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
+-    ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
+-
+-  qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
+-
+-  if (*qtblptr == NULL)
+-    *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+-
+-  for (i = 0; i < DCTSIZE2; i++) {
+-    temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
+-    /* limit the values to the valid range */
+-    if (temp <= 0L) temp = 1L;
+-    if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
+-    if (force_baseline && temp > 255L)
+-      temp = 255L;		/* limit to baseline range if requested */
+-    (*qtblptr)->quantval[i] = (UINT16) temp;
+-  }
+-
+-  /* Initialize sent_table FALSE so table will be written to JPEG file. */
+-  (*qtblptr)->sent_table = FALSE;
+-}
+-
+-
+-GLOBAL(void)
+-jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
+-			 boolean force_baseline)
+-/* Set or change the 'quality' (quantization) setting, using default tables
+- * and a straight percentage-scaling quality scale.  In most cases it's better
+- * to use jpeg_set_quality (below); this entry point is provided for
+- * applications that insist on a linear percentage scaling.
+- */
+-{
+-  /* These are the sample quantization tables given in JPEG spec section K.1.
+-   * The spec says that the values given produce "good" quality, and
+-   * when divided by 2, "very good" quality.
+-   */
+-  static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
+-    16,  11,  10,  16,  24,  40,  51,  61,
+-    12,  12,  14,  19,  26,  58,  60,  55,
+-    14,  13,  16,  24,  40,  57,  69,  56,
+-    14,  17,  22,  29,  51,  87,  80,  62,
+-    18,  22,  37,  56,  68, 109, 103,  77,
+-    24,  35,  55,  64,  81, 104, 113,  92,
+-    49,  64,  78,  87, 103, 121, 120, 101,
+-    72,  92,  95,  98, 112, 100, 103,  99
+-  };
+-  static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
+-    17,  18,  24,  47,  99,  99,  99,  99,
+-    18,  21,  26,  66,  99,  99,  99,  99,
+-    24,  26,  56,  99,  99,  99,  99,  99,
+-    47,  66,  99,  99,  99,  99,  99,  99,
+-    99,  99,  99,  99,  99,  99,  99,  99,
+-    99,  99,  99,  99,  99,  99,  99,  99,
+-    99,  99,  99,  99,  99,  99,  99,  99,
+-    99,  99,  99,  99,  99,  99,  99,  99
+-  };
+-
+-  /* Set up two quantization tables using the specified scaling */
+-  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
+-		       scale_factor, force_baseline);
+-  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
+-		       scale_factor, force_baseline);
+-}
+-
+-
+-GLOBAL(int)
+-jpeg_quality_scaling (int quality)
+-/* Convert a user-specified quality rating to a percentage scaling factor
+- * for an underlying quantization table, using our recommended scaling curve.
+- * The input 'quality' factor should be 0 (terrible) to 100 (very good).
+- */
+-{
+-  /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
+-  if (quality <= 0) quality = 1;
+-  if (quality > 100) quality = 100;
+-
+-  /* The basic table is used as-is (scaling 100) for a quality of 50.
+-   * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
+-   * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
+-   * to make all the table entries 1 (hence, minimum quantization loss).
+-   * Qualities 1..50 are converted to scaling percentage 5000/Q.
+-   */
+-  if (quality < 50)
+-    quality = 5000 / quality;
+-  else
+-    quality = 200 - quality*2;
+-
+-  return quality;
+-}
+-
+-
+-GLOBAL(void)
+-jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
+-/* Set or change the 'quality' (quantization) setting, using default tables.
+- * This is the standard quality-adjusting entry point for typical user
+- * interfaces; only those who want detailed control over quantization tables
+- * would use the preceding three routines directly.
+- */
+-{
+-  /* Convert user 0-100 rating to percentage scaling */
+-  quality = jpeg_quality_scaling(quality);
+-
+-  /* Set up standard quality tables */
+-  jpeg_set_linear_quality(cinfo, quality, force_baseline);
+-}
+-
+-
+-/*
+- * Huffman table setup routines
+- */
+-
+-LOCAL(void)
+-add_huff_table (j_compress_ptr cinfo,
+-		JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
+-/* Define a Huffman table */
+-{
+-  int nsymbols, len;
+-
+-  if (*htblptr == NULL)
+-    *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+-
+-  /* Copy the number-of-symbols-of-each-code-length counts */
+-  MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+-
+-  /* Validate the counts.  We do this here mainly so we can copy the right
+-   * number of symbols from the val[] array, without risking marching off
+-   * the end of memory.  jchuff.c will do a more thorough test later.
+-   */
+-  nsymbols = 0;
+-  for (len = 1; len <= 16; len++)
+-    nsymbols += bits[len];
+-  if (nsymbols < 1 || nsymbols > 256)
+-    ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-
+-  MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
+-
+-  /* Initialize sent_table FALSE so table will be written to JPEG file. */
+-  (*htblptr)->sent_table = FALSE;
+-}
+-
+-
+-LOCAL(void)
+-std_huff_tables (j_compress_ptr cinfo)
+-/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
+-/* IMPORTANT: these are only valid for 8-bit data precision! */
+-{
+-  static const UINT8 bits_dc_luminance[17] =
+-    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
+-  static const UINT8 val_dc_luminance[] =
+-    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+-  
+-  static const UINT8 bits_dc_chrominance[17] =
+-    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
+-  static const UINT8 val_dc_chrominance[] =
+-    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
+-  
+-  static const UINT8 bits_ac_luminance[17] =
+-    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
+-  static const UINT8 val_ac_luminance[] =
+-    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
+-      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
+-      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
+-      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
+-      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
+-      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
+-      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
+-      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
+-      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
+-      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
+-      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
+-      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
+-      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
+-      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+-      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
+-      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
+-      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
+-      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
+-      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
+-      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+-      0xf9, 0xfa };
+-  
+-  static const UINT8 bits_ac_chrominance[17] =
+-    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
+-  static const UINT8 val_ac_chrominance[] =
+-    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
+-      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
+-      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
+-      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
+-      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
+-      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
+-      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
+-      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
+-      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
+-      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
+-      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+-      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+-      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
+-      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
+-      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
+-      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
+-      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
+-      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
+-      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
+-      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
+-      0xf9, 0xfa };
+-  
+-  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
+-		 bits_dc_luminance, val_dc_luminance);
+-  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
+-		 bits_ac_luminance, val_ac_luminance);
+-  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
+-		 bits_dc_chrominance, val_dc_chrominance);
+-  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
+-		 bits_ac_chrominance, val_ac_chrominance);
+-}
+-
+-
+-/*
+- * Default parameter setup for compression.
+- *
+- * Applications that don't choose to use this routine must do their
+- * own setup of all these parameters.  Alternately, you can call this
+- * to establish defaults and then alter parameters selectively.  This
+- * is the recommended approach since, if we add any new parameters,
+- * your code will still work (they'll be set to reasonable defaults).
+- */
+-
+-GLOBAL(void)
+-jpeg_set_defaults (j_compress_ptr cinfo)
+-{
+-  int i;
+-
+-  /* Safety check to ensure start_compress not called yet. */
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  /* Allocate comp_info array large enough for maximum component count.
+-   * Array is made permanent in case application wants to compress
+-   * multiple images at same param settings.
+-   */
+-  if (cinfo->comp_info == NULL)
+-    cinfo->comp_info = (jpeg_component_info *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+-				  MAX_COMPONENTS * SIZEOF(jpeg_component_info));
+-
+-  /* Initialize everything not dependent on the color space */
+-
+-  cinfo->data_precision = BITS_IN_JSAMPLE;
+-  /* Set up two quantization tables using default quality of 75 */
+-  jpeg_set_quality(cinfo, 75, TRUE);
+-  /* Set up two Huffman tables */
+-  std_huff_tables(cinfo);
+-
+-  /* Initialize default arithmetic coding conditioning */
+-  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+-    cinfo->arith_dc_L[i] = 0;
+-    cinfo->arith_dc_U[i] = 1;
+-    cinfo->arith_ac_K[i] = 5;
+-  }
+-
+-  /* Default is no multiple-scan output */
+-  cinfo->scan_info = NULL;
+-  cinfo->num_scans = 0;
+-
+-  /* Expect normal source image, not raw downsampled data */
+-  cinfo->raw_data_in = FALSE;
+-
+-  /* Use Huffman coding, not arithmetic coding, by default */
+-  cinfo->arith_code = FALSE;
+-
+-  /* By default, don't do extra passes to optimize entropy coding */
+-  cinfo->optimize_coding = FALSE;
+-  /* The standard Huffman tables are only valid for 8-bit data precision.
+-   * If the precision is higher, force optimization on so that usable
+-   * tables will be computed.  This test can be removed if default tables
+-   * are supplied that are valid for the desired precision.
+-   */
+-  if (cinfo->data_precision > 8)
+-    cinfo->optimize_coding = TRUE;
+-
+-  /* By default, use the simpler non-cosited sampling alignment */
+-  cinfo->CCIR601_sampling = FALSE;
+-
+-  /* No input smoothing */
+-  cinfo->smoothing_factor = 0;
+-
+-  /* DCT algorithm preference */
+-  cinfo->dct_method = JDCT_DEFAULT;
+-
+-  /* No restart markers */
+-  cinfo->restart_interval = 0;
+-  cinfo->restart_in_rows = 0;
+-
+-  /* Fill in default JFIF marker parameters.  Note that whether the marker
+-   * will actually be written is determined by jpeg_set_colorspace.
+-   *
+-   * By default, the library emits JFIF version code 1.01.
+-   * An application that wants to emit JFIF 1.02 extension markers should set
+-   * JFIF_minor_version to 2.  We could probably get away with just defaulting
+-   * to 1.02, but there may still be some decoders in use that will complain
+-   * about that; saying 1.01 should minimize compatibility problems.
+-   */
+-  cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
+-  cinfo->JFIF_minor_version = 1;
+-  cinfo->density_unit = 0;	/* Pixel size is unknown by default */
+-  cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */
+-  cinfo->Y_density = 1;
+-
+-  /* Choose JPEG colorspace based on input space, set defaults accordingly */
+-
+-  jpeg_default_colorspace(cinfo);
+-}
+-
+-
+-/*
+- * Select an appropriate JPEG colorspace for in_color_space.
+- */
+-
+-GLOBAL(void)
+-jpeg_default_colorspace (j_compress_ptr cinfo)
+-{
+-  switch (cinfo->in_color_space) {
+-  case JCS_GRAYSCALE:
+-    jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
+-    break;
+-  case JCS_RGB:
+-    jpeg_set_colorspace(cinfo, JCS_YCbCr);
+-    break;
+-  case JCS_YCbCr:
+-    jpeg_set_colorspace(cinfo, JCS_YCbCr);
+-    break;
+-  case JCS_CMYK:
+-    jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
+-    break;
+-  case JCS_YCCK:
+-    jpeg_set_colorspace(cinfo, JCS_YCCK);
+-    break;
+-  case JCS_UNKNOWN:
+-    jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
+-    break;
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
+-  }
+-}
+-
+-
+-/*
+- * Set the JPEG colorspace, and choose colorspace-dependent default values.
+- */
+-
+-GLOBAL(void)
+-jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
+-{
+-  jpeg_component_info * compptr;
+-  int ci;
+-
+-#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
+-  (compptr = &cinfo->comp_info[index], \
+-   compptr->component_id = (id), \
+-   compptr->h_samp_factor = (hsamp), \
+-   compptr->v_samp_factor = (vsamp), \
+-   compptr->quant_tbl_no = (quant), \
+-   compptr->dc_tbl_no = (dctbl), \
+-   compptr->ac_tbl_no = (actbl) )
+-
+-  /* Safety check to ensure start_compress not called yet. */
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
+-   * tables 1 for chrominance components.
+-   */
+-
+-  cinfo->jpeg_color_space = colorspace;
+-
+-  cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
+-  cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
+-
+-  switch (colorspace) {
+-  case JCS_GRAYSCALE:
+-    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+-    cinfo->num_components = 1;
+-    /* JFIF specifies component ID 1 */
+-    SET_COMP(0, 1, 1,1, 0, 0,0);
+-    break;
+-  case JCS_RGB:
+-    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
+-    cinfo->num_components = 3;
+-    SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
+-    SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
+-    SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
+-    break;
+-  case JCS_YCbCr:
+-    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
+-    cinfo->num_components = 3;
+-    /* JFIF specifies component IDs 1,2,3 */
+-    /* We default to 2x2 subsamples of chrominance */
+-    SET_COMP(0, 1, 2,2, 0, 0,0);
+-    SET_COMP(1, 2, 1,1, 1, 1,1);
+-    SET_COMP(2, 3, 1,1, 1, 1,1);
+-    break;
+-  case JCS_CMYK:
+-    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
+-    cinfo->num_components = 4;
+-    SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
+-    SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
+-    SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
+-    SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
+-    break;
+-  case JCS_YCCK:
+-    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
+-    cinfo->num_components = 4;
+-    SET_COMP(0, 1, 2,2, 0, 0,0);
+-    SET_COMP(1, 2, 1,1, 1, 1,1);
+-    SET_COMP(2, 3, 1,1, 1, 1,1);
+-    SET_COMP(3, 4, 2,2, 0, 0,0);
+-    break;
+-  case JCS_UNKNOWN:
+-    cinfo->num_components = cinfo->input_components;
+-    if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
+-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+-	       MAX_COMPONENTS);
+-    for (ci = 0; ci < cinfo->num_components; ci++) {
+-      SET_COMP(ci, ci, 1,1, 0, 0,0);
+-    }
+-    break;
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-  }
+-}
+-
+-
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-
+-LOCAL(jpeg_scan_info *)
+-fill_a_scan (jpeg_scan_info * scanptr, int ci,
+-	     int Ss, int Se, int Ah, int Al)
+-/* Support routine: generate one scan for specified component */
+-{
+-  scanptr->comps_in_scan = 1;
+-  scanptr->component_index[0] = ci;
+-  scanptr->Ss = Ss;
+-  scanptr->Se = Se;
+-  scanptr->Ah = Ah;
+-  scanptr->Al = Al;
+-  scanptr++;
+-  return scanptr;
+-}
+-
+-LOCAL(jpeg_scan_info *)
+-fill_scans (jpeg_scan_info * scanptr, int ncomps,
+-	    int Ss, int Se, int Ah, int Al)
+-/* Support routine: generate one scan for each component */
+-{
+-  int ci;
+-
+-  for (ci = 0; ci < ncomps; ci++) {
+-    scanptr->comps_in_scan = 1;
+-    scanptr->component_index[0] = ci;
+-    scanptr->Ss = Ss;
+-    scanptr->Se = Se;
+-    scanptr->Ah = Ah;
+-    scanptr->Al = Al;
+-    scanptr++;
+-  }
+-  return scanptr;
+-}
+-
+-LOCAL(jpeg_scan_info *)
+-fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
+-/* Support routine: generate interleaved DC scan if possible, else N scans */
+-{
+-  int ci;
+-
+-  if (ncomps <= MAX_COMPS_IN_SCAN) {
+-    /* Single interleaved DC scan */
+-    scanptr->comps_in_scan = ncomps;
+-    for (ci = 0; ci < ncomps; ci++)
+-      scanptr->component_index[ci] = ci;
+-    scanptr->Ss = scanptr->Se = 0;
+-    scanptr->Ah = Ah;
+-    scanptr->Al = Al;
+-    scanptr++;
+-  } else {
+-    /* Noninterleaved DC scan for each component */
+-    scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
+-  }
+-  return scanptr;
+-}
+-
+-
+-/*
+- * Create a recommended progressive-JPEG script.
+- * cinfo->num_components and cinfo->jpeg_color_space must be correct.
+- */
+-
+-GLOBAL(void)
+-jpeg_simple_progression (j_compress_ptr cinfo)
+-{
+-  int ncomps = cinfo->num_components;
+-  int nscans;
+-  jpeg_scan_info * scanptr;
+-
+-  /* Safety check to ensure start_compress not called yet. */
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  /* Figure space needed for script.  Calculation must match code below! */
+-  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+-    /* Custom script for YCbCr color images. */
+-    nscans = 10;
+-  } else {
+-    /* All-purpose script for other color spaces. */
+-    if (ncomps > MAX_COMPS_IN_SCAN)
+-      nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */
+-    else
+-      nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */
+-  }
+-
+-  /* Allocate space for script.
+-   * We need to put it in the permanent pool in case the application performs
+-   * multiple compressions without changing the settings.  To avoid a memory
+-   * leak if jpeg_simple_progression is called repeatedly for the same JPEG
+-   * object, we try to re-use previously allocated space, and we allocate
+-   * enough space to handle YCbCr even if initially asked for grayscale.
+-   */
+-  if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
+-    cinfo->script_space_size = MAX(nscans, 10);
+-    cinfo->script_space = (jpeg_scan_info *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+-			cinfo->script_space_size * SIZEOF(jpeg_scan_info));
+-  }
+-  scanptr = cinfo->script_space;
+-  cinfo->scan_info = scanptr;
+-  cinfo->num_scans = nscans;
+-
+-  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
+-    /* Custom script for YCbCr color images. */
+-    /* Initial DC scan */
+-    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+-    /* Initial AC scan: get some luma data out in a hurry */
+-    scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
+-    /* Chroma data is too small to be worth expending many scans on */
+-    scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
+-    scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
+-    /* Complete spectral selection for luma AC */
+-    scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
+-    /* Refine next bit of luma AC */
+-    scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
+-    /* Finish DC successive approximation */
+-    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+-    /* Finish AC successive approximation */
+-    scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
+-    scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
+-    /* Luma bottom bit comes last since it's usually largest scan */
+-    scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
+-  } else {
+-    /* All-purpose script for other color spaces. */
+-    /* Successive approximation first pass */
+-    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
+-    scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
+-    scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
+-    /* Successive approximation second pass */
+-    scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
+-    /* Successive approximation final pass */
+-    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
+-    scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
+-  }
+-}
+-
+-#endif /* C_PROGRESSIVE_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcphuff.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcphuff.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcphuff.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcphuff.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,837 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcphuff.c
+- *
+- * Copyright (C) 1995-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains Huffman entropy encoding routines for progressive JPEG.
+- *
+- * We do not support output suspension in this module, since the library
+- * currently does not allow multiple-scan files to be written with output
+- * suspension.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jchuff.h"		/* Declarations shared with jchuff.c */
+-
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-
+-/* Expanded entropy encoder object for progressive Huffman encoding. */
+-
+-typedef struct {
+-  struct jpeg_entropy_encoder pub; /* public fields */
+-
+-  /* Mode flag: TRUE for optimization, FALSE for actual data output */
+-  boolean gather_statistics;
+-
+-  /* Bit-level coding status.
+-   * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
+-   */
+-  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+-  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+-  INT32 put_buffer;		/* current bit-accumulation buffer */
+-  int put_bits;			/* # of bits now in it */
+-  j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */
+-
+-  /* Coding status for DC components */
+-  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+-
+-  /* Coding status for AC components */
+-  int ac_tbl_no;		/* the table number of the single component */
+-  unsigned int EOBRUN;		/* run length of EOBs */
+-  unsigned int BE;		/* # of buffered correction bits before MCU */
+-  char * bit_buffer;		/* buffer for correction bits (1 per char) */
+-  /* packing correction bits tightly would save some space but cost time... */
+-
+-  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+-  int next_restart_num;		/* next restart number to write (0-7) */
+-
+-  /* Pointers to derived tables (these workspaces have image lifespan).
+-   * Since any one scan codes only DC or only AC, we only need one set
+-   * of tables, not one for DC and one for AC.
+-   */
+-  c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+-
+-  /* Statistics tables for optimization; again, one set is enough */
+-  long * count_ptrs[NUM_HUFF_TBLS];
+-} phuff_entropy_encoder;
+-
+-typedef phuff_entropy_encoder * phuff_entropy_ptr;
+-
+-/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
+- * buffer can hold.  Larger sizes may slightly improve compression, but
+- * 1000 is already well into the realm of overkill.
+- * The minimum safe size is 64 bits.
+- */
+-
+-#define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */
+-
+-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
+- * We assume that int right shift is unsigned if INT32 right shift is,
+- * which should be safe.
+- */
+-
+-#ifdef RIGHT_SHIFT_IS_UNSIGNED
+-#define ISHIFT_TEMPS	int ishift_temp;
+-#define IRIGHT_SHIFT(x,shft)  \
+-	((ishift_temp = (x)) < 0 ? \
+-	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
+-	 (ishift_temp >> (shft)))
+-#else
+-#define ISHIFT_TEMPS
+-#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+-#endif
+-
+-/* Forward declarations */
+-METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
+-					    JBLOCKROW *MCU_data));
+-METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
+-					    JBLOCKROW *MCU_data));
+-METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
+-					     JBLOCKROW *MCU_data));
+-METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
+-					     JBLOCKROW *MCU_data));
+-METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
+-METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
+-
+-
+-/*
+- * Initialize for a Huffman-compressed scan using progressive JPEG.
+- */
+-
+-METHODDEF(void)
+-start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
+-{  
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  boolean is_DC_band;
+-  int ci, tbl;
+-  jpeg_component_info * compptr;
+-
+-  entropy->cinfo = cinfo;
+-  entropy->gather_statistics = gather_statistics;
+-
+-  is_DC_band = (cinfo->Ss == 0);
+-
+-  /* We assume jcmaster.c already validated the scan parameters. */
+-
+-  /* Select execution routines */
+-  if (cinfo->Ah == 0) {
+-    if (is_DC_band)
+-      entropy->pub.encode_mcu = encode_mcu_DC_first;
+-    else
+-      entropy->pub.encode_mcu = encode_mcu_AC_first;
+-  } else {
+-    if (is_DC_band)
+-      entropy->pub.encode_mcu = encode_mcu_DC_refine;
+-    else {
+-      entropy->pub.encode_mcu = encode_mcu_AC_refine;
+-      /* AC refinement needs a correction bit buffer */
+-      if (entropy->bit_buffer == NULL)
+-	entropy->bit_buffer = (char *)
+-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				      MAX_CORR_BITS * SIZEOF(char));
+-    }
+-  }
+-  if (gather_statistics)
+-    entropy->pub.finish_pass = finish_pass_gather_phuff;
+-  else
+-    entropy->pub.finish_pass = finish_pass_phuff;
+-
+-  /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
+-   * for AC coefficients.
+-   */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    /* Initialize DC predictions to 0 */
+-    entropy->last_dc_val[ci] = 0;
+-    /* Get table index */
+-    if (is_DC_band) {
+-      if (cinfo->Ah != 0)	/* DC refinement needs no table */
+-	continue;
+-      tbl = compptr->dc_tbl_no;
+-    } else {
+-      entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
+-    }
+-    if (gather_statistics) {
+-      /* Check for invalid table index */
+-      /* (make_c_derived_tbl does this in the other path) */
+-      if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
+-        ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
+-      /* Allocate and zero the statistics tables */
+-      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
+-      if (entropy->count_ptrs[tbl] == NULL)
+-	entropy->count_ptrs[tbl] = (long *)
+-	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				      257 * SIZEOF(long));
+-      MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
+-    } else {
+-      /* Compute derived values for Huffman table */
+-      /* We may do this more than once for a table, but it's not expensive */
+-      jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
+-			      & entropy->derived_tbls[tbl]);
+-    }
+-  }
+-
+-  /* Initialize AC stuff */
+-  entropy->EOBRUN = 0;
+-  entropy->BE = 0;
+-
+-  /* Initialize bit buffer to empty */
+-  entropy->put_buffer = 0;
+-  entropy->put_bits = 0;
+-
+-  /* Initialize restart stuff */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-  entropy->next_restart_num = 0;
+-}
+-
+-
+-/* Outputting bytes to the file.
+- * NB: these must be called only when actually outputting,
+- * that is, entropy->gather_statistics == FALSE.
+- */
+-
+-/* Emit a byte */
+-#define emit_byte(entropy,val)  \
+-	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \
+-	  if (--(entropy)->free_in_buffer == 0)  \
+-	    dump_buffer(entropy); }
+-
+-
+-LOCAL(void)
+-dump_buffer (phuff_entropy_ptr entropy)
+-/* Empty the output buffer; we do not support suspension in this module. */
+-{
+-  struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
+-
+-  if (! (*dest->empty_output_buffer) (entropy->cinfo))
+-    ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
+-  /* After a successful buffer dump, must reset buffer pointers */
+-  entropy->next_output_byte = dest->next_output_byte;
+-  entropy->free_in_buffer = dest->free_in_buffer;
+-}
+-
+-
+-/* Outputting bits to the file */
+-
+-/* Only the right 24 bits of put_buffer are used; the valid bits are
+- * left-justified in this part.  At most 16 bits can be passed to emit_bits
+- * in one call, and we never retain more than 7 bits in put_buffer
+- * between calls, so 24 bits are sufficient.
+- */
+-
+-INLINE
+-LOCAL(void)
+-emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
+-/* Emit some bits, unless we are in gather mode */
+-{
+-  /* This routine is heavily used, so it's worth coding tightly. */
+-  register INT32 put_buffer = (INT32) code;
+-  register int put_bits = entropy->put_bits;
+-
+-  /* if size is 0, caller used an invalid Huffman table entry */
+-  if (size == 0)
+-    ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+-
+-  if (entropy->gather_statistics)
+-    return;			/* do nothing if we're only getting stats */
+-
+-  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
+-  
+-  put_bits += size;		/* new number of bits in buffer */
+-  
+-  put_buffer <<= 24 - put_bits; /* align incoming bits */
+-
+-  put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
+-
+-  while (put_bits >= 8) {
+-    int c = (int) ((put_buffer >> 16) & 0xFF);
+-    
+-    emit_byte(entropy, c);
+-    if (c == 0xFF) {		/* need to stuff a zero byte? */
+-      emit_byte(entropy, 0);
+-    }
+-    put_buffer <<= 8;
+-    put_bits -= 8;
+-  }
+-
+-  entropy->put_buffer = put_buffer; /* update variables */
+-  entropy->put_bits = put_bits;
+-}
+-
+-
+-LOCAL(void)
+-flush_bits (phuff_entropy_ptr entropy)
+-{
+-  emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
+-  entropy->put_buffer = 0;     /* and reset bit-buffer to empty */
+-  entropy->put_bits = 0;
+-}
+-
+-
+-/*
+- * Emit (or just count) a Huffman symbol.
+- */
+-
+-INLINE
+-LOCAL(void)
+-emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
+-{
+-  if (entropy->gather_statistics)
+-    entropy->count_ptrs[tbl_no][symbol]++;
+-  else {
+-    c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
+-    emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
+-  }
+-}
+-
+-
+-/*
+- * Emit bits from a correction bit buffer.
+- */
+-
+-LOCAL(void)
+-emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
+-		    unsigned int nbits)
+-{
+-  if (entropy->gather_statistics)
+-    return;			/* no real work */
+-
+-  while (nbits > 0) {
+-    emit_bits(entropy, (unsigned int) (*bufstart), 1);
+-    bufstart++;
+-    nbits--;
+-  }
+-}
+-
+-
+-/*
+- * Emit any pending EOBRUN symbol.
+- */
+-
+-LOCAL(void)
+-emit_eobrun (phuff_entropy_ptr entropy)
+-{
+-  register int temp, nbits;
+-
+-  if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */
+-    temp = entropy->EOBRUN;
+-    nbits = 0;
+-    while ((temp >>= 1))
+-      nbits++;
+-    /* safety check: shouldn't happen given limited correction-bit buffer */
+-    if (nbits > 14)
+-      ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
+-
+-    emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
+-    if (nbits)
+-      emit_bits(entropy, entropy->EOBRUN, nbits);
+-
+-    entropy->EOBRUN = 0;
+-
+-    /* Emit any buffered correction bits */
+-    emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
+-    entropy->BE = 0;
+-  }
+-}
+-
+-
+-/*
+- * Emit a restart marker & resynchronize predictions.
+- */
+-
+-LOCAL(void)
+-emit_restart (phuff_entropy_ptr entropy, int restart_num)
+-{
+-  int ci;
+-
+-  emit_eobrun(entropy);
+-
+-  if (! entropy->gather_statistics) {
+-    flush_bits(entropy);
+-    emit_byte(entropy, 0xFF);
+-    emit_byte(entropy, JPEG_RST0 + restart_num);
+-  }
+-
+-  if (entropy->cinfo->Ss == 0) {
+-    /* Re-initialize DC predictions to 0 */
+-    for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
+-      entropy->last_dc_val[ci] = 0;
+-  } else {
+-    /* Re-initialize all AC-related fields to 0 */
+-    entropy->EOBRUN = 0;
+-    entropy->BE = 0;
+-  }
+-}
+-
+-
+-/*
+- * MCU encoding for DC initial scan (either spectral selection,
+- * or first pass of successive approximation).
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  register int temp, temp2;
+-  register int nbits;
+-  int blkn, ci;
+-  int Al = cinfo->Al;
+-  JBLOCKROW block;
+-  jpeg_component_info * compptr;
+-  ISHIFT_TEMPS
+-
+-  entropy->next_output_byte = cinfo->dest->next_output_byte;
+-  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+-
+-  /* Emit restart marker if needed */
+-  if (cinfo->restart_interval)
+-    if (entropy->restarts_to_go == 0)
+-      emit_restart(entropy, entropy->next_restart_num);
+-
+-  /* Encode the MCU data blocks */
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    block = MCU_data[blkn];
+-    ci = cinfo->MCU_membership[blkn];
+-    compptr = cinfo->cur_comp_info[ci];
+-
+-    /* Compute the DC value after the required point transform by Al.
+-     * This is simply an arithmetic right shift.
+-     */
+-    temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
+-
+-    /* DC differences are figured on the point-transformed values. */
+-    temp = temp2 - entropy->last_dc_val[ci];
+-    entropy->last_dc_val[ci] = temp2;
+-
+-    /* Encode the DC coefficient difference per section G.1.2.1 */
+-    temp2 = temp;
+-    if (temp < 0) {
+-      temp = -temp;		/* temp is abs value of input */
+-      /* For a negative input, want temp2 = bitwise complement of abs(input) */
+-      /* This code assumes we are on a two's complement machine */
+-      temp2--;
+-    }
+-    
+-    /* Find the number of bits needed for the magnitude of the coefficient */
+-    nbits = 0;
+-    while (temp) {
+-      nbits++;
+-      temp >>= 1;
+-    }
+-    /* Check for out-of-range coefficient values.
+-     * Since we're encoding a difference, the range limit is twice as much.
+-     */
+-    if (nbits > MAX_COEF_BITS+1)
+-      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+-    
+-    /* Count/emit the Huffman-coded symbol for the number of bits */
+-    emit_symbol(entropy, compptr->dc_tbl_no, nbits);
+-    
+-    /* Emit that number of bits of the value, if positive, */
+-    /* or the complement of its magnitude, if negative. */
+-    if (nbits)			/* emit_bits rejects calls with size 0 */
+-      emit_bits(entropy, (unsigned int) temp2, nbits);
+-  }
+-
+-  cinfo->dest->next_output_byte = entropy->next_output_byte;
+-  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+-
+-  /* Update restart-interval state too */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-      entropy->next_restart_num++;
+-      entropy->next_restart_num &= 7;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU encoding for AC initial scan (either spectral selection,
+- * or first pass of successive approximation).
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  register int temp, temp2;
+-  register int nbits;
+-  register int r, k;
+-  int Se = cinfo->Se;
+-  int Al = cinfo->Al;
+-  JBLOCKROW block;
+-
+-  entropy->next_output_byte = cinfo->dest->next_output_byte;
+-  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+-
+-  /* Emit restart marker if needed */
+-  if (cinfo->restart_interval)
+-    if (entropy->restarts_to_go == 0)
+-      emit_restart(entropy, entropy->next_restart_num);
+-
+-  /* Encode the MCU data block */
+-  block = MCU_data[0];
+-
+-  /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
+-  
+-  r = 0;			/* r = run length of zeros */
+-   
+-  for (k = cinfo->Ss; k <= Se; k++) {
+-    if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
+-      r++;
+-      continue;
+-    }
+-    /* We must apply the point transform by Al.  For AC coefficients this
+-     * is an integer division with rounding towards 0.  To do this portably
+-     * in C, we shift after obtaining the absolute value; so the code is
+-     * interwoven with finding the abs value (temp) and output bits (temp2).
+-     */
+-    if (temp < 0) {
+-      temp = -temp;		/* temp is abs value of input */
+-      temp >>= Al;		/* apply the point transform */
+-      /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
+-      temp2 = ~temp;
+-    } else {
+-      temp >>= Al;		/* apply the point transform */
+-      temp2 = temp;
+-    }
+-    /* Watch out for case that nonzero coef is zero after point transform */
+-    if (temp == 0) {
+-      r++;
+-      continue;
+-    }
+-
+-    /* Emit any pending EOBRUN */
+-    if (entropy->EOBRUN > 0)
+-      emit_eobrun(entropy);
+-    /* if run length > 15, must emit special run-length-16 codes (0xF0) */
+-    while (r > 15) {
+-      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+-      r -= 16;
+-    }
+-
+-    /* Find the number of bits needed for the magnitude of the coefficient */
+-    nbits = 1;			/* there must be at least one 1 bit */
+-    while ((temp >>= 1))
+-      nbits++;
+-    /* Check for out-of-range coefficient values */
+-    if (nbits > MAX_COEF_BITS)
+-      ERREXIT(cinfo, JERR_BAD_DCT_COEF);
+-
+-    /* Count/emit Huffman symbol for run length / number of bits */
+-    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
+-
+-    /* Emit that number of bits of the value, if positive, */
+-    /* or the complement of its magnitude, if negative. */
+-    emit_bits(entropy, (unsigned int) temp2, nbits);
+-
+-    r = 0;			/* reset zero run length */
+-  }
+-
+-  if (r > 0) {			/* If there are trailing zeroes, */
+-    entropy->EOBRUN++;		/* count an EOB */
+-    if (entropy->EOBRUN == 0x7FFF)
+-      emit_eobrun(entropy);	/* force it out to avoid overflow */
+-  }
+-
+-  cinfo->dest->next_output_byte = entropy->next_output_byte;
+-  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+-
+-  /* Update restart-interval state too */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-      entropy->next_restart_num++;
+-      entropy->next_restart_num &= 7;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU encoding for DC successive approximation refinement scan.
+- * Note: we assume such scans can be multi-component, although the spec
+- * is not very clear on the point.
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  register int temp;
+-  int blkn;
+-  int Al = cinfo->Al;
+-  JBLOCKROW block;
+-
+-  entropy->next_output_byte = cinfo->dest->next_output_byte;
+-  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+-
+-  /* Emit restart marker if needed */
+-  if (cinfo->restart_interval)
+-    if (entropy->restarts_to_go == 0)
+-      emit_restart(entropy, entropy->next_restart_num);
+-
+-  /* Encode the MCU data blocks */
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    block = MCU_data[blkn];
+-
+-    /* We simply emit the Al'th bit of the DC coefficient value. */
+-    temp = (*block)[0];
+-    emit_bits(entropy, (unsigned int) (temp >> Al), 1);
+-  }
+-
+-  cinfo->dest->next_output_byte = entropy->next_output_byte;
+-  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+-
+-  /* Update restart-interval state too */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-      entropy->next_restart_num++;
+-      entropy->next_restart_num &= 7;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU encoding for AC successive approximation refinement scan.
+- */
+-
+-METHODDEF(boolean)
+-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  register int temp;
+-  register int r, k;
+-  int EOB;
+-  char *BR_buffer;
+-  unsigned int BR;
+-  int Se = cinfo->Se;
+-  int Al = cinfo->Al;
+-  JBLOCKROW block;
+-  int absvalues[DCTSIZE2];
+-
+-  entropy->next_output_byte = cinfo->dest->next_output_byte;
+-  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+-
+-  /* Emit restart marker if needed */
+-  if (cinfo->restart_interval)
+-    if (entropy->restarts_to_go == 0)
+-      emit_restart(entropy, entropy->next_restart_num);
+-
+-  /* Encode the MCU data block */
+-  block = MCU_data[0];
+-
+-  /* It is convenient to make a pre-pass to determine the transformed
+-   * coefficients' absolute values and the EOB position.
+-   */
+-  EOB = 0;
+-  for (k = cinfo->Ss; k <= Se; k++) {
+-    temp = (*block)[jpeg_natural_order[k]];
+-    /* We must apply the point transform by Al.  For AC coefficients this
+-     * is an integer division with rounding towards 0.  To do this portably
+-     * in C, we shift after obtaining the absolute value.
+-     */
+-    if (temp < 0)
+-      temp = -temp;		/* temp is abs value of input */
+-    temp >>= Al;		/* apply the point transform */
+-    absvalues[k] = temp;	/* save abs value for main pass */
+-    if (temp == 1)
+-      EOB = k;			/* EOB = index of last newly-nonzero coef */
+-  }
+-
+-  /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
+-  
+-  r = 0;			/* r = run length of zeros */
+-  BR = 0;			/* BR = count of buffered bits added now */
+-  BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
+-
+-  for (k = cinfo->Ss; k <= Se; k++) {
+-    if ((temp = absvalues[k]) == 0) {
+-      r++;
+-      continue;
+-    }
+-
+-    /* Emit any required ZRLs, but not if they can be folded into EOB */
+-    while (r > 15 && k <= EOB) {
+-      /* emit any pending EOBRUN and the BE correction bits */
+-      emit_eobrun(entropy);
+-      /* Emit ZRL */
+-      emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
+-      r -= 16;
+-      /* Emit buffered correction bits that must be associated with ZRL */
+-      emit_buffered_bits(entropy, BR_buffer, BR);
+-      BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+-      BR = 0;
+-    }
+-
+-    /* If the coef was previously nonzero, it only needs a correction bit.
+-     * NOTE: a straight translation of the spec's figure G.7 would suggest
+-     * that we also need to test r > 15.  But if r > 15, we can only get here
+-     * if k > EOB, which implies that this coefficient is not 1.
+-     */
+-    if (temp > 1) {
+-      /* The correction bit is the next bit of the absolute value. */
+-      BR_buffer[BR++] = (char) (temp & 1);
+-      continue;
+-    }
+-
+-    /* Emit any pending EOBRUN and the BE correction bits */
+-    emit_eobrun(entropy);
+-
+-    /* Count/emit Huffman symbol for run length / number of bits */
+-    emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
+-
+-    /* Emit output bit for newly-nonzero coef */
+-    temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
+-    emit_bits(entropy, (unsigned int) temp, 1);
+-
+-    /* Emit buffered correction bits that must be associated with this code */
+-    emit_buffered_bits(entropy, BR_buffer, BR);
+-    BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
+-    BR = 0;
+-    r = 0;			/* reset zero run length */
+-  }
+-
+-  if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */
+-    entropy->EOBRUN++;		/* count an EOB */
+-    entropy->BE += BR;		/* concat my correction bits to older ones */
+-    /* We force out the EOB if we risk either:
+-     * 1. overflow of the EOB counter;
+-     * 2. overflow of the correction bit buffer during the next MCU.
+-     */
+-    if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
+-      emit_eobrun(entropy);
+-  }
+-
+-  cinfo->dest->next_output_byte = entropy->next_output_byte;
+-  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+-
+-  /* Update restart-interval state too */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0) {
+-      entropy->restarts_to_go = cinfo->restart_interval;
+-      entropy->next_restart_num++;
+-      entropy->next_restart_num &= 7;
+-    }
+-    entropy->restarts_to_go--;
+-  }
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Finish up at the end of a Huffman-compressed progressive scan.
+- */
+-
+-METHODDEF(void)
+-finish_pass_phuff (j_compress_ptr cinfo)
+-{   
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-
+-  entropy->next_output_byte = cinfo->dest->next_output_byte;
+-  entropy->free_in_buffer = cinfo->dest->free_in_buffer;
+-
+-  /* Flush out any buffered data */
+-  emit_eobrun(entropy);
+-  flush_bits(entropy);
+-
+-  cinfo->dest->next_output_byte = entropy->next_output_byte;
+-  cinfo->dest->free_in_buffer = entropy->free_in_buffer;
+-}
+-
+-
+-/*
+- * Finish up a statistics-gathering pass and create the new Huffman tables.
+- */
+-
+-METHODDEF(void)
+-finish_pass_gather_phuff (j_compress_ptr cinfo)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  boolean is_DC_band;
+-  int ci, tbl;
+-  jpeg_component_info * compptr;
+-  JHUFF_TBL **htblptr;
+-  boolean did[NUM_HUFF_TBLS];
+-
+-  /* Flush out buffered data (all we care about is counting the EOB symbol) */
+-  emit_eobrun(entropy);
+-
+-  is_DC_band = (cinfo->Ss == 0);
+-
+-  /* It's important not to apply jpeg_gen_optimal_table more than once
+-   * per table, because it clobbers the input frequency counts!
+-   */
+-  MEMZERO(did, SIZEOF(did));
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    if (is_DC_band) {
+-      if (cinfo->Ah != 0)	/* DC refinement needs no table */
+-	continue;
+-      tbl = compptr->dc_tbl_no;
+-    } else {
+-      tbl = compptr->ac_tbl_no;
+-    }
+-    if (! did[tbl]) {
+-      if (is_DC_band)
+-        htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
+-      else
+-        htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
+-      if (*htblptr == NULL)
+-        *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+-      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
+-      did[tbl] = TRUE;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Module initialization routine for progressive Huffman entropy encoding.
+- */
+-
+-GLOBAL(void)
+-jinit_phuff_encoder (j_compress_ptr cinfo)
+-{
+-  phuff_entropy_ptr entropy;
+-  int i;
+-
+-  entropy = (phuff_entropy_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(phuff_entropy_encoder));
+-  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
+-  entropy->pub.start_pass = start_pass_phuff;
+-
+-  /* Mark tables unallocated */
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    entropy->derived_tbls[i] = NULL;
+-    entropy->count_ptrs[i] = NULL;
+-  }
+-  entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */
+-}
+-
+-#endif /* C_PROGRESSIVE_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcprepct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcprepct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcprepct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcprepct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,358 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcprepct.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the compression preprocessing controller.
+- * This controller manages the color conversion, downsampling,
+- * and edge expansion steps.
+- *
+- * Most of the complexity here is associated with buffering input rows
+- * as required by the downsampler.  See the comments at the head of
+- * jcsample.c for the downsampler's needs.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* At present, jcsample.c can request context rows only for smoothing.
+- * In the future, we might also need context rows for CCIR601 sampling
+- * or other more-complex downsampling procedures.  The code to support
+- * context rows should be compiled only if needed.
+- */
+-#ifdef INPUT_SMOOTHING_SUPPORTED
+-#define CONTEXT_ROWS_SUPPORTED
+-#endif
+-
+-
+-/*
+- * For the simple (no-context-row) case, we just need to buffer one
+- * row group's worth of pixels for the downsampling step.  At the bottom of
+- * the image, we pad to a full row group by replicating the last pixel row.
+- * The downsampler's last output row is then replicated if needed to pad
+- * out to a full iMCU row.
+- *
+- * When providing context rows, we must buffer three row groups' worth of
+- * pixels.  Three row groups are physically allocated, but the row pointer
+- * arrays are made five row groups high, with the extra pointers above and
+- * below "wrapping around" to point to the last and first real row groups.
+- * This allows the downsampler to access the proper context rows.
+- * At the top and bottom of the image, we create dummy context rows by
+- * copying the first or last real pixel row.  This copying could be avoided
+- * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
+- * trouble on the compression side.
+- */
+-
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_c_prep_controller pub; /* public fields */
+-
+-  /* Downsampling input buffer.  This buffer holds color-converted data
+-   * until we have enough to do a downsample step.
+-   */
+-  JSAMPARRAY color_buf[MAX_COMPONENTS];
+-
+-  JDIMENSION rows_to_go;	/* counts rows remaining in source image */
+-  int next_buf_row;		/* index of next row to store in color_buf */
+-
+-#ifdef CONTEXT_ROWS_SUPPORTED	/* only needed for context case */
+-  int this_row_group;		/* starting row index of group to process */
+-  int next_buf_stop;		/* downsample when we reach this index */
+-#endif
+-} my_prep_controller;
+-
+-typedef my_prep_controller * my_prep_ptr;
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+-
+-  if (pass_mode != JBUF_PASS_THRU)
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-
+-  /* Initialize total-height counter for detecting bottom of image */
+-  prep->rows_to_go = cinfo->image_height;
+-  /* Mark the conversion buffer empty */
+-  prep->next_buf_row = 0;
+-#ifdef CONTEXT_ROWS_SUPPORTED
+-  /* Preset additional state variables for context mode.
+-   * These aren't used in non-context mode, so we needn't test which mode.
+-   */
+-  prep->this_row_group = 0;
+-  /* Set next_buf_stop to stop after two row groups have been read in. */
+-  prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
+-#endif
+-}
+-
+-
+-/*
+- * Expand an image vertically from height input_rows to height output_rows,
+- * by duplicating the bottom row.
+- */
+-
+-LOCAL(void)
+-expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
+-		    int input_rows, int output_rows)
+-{
+-  register int row;
+-
+-  for (row = input_rows; row < output_rows; row++) {
+-    jcopy_sample_rows(image_data, input_rows-1, image_data, row,
+-		      1, num_cols);
+-  }
+-}
+-
+-
+-/*
+- * Process some data in the simple no-context case.
+- *
+- * Preprocessor output data is counted in "row groups".  A row group
+- * is defined to be v_samp_factor sample rows of each component.
+- * Downsampling will produce this much data from each max_v_samp_factor
+- * input rows.
+- */
+-
+-METHODDEF(void)
+-pre_process_data (j_compress_ptr cinfo,
+-		  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+-		  JDIMENSION in_rows_avail,
+-		  JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+-		  JDIMENSION out_row_groups_avail)
+-{
+-  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+-  int numrows, ci;
+-  JDIMENSION inrows;
+-  jpeg_component_info * compptr;
+-
+-  while (*in_row_ctr < in_rows_avail &&
+-	 *out_row_group_ctr < out_row_groups_avail) {
+-    /* Do color conversion to fill the conversion buffer. */
+-    inrows = in_rows_avail - *in_row_ctr;
+-    numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
+-    numrows = (int) MIN((JDIMENSION) numrows, inrows);
+-    (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+-				       prep->color_buf,
+-				       (JDIMENSION) prep->next_buf_row,
+-				       numrows);
+-    *in_row_ctr += numrows;
+-    prep->next_buf_row += numrows;
+-    prep->rows_to_go -= numrows;
+-    /* If at bottom of image, pad to fill the conversion buffer. */
+-    if (prep->rows_to_go == 0 &&
+-	prep->next_buf_row < cinfo->max_v_samp_factor) {
+-      for (ci = 0; ci < cinfo->num_components; ci++) {
+-	expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+-			   prep->next_buf_row, cinfo->max_v_samp_factor);
+-      }
+-      prep->next_buf_row = cinfo->max_v_samp_factor;
+-    }
+-    /* If we've filled the conversion buffer, empty it. */
+-    if (prep->next_buf_row == cinfo->max_v_samp_factor) {
+-      (*cinfo->downsample->downsample) (cinfo,
+-					prep->color_buf, (JDIMENSION) 0,
+-					output_buf, *out_row_group_ctr);
+-      prep->next_buf_row = 0;
+-      (*out_row_group_ctr)++;
+-    }
+-    /* If at bottom of image, pad the output to a full iMCU height.
+-     * Note we assume the caller is providing a one-iMCU-height output buffer!
+-     */
+-    if (prep->rows_to_go == 0 &&
+-	*out_row_group_ctr < out_row_groups_avail) {
+-      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	   ci++, compptr++) {
+-	expand_bottom_edge(output_buf[ci],
+-			   compptr->width_in_blocks * DCTSIZE,
+-			   (int) (*out_row_group_ctr * compptr->v_samp_factor),
+-			   (int) (out_row_groups_avail * compptr->v_samp_factor));
+-      }
+-      *out_row_group_ctr = out_row_groups_avail;
+-      break;			/* can exit outer loop without test */
+-    }
+-  }
+-}
+-
+-
+-#ifdef CONTEXT_ROWS_SUPPORTED
+-
+-/*
+- * Process some data in the context case.
+- */
+-
+-METHODDEF(void)
+-pre_process_context (j_compress_ptr cinfo,
+-		     JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+-		     JDIMENSION in_rows_avail,
+-		     JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
+-		     JDIMENSION out_row_groups_avail)
+-{
+-  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+-  int numrows, ci;
+-  int buf_height = cinfo->max_v_samp_factor * 3;
+-  JDIMENSION inrows;
+-
+-  while (*out_row_group_ctr < out_row_groups_avail) {
+-    if (*in_row_ctr < in_rows_avail) {
+-      /* Do color conversion to fill the conversion buffer. */
+-      inrows = in_rows_avail - *in_row_ctr;
+-      numrows = prep->next_buf_stop - prep->next_buf_row;
+-      numrows = (int) MIN((JDIMENSION) numrows, inrows);
+-      (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
+-					 prep->color_buf,
+-					 (JDIMENSION) prep->next_buf_row,
+-					 numrows);
+-      /* Pad at top of image, if first time through */
+-      if (prep->rows_to_go == cinfo->image_height) {
+-	for (ci = 0; ci < cinfo->num_components; ci++) {
+-	  int row;
+-	  for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
+-	    jcopy_sample_rows(prep->color_buf[ci], 0,
+-			      prep->color_buf[ci], -row,
+-			      1, cinfo->image_width);
+-	  }
+-	}
+-      }
+-      *in_row_ctr += numrows;
+-      prep->next_buf_row += numrows;
+-      prep->rows_to_go -= numrows;
+-    } else {
+-      /* Return for more data, unless we are at the bottom of the image. */
+-      if (prep->rows_to_go != 0)
+-	break;
+-      /* When at bottom of image, pad to fill the conversion buffer. */
+-      if (prep->next_buf_row < prep->next_buf_stop) {
+-	for (ci = 0; ci < cinfo->num_components; ci++) {
+-	  expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
+-			     prep->next_buf_row, prep->next_buf_stop);
+-	}
+-	prep->next_buf_row = prep->next_buf_stop;
+-      }
+-    }
+-    /* If we've gotten enough data, downsample a row group. */
+-    if (prep->next_buf_row == prep->next_buf_stop) {
+-      (*cinfo->downsample->downsample) (cinfo,
+-					prep->color_buf,
+-					(JDIMENSION) prep->this_row_group,
+-					output_buf, *out_row_group_ctr);
+-      (*out_row_group_ctr)++;
+-      /* Advance pointers with wraparound as necessary. */
+-      prep->this_row_group += cinfo->max_v_samp_factor;
+-      if (prep->this_row_group >= buf_height)
+-	prep->this_row_group = 0;
+-      if (prep->next_buf_row >= buf_height)
+-	prep->next_buf_row = 0;
+-      prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Create the wrapped-around downsampling input buffer needed for context mode.
+- */
+-
+-LOCAL(void)
+-create_context_buffer (j_compress_ptr cinfo)
+-{
+-  my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
+-  int rgroup_height = cinfo->max_v_samp_factor;
+-  int ci, i;
+-  jpeg_component_info * compptr;
+-  JSAMPARRAY true_buffer, fake_buffer;
+-
+-  /* Grab enough space for fake row pointers for all the components;
+-   * we need five row groups' worth of pointers for each component.
+-   */
+-  fake_buffer = (JSAMPARRAY)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(cinfo->num_components * 5 * rgroup_height) *
+-				SIZEOF(JSAMPROW));
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Allocate the actual buffer space (3 row groups) for this component.
+-     * We make the buffer wide enough to allow the downsampler to edge-expand
+-     * horizontally within the buffer, if it so chooses.
+-     */
+-    true_buffer = (*cinfo->mem->alloc_sarray)
+-      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-       (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
+-		      cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+-       (JDIMENSION) (3 * rgroup_height));
+-    /* Copy true buffer row pointers into the middle of the fake row array */
+-    MEMCOPY(fake_buffer + rgroup_height, true_buffer,
+-	    3 * rgroup_height * SIZEOF(JSAMPROW));
+-    /* Fill in the above and below wraparound pointers */
+-    for (i = 0; i < rgroup_height; i++) {
+-      fake_buffer[i] = true_buffer[2 * rgroup_height + i];
+-      fake_buffer[4 * rgroup_height + i] = true_buffer[i];
+-    }
+-    prep->color_buf[ci] = fake_buffer + rgroup_height;
+-    fake_buffer += 5 * rgroup_height; /* point to space for next component */
+-  }
+-}
+-
+-#endif /* CONTEXT_ROWS_SUPPORTED */
+-
+-
+-/*
+- * Initialize preprocessing controller.
+- */
+-
+-GLOBAL(void)
+-jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_prep_ptr prep;
+-  int ci;
+-  jpeg_component_info * compptr;
+-
+-  if (need_full_buffer)		/* safety check */
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-
+-  prep = (my_prep_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_prep_controller));
+-  cinfo->prep = (struct jpeg_c_prep_controller *) prep;
+-  prep->pub.start_pass = start_pass_prep;
+-
+-  /* Allocate the color conversion buffer.
+-   * We make the buffer wide enough to allow the downsampler to edge-expand
+-   * horizontally within the buffer, if it so chooses.
+-   */
+-  if (cinfo->downsample->need_context_rows) {
+-    /* Set up to provide context rows */
+-#ifdef CONTEXT_ROWS_SUPPORTED
+-    prep->pub.pre_process_data = pre_process_context;
+-    create_context_buffer(cinfo);
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-  } else {
+-    /* No context, just make it tall enough for one row group */
+-    prep->pub.pre_process_data = pre_process_data;
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE,
+-	 (JDIMENSION) (((long) compptr->width_in_blocks * DCTSIZE *
+-			cinfo->max_h_samp_factor) / compptr->h_samp_factor),
+-	 (JDIMENSION) cinfo->max_v_samp_factor);
+-    }
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcsample.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcsample.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jcsample.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jcsample.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,523 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jcsample.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains downsampling routines.
+- *
+- * Downsampling input data is counted in "row groups".  A row group
+- * is defined to be max_v_samp_factor pixel rows of each component,
+- * from which the downsampler produces v_samp_factor sample rows.
+- * A single row group is processed in each call to the downsampler module.
+- *
+- * The downsampler is responsible for edge-expansion of its output data
+- * to fill an integral number of DCT blocks horizontally.  The source buffer
+- * may be modified if it is helpful for this purpose (the source buffer is
+- * allocated wide enough to correspond to the desired output width).
+- * The caller (the prep controller) is responsible for vertical padding.
+- *
+- * The downsampler may request "context rows" by setting need_context_rows
+- * during startup.  In this case, the input arrays will contain at least
+- * one row group's worth of pixels above and below the passed-in data;
+- * the caller will create dummy rows at image top and bottom by replicating
+- * the first or last real pixel row.
+- *
+- * An excellent reference for image resampling is
+- *   Digital Image Warping, George Wolberg, 1990.
+- *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+- *
+- * The downsampling algorithm used here is a simple average of the source
+- * pixels covered by the output pixel.  The hi-falutin sampling literature
+- * refers to this as a "box filter".  In general the characteristics of a box
+- * filter are not very good, but for the specific cases we normally use (1:1
+- * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
+- * nearly so bad.  If you intend to use other sampling ratios, you'd be well
+- * advised to improve this code.
+- *
+- * A simple input-smoothing capability is provided.  This is mainly intended
+- * for cleaning up color-dithered GIF input files (if you find it inadequate,
+- * we suggest using an external filtering program such as pnmconvol).  When
+- * enabled, each input pixel P is replaced by a weighted sum of itself and its
+- * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
+- * where SF = (smoothing_factor / 1024).
+- * Currently, smoothing is only supported for 2h2v sampling factors.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Pointer to routine to downsample a single component */
+-typedef JMETHOD(void, downsample1_ptr,
+-		(j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		 JSAMPARRAY input_data, JSAMPARRAY output_data));
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_downsampler pub;	/* public fields */
+-
+-  /* Downsampling method pointers, one per component */
+-  downsample1_ptr methods[MAX_COMPONENTS];
+-} my_downsampler;
+-
+-typedef my_downsampler * my_downsample_ptr;
+-
+-
+-/*
+- * Initialize for a downsampling pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_downsample (j_compress_ptr cinfo)
+-{
+-  /* no work for now */
+-}
+-
+-
+-/*
+- * Expand a component horizontally from width input_cols to width output_cols,
+- * by duplicating the rightmost samples.
+- */
+-
+-LOCAL(void)
+-expand_right_edge (JSAMPARRAY image_data, int num_rows,
+-		   JDIMENSION input_cols, JDIMENSION output_cols)
+-{
+-  register JSAMPROW ptr;
+-  register JSAMPLE pixval;
+-  register int count;
+-  int row;
+-  int numcols = (int) (output_cols - input_cols);
+-
+-  if (numcols > 0) {
+-    for (row = 0; row < num_rows; row++) {
+-      ptr = image_data[row] + input_cols;
+-      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
+-      for (count = numcols; count > 0; count--)
+-	*ptr++ = pixval;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Do downsampling for a whole row group (all components).
+- *
+- * In this version we simply downsample each component independently.
+- */
+-
+-METHODDEF(void)
+-sep_downsample (j_compress_ptr cinfo,
+-		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+-		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
+-{
+-  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
+-  int ci;
+-  jpeg_component_info * compptr;
+-  JSAMPARRAY in_ptr, out_ptr;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    in_ptr = input_buf[ci] + in_row_index;
+-    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
+-    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
+-  }
+-}
+-
+-
+-/*
+- * Downsample pixel values of a single component.
+- * One row group is processed per call.
+- * This version handles arbitrary integral sampling ratios, without smoothing.
+- * Note that this version is not actually used for customary sampling ratios.
+- */
+-
+-METHODDEF(void)
+-int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
+-  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
+-  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+-  JSAMPROW inptr, outptr;
+-  INT32 outvalue;
+-
+-  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
+-  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
+-  numpix = h_expand * v_expand;
+-  numpix2 = numpix/2;
+-
+-  /* Expand input data enough to let all the output samples be generated
+-   * by the standard loop.  Special-casing padded output would be more
+-   * efficient.
+-   */
+-  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+-		    cinfo->image_width, output_cols * h_expand);
+-
+-  inrow = 0;
+-  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+-    outptr = output_data[outrow];
+-    for (outcol = 0, outcol_h = 0; outcol < output_cols;
+-	 outcol++, outcol_h += h_expand) {
+-      outvalue = 0;
+-      for (v = 0; v < v_expand; v++) {
+-	inptr = input_data[inrow+v] + outcol_h;
+-	for (h = 0; h < h_expand; h++) {
+-	  outvalue += (INT32) GETJSAMPLE(*inptr++);
+-	}
+-      }
+-      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
+-    }
+-    inrow += v_expand;
+-  }
+-}
+-
+-
+-/*
+- * Downsample pixel values of a single component.
+- * This version handles the special case of a full-size component,
+- * without smoothing.
+- */
+-
+-METHODDEF(void)
+-fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		     JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  /* Copy the data */
+-  jcopy_sample_rows(input_data, 0, output_data, 0,
+-		    cinfo->max_v_samp_factor, cinfo->image_width);
+-  /* Edge-expand */
+-  expand_right_edge(output_data, cinfo->max_v_samp_factor,
+-		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
+-}
+-
+-
+-/*
+- * Downsample pixel values of a single component.
+- * This version handles the common case of 2:1 horizontal and 1:1 vertical,
+- * without smoothing.
+- *
+- * A note about the "bias" calculations: when rounding fractional values to
+- * integer, we do not want to always round 0.5 up to the next integer.
+- * If we did that, we'd introduce a noticeable bias towards larger values.
+- * Instead, this code is arranged so that 0.5 will be rounded up or down at
+- * alternate pixel locations (a simple ordered dither pattern).
+- */
+-
+-METHODDEF(void)
+-h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		 JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  int outrow;
+-  JDIMENSION outcol;
+-  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+-  register JSAMPROW inptr, outptr;
+-  register int bias;
+-
+-  /* Expand input data enough to let all the output samples be generated
+-   * by the standard loop.  Special-casing padded output would be more
+-   * efficient.
+-   */
+-  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+-		    cinfo->image_width, output_cols * 2);
+-
+-  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+-    outptr = output_data[outrow];
+-    inptr = input_data[outrow];
+-    bias = 0;			/* bias = 0,1,0,1,... for successive samples */
+-    for (outcol = 0; outcol < output_cols; outcol++) {
+-      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+-			      + bias) >> 1);
+-      bias ^= 1;		/* 0=>1, 1=>0 */
+-      inptr += 2;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Downsample pixel values of a single component.
+- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+- * without smoothing.
+- */
+-
+-METHODDEF(void)
+-h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-		 JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  int inrow, outrow;
+-  JDIMENSION outcol;
+-  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+-  register JSAMPROW inptr0, inptr1, outptr;
+-  register int bias;
+-
+-  /* Expand input data enough to let all the output samples be generated
+-   * by the standard loop.  Special-casing padded output would be more
+-   * efficient.
+-   */
+-  expand_right_edge(input_data, cinfo->max_v_samp_factor,
+-		    cinfo->image_width, output_cols * 2);
+-
+-  inrow = 0;
+-  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+-    outptr = output_data[outrow];
+-    inptr0 = input_data[inrow];
+-    inptr1 = input_data[inrow+1];
+-    bias = 1;			/* bias = 1,2,1,2,... for successive samples */
+-    for (outcol = 0; outcol < output_cols; outcol++) {
+-      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+-			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+-			      + bias) >> 2);
+-      bias ^= 3;		/* 1=>2, 2=>1 */
+-      inptr0 += 2; inptr1 += 2;
+-    }
+-    inrow += 2;
+-  }
+-}
+-
+-
+-#ifdef INPUT_SMOOTHING_SUPPORTED
+-
+-/*
+- * Downsample pixel values of a single component.
+- * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
+- * with smoothing.  One row of context is required.
+- */
+-
+-METHODDEF(void)
+-h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
+-			JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  int inrow, outrow;
+-  JDIMENSION colctr;
+-  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+-  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
+-  INT32 membersum, neighsum, memberscale, neighscale;
+-
+-  /* Expand input data enough to let all the output samples be generated
+-   * by the standard loop.  Special-casing padded output would be more
+-   * efficient.
+-   */
+-  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+-		    cinfo->image_width, output_cols * 2);
+-
+-  /* We don't bother to form the individual "smoothed" input pixel values;
+-   * we can directly compute the output which is the average of the four
+-   * smoothed values.  Each of the four member pixels contributes a fraction
+-   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
+-   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
+-   * output.  The four corner-adjacent neighbor pixels contribute a fraction
+-   * SF to just one smoothed pixel, or SF/4 to the final output; while the
+-   * eight edge-adjacent neighbors contribute SF to each of two smoothed
+-   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
+-   * factors are scaled by 2^16 = 65536.
+-   * Also recall that SF = smoothing_factor / 1024.
+-   */
+-
+-  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
+-  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
+-
+-  inrow = 0;
+-  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+-    outptr = output_data[outrow];
+-    inptr0 = input_data[inrow];
+-    inptr1 = input_data[inrow+1];
+-    above_ptr = input_data[inrow-1];
+-    below_ptr = input_data[inrow+2];
+-
+-    /* Special case for first column: pretend column -1 is same as column 0 */
+-    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+-		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+-    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+-	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+-	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
+-	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
+-    neighsum += neighsum;
+-    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
+-		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
+-    membersum = membersum * memberscale + neighsum * neighscale;
+-    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+-    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+-
+-    for (colctr = output_cols - 2; colctr > 0; colctr--) {
+-      /* sum of pixels directly mapped to this output element */
+-      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+-		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+-      /* sum of edge-neighbor pixels */
+-      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+-		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+-		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
+-		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
+-      /* The edge-neighbors count twice as much as corner-neighbors */
+-      neighsum += neighsum;
+-      /* Add in the corner-neighbors */
+-      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
+-		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
+-      /* form final output scaled up by 2^16 */
+-      membersum = membersum * memberscale + neighsum * neighscale;
+-      /* round, descale and output it */
+-      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+-      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
+-    }
+-
+-    /* Special case for last column */
+-    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
+-		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
+-    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
+-	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
+-	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
+-	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
+-    neighsum += neighsum;
+-    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
+-		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
+-    membersum = membersum * memberscale + neighsum * neighscale;
+-    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+-
+-    inrow += 2;
+-  }
+-}
+-
+-
+-/*
+- * Downsample pixel values of a single component.
+- * This version handles the special case of a full-size component,
+- * with smoothing.  One row of context is required.
+- */
+-
+-METHODDEF(void)
+-fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
+-			    JSAMPARRAY input_data, JSAMPARRAY output_data)
+-{
+-  int outrow;
+-  JDIMENSION colctr;
+-  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
+-  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
+-  INT32 membersum, neighsum, memberscale, neighscale;
+-  int colsum, lastcolsum, nextcolsum;
+-
+-  /* Expand input data enough to let all the output samples be generated
+-   * by the standard loop.  Special-casing padded output would be more
+-   * efficient.
+-   */
+-  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
+-		    cinfo->image_width, output_cols);
+-
+-  /* Each of the eight neighbor pixels contributes a fraction SF to the
+-   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
+-   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
+-   * Also recall that SF = smoothing_factor / 1024.
+-   */
+-
+-  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
+-  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
+-
+-  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
+-    outptr = output_data[outrow];
+-    inptr = input_data[outrow];
+-    above_ptr = input_data[outrow-1];
+-    below_ptr = input_data[outrow+1];
+-
+-    /* Special case for first column */
+-    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
+-	     GETJSAMPLE(*inptr);
+-    membersum = GETJSAMPLE(*inptr++);
+-    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+-		 GETJSAMPLE(*inptr);
+-    neighsum = colsum + (colsum - membersum) + nextcolsum;
+-    membersum = membersum * memberscale + neighsum * neighscale;
+-    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+-    lastcolsum = colsum; colsum = nextcolsum;
+-
+-    for (colctr = output_cols - 2; colctr > 0; colctr--) {
+-      membersum = GETJSAMPLE(*inptr++);
+-      above_ptr++; below_ptr++;
+-      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
+-		   GETJSAMPLE(*inptr);
+-      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
+-      membersum = membersum * memberscale + neighsum * neighscale;
+-      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
+-      lastcolsum = colsum; colsum = nextcolsum;
+-    }
+-
+-    /* Special case for last column */
+-    membersum = GETJSAMPLE(*inptr);
+-    neighsum = lastcolsum + (colsum - membersum) + colsum;
+-    membersum = membersum * memberscale + neighsum * neighscale;
+-    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
+-
+-  }
+-}
+-
+-#endif /* INPUT_SMOOTHING_SUPPORTED */
+-
+-
+-/*
+- * Module initialization routine for downsampling.
+- * Note that we must select a routine for each component.
+- */
+-
+-GLOBAL(void)
+-jinit_downsampler (j_compress_ptr cinfo)
+-{
+-  my_downsample_ptr downsample;
+-  int ci;
+-  jpeg_component_info * compptr;
+-  boolean smoothok = TRUE;
+-
+-  downsample = (my_downsample_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_downsampler));
+-  cinfo->downsample = (struct jpeg_downsampler *) downsample;
+-  downsample->pub.start_pass = start_pass_downsample;
+-  downsample->pub.downsample = sep_downsample;
+-  downsample->pub.need_context_rows = FALSE;
+-
+-  if (cinfo->CCIR601_sampling)
+-    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+-
+-  /* Verify we can handle the sampling factors, and set up method pointers */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
+-	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
+-#ifdef INPUT_SMOOTHING_SUPPORTED
+-      if (cinfo->smoothing_factor) {
+-	downsample->methods[ci] = fullsize_smooth_downsample;
+-	downsample->pub.need_context_rows = TRUE;
+-      } else
+-#endif
+-	downsample->methods[ci] = fullsize_downsample;
+-    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
+-	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
+-      smoothok = FALSE;
+-      downsample->methods[ci] = h2v1_downsample;
+-    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
+-	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
+-#ifdef INPUT_SMOOTHING_SUPPORTED
+-      if (cinfo->smoothing_factor) {
+-	downsample->methods[ci] = h2v2_smooth_downsample;
+-	downsample->pub.need_context_rows = TRUE;
+-      } else
+-#endif
+-	downsample->methods[ci] = h2v2_downsample;
+-    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
+-	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
+-      smoothok = FALSE;
+-      downsample->methods[ci] = int_downsample;
+-    } else
+-      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+-  }
+-
+-#ifdef INPUT_SMOOTHING_SUPPORTED
+-  if (cinfo->smoothing_factor && !smoothok)
+-    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
+-#endif
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jctrans.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jctrans.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jctrans.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jctrans.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,392 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jctrans.c
+- *
+- * Copyright (C) 1995-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains library routines for transcoding compression,
+- * that is, writing raw DCT coefficient arrays to an output JPEG file.
+- * The routines in jcapimin.c will also be needed by a transcoder.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Forward declarations */
+-LOCAL(void) transencode_master_selection
+-	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+-LOCAL(void) transencode_coef_controller
+-	JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
+-
+-
+-/*
+- * Compression initialization for writing raw-coefficient data.
+- * Before calling this, all parameters and a data destination must be set up.
+- * Call jpeg_finish_compress() to actually write the data.
+- *
+- * The number of passed virtual arrays must match cinfo->num_components.
+- * Note that the virtual arrays need not be filled or even realized at
+- * the time write_coefficients is called; indeed, if the virtual arrays
+- * were requested from this compression object's memory manager, they
+- * typically will be realized during this routine and filled afterwards.
+- */
+-
+-GLOBAL(void)
+-jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
+-{
+-  if (cinfo->global_state != CSTATE_START)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  /* Mark all tables to be written */
+-  jpeg_suppress_tables(cinfo, FALSE);
+-  /* (Re)initialize error mgr and destination modules */
+-  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+-  (*cinfo->dest->init_destination) (cinfo);
+-  /* Perform master selection of active modules */
+-  transencode_master_selection(cinfo, coef_arrays);
+-  /* Wait for jpeg_finish_compress() call */
+-  cinfo->next_scanline = 0;	/* so jpeg_write_marker works */
+-  cinfo->global_state = CSTATE_WRCOEFS;
+-}
+-
+-
+-/*
+- * Initialize the compression object with default parameters,
+- * then copy from the source object all parameters needed for lossless
+- * transcoding.  Parameters that can be varied without loss (such as
+- * scan script and Huffman optimization) are left in their default states.
+- */
+-
+-GLOBAL(void)
+-jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
+-			       j_compress_ptr dstinfo)
+-{
+-  JQUANT_TBL ** qtblptr;
+-  jpeg_component_info *incomp, *outcomp;
+-  JQUANT_TBL *c_quant, *slot_quant;
+-  int tblno, ci, coefi;
+-
+-  /* Safety check to ensure start_compress not called yet. */
+-  if (dstinfo->global_state != CSTATE_START)
+-    ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
+-  /* Copy fundamental image dimensions */
+-  dstinfo->image_width = srcinfo->image_width;
+-  dstinfo->image_height = srcinfo->image_height;
+-  dstinfo->input_components = srcinfo->num_components;
+-  dstinfo->in_color_space = srcinfo->jpeg_color_space;
+-  /* Initialize all parameters to default values */
+-  jpeg_set_defaults(dstinfo);
+-  /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
+-   * Fix it to get the right header markers for the image colorspace.
+-   */
+-  jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
+-  dstinfo->data_precision = srcinfo->data_precision;
+-  dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
+-  /* Copy the source's quantization tables. */
+-  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
+-    if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
+-      qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
+-      if (*qtblptr == NULL)
+-	*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
+-      MEMCOPY((*qtblptr)->quantval,
+-	      srcinfo->quant_tbl_ptrs[tblno]->quantval,
+-	      SIZEOF((*qtblptr)->quantval));
+-      (*qtblptr)->sent_table = FALSE;
+-    }
+-  }
+-  /* Copy the source's per-component info.
+-   * Note we assume jpeg_set_defaults has allocated the dest comp_info array.
+-   */
+-  dstinfo->num_components = srcinfo->num_components;
+-  if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
+-    ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
+-	     MAX_COMPONENTS);
+-  for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
+-       ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
+-    outcomp->component_id = incomp->component_id;
+-    outcomp->h_samp_factor = incomp->h_samp_factor;
+-    outcomp->v_samp_factor = incomp->v_samp_factor;
+-    outcomp->quant_tbl_no = incomp->quant_tbl_no;
+-    /* Make sure saved quantization table for component matches the qtable
+-     * slot.  If not, the input file re-used this qtable slot.
+-     * IJG encoder currently cannot duplicate this.
+-     */
+-    tblno = outcomp->quant_tbl_no;
+-    if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
+-	srcinfo->quant_tbl_ptrs[tblno] == NULL)
+-      ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
+-    slot_quant = srcinfo->quant_tbl_ptrs[tblno];
+-    c_quant = incomp->quant_table;
+-    if (c_quant != NULL) {
+-      for (coefi = 0; coefi < DCTSIZE2; coefi++) {
+-	if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
+-	  ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
+-      }
+-    }
+-    /* Note: we do not copy the source's Huffman table assignments;
+-     * instead we rely on jpeg_set_colorspace to have made a suitable choice.
+-     */
+-  }
+-  /* Also copy JFIF version and resolution information, if available.
+-   * Strictly speaking this isn't "critical" info, but it's nearly
+-   * always appropriate to copy it if available.  In particular,
+-   * if the application chooses to copy JFIF 1.02 extension markers from
+-   * the source file, we need to copy the version to make sure we don't
+-   * emit a file that has 1.02 extensions but a claimed version of 1.01.
+-   * We will *not*, however, copy version info from mislabeled "2.01" files.
+-   */
+-  if (srcinfo->saw_JFIF_marker) {
+-    if (srcinfo->JFIF_major_version == 1) {
+-      dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
+-      dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
+-    }
+-    dstinfo->density_unit = srcinfo->density_unit;
+-    dstinfo->X_density = srcinfo->X_density;
+-    dstinfo->Y_density = srcinfo->Y_density;
+-  }
+-}
+-
+-
+-/*
+- * Master selection of compression modules for transcoding.
+- * This substitutes for jcinit.c's initialization of the full compressor.
+- */
+-
+-LOCAL(void)
+-transencode_master_selection (j_compress_ptr cinfo,
+-			      jvirt_barray_ptr * coef_arrays)
+-{
+-  /* Although we don't actually use input_components for transcoding,
+-   * jcmaster.c's initial_setup will complain if input_components is 0.
+-   */
+-  cinfo->input_components = 1;
+-  /* Initialize master control (includes parameter checking/processing) */
+-  jinit_c_master_control(cinfo, TRUE /* transcode only */);
+-
+-  /* Entropy encoding: either Huffman or arithmetic coding. */
+-  if (cinfo->arith_code) {
+-    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+-  } else {
+-    if (cinfo->progressive_mode) {
+-#ifdef C_PROGRESSIVE_SUPPORTED
+-      jinit_phuff_encoder(cinfo);
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    } else
+-      jinit_huff_encoder(cinfo);
+-  }
+-
+-  /* We need a special coefficient buffer controller. */
+-  transencode_coef_controller(cinfo, coef_arrays);
+-
+-  jinit_marker_writer(cinfo);
+-
+-  /* We can now tell the memory manager to allocate virtual arrays. */
+-  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+-
+-  /* Write the datastream header (SOI, JFIF) immediately.
+-   * Frame and scan headers are postponed till later.
+-   * This lets application insert special markers after the SOI.
+-   */
+-  (*cinfo->marker->write_file_header) (cinfo);
+-}
+-
+-
+-/*
+- * The rest of this file is a special implementation of the coefficient
+- * buffer controller.  This is similar to jccoefct.c, but it handles only
+- * output from presupplied virtual arrays.  Furthermore, we generate any
+- * dummy padding blocks on-the-fly rather than expecting them to be present
+- * in the arrays.
+- */
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_c_coef_controller pub; /* public fields */
+-
+-  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
+-  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
+-  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+-  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+-
+-  /* Virtual block array for each component. */
+-  jvirt_barray_ptr * whole_image;
+-
+-  /* Workspace for constructing dummy blocks at right/bottom edges. */
+-  JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU];
+-} my_coef_controller;
+-
+-typedef my_coef_controller * my_coef_ptr;
+-
+-
+-LOCAL(void)
+-start_iMCU_row (j_compress_ptr cinfo)
+-/* Reset within-iMCU-row counters for a new row */
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+-   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+-   * But at the bottom of the image, process only what's left.
+-   */
+-  if (cinfo->comps_in_scan > 1) {
+-    coef->MCU_rows_per_iMCU_row = 1;
+-  } else {
+-    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+-    else
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+-  }
+-
+-  coef->mcu_ctr = 0;
+-  coef->MCU_vert_offset = 0;
+-}
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  if (pass_mode != JBUF_CRANK_DEST)
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-
+-  coef->iMCU_row_num = 0;
+-  start_iMCU_row(cinfo);
+-}
+-
+-
+-/*
+- * Process some data.
+- * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
+- * per call, ie, v_samp_factor block rows for each component in the scan.
+- * The data is obtained from the virtual arrays and fed to the entropy coder.
+- * Returns TRUE if the iMCU row is completed, FALSE if suspended.
+- *
+- * NB: input_buf is ignored; it is likely to be a NULL pointer.
+- */
+-
+-METHODDEF(boolean)
+-compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+-  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  int blkn, ci, xindex, yindex, yoffset, blockcnt;
+-  JDIMENSION start_col;
+-  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+-  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
+-  JBLOCKROW buffer_ptr;
+-  jpeg_component_info *compptr;
+-
+-  /* Align the virtual buffers for the components used in this scan. */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    buffer[ci] = (*cinfo->mem->access_virt_barray)
+-      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+-       coef->iMCU_row_num * compptr->v_samp_factor,
+-       (JDIMENSION) compptr->v_samp_factor, FALSE);
+-  }
+-
+-  /* Loop to process one whole iMCU row */
+-  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+-       yoffset++) {
+-    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
+-	 MCU_col_num++) {
+-      /* Construct list of pointers to DCT blocks belonging to this MCU */
+-      blkn = 0;			/* index of current DCT block within MCU */
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-	compptr = cinfo->cur_comp_info[ci];
+-	start_col = MCU_col_num * compptr->MCU_width;
+-	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+-						: compptr->last_col_width;
+-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+-	  if (coef->iMCU_row_num < last_iMCU_row ||
+-	      yindex+yoffset < compptr->last_row_height) {
+-	    /* Fill in pointers to real blocks in this row */
+-	    buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+-	    for (xindex = 0; xindex < blockcnt; xindex++)
+-	      MCU_buffer[blkn++] = buffer_ptr++;
+-	  } else {
+-	    /* At bottom of image, need a whole row of dummy blocks */
+-	    xindex = 0;
+-	  }
+-	  /* Fill in any dummy blocks needed in this row.
+-	   * Dummy blocks are filled in the same way as in jccoefct.c:
+-	   * all zeroes in the AC entries, DC entries equal to previous
+-	   * block's DC value.  The init routine has already zeroed the
+-	   * AC entries, so we need only set the DC entries correctly.
+-	   */
+-	  for (; xindex < compptr->MCU_width; xindex++) {
+-	    MCU_buffer[blkn] = coef->dummy_buffer[blkn];
+-	    MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0];
+-	    blkn++;
+-	  }
+-	}
+-      }
+-      /* Try to write the MCU. */
+-      if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
+-	/* Suspension forced; update state counters and exit */
+-	coef->MCU_vert_offset = yoffset;
+-	coef->mcu_ctr = MCU_col_num;
+-	return FALSE;
+-      }
+-    }
+-    /* Completed an MCU row, but perhaps not an iMCU row */
+-    coef->mcu_ctr = 0;
+-  }
+-  /* Completed the iMCU row, advance counters for next one */
+-  coef->iMCU_row_num++;
+-  start_iMCU_row(cinfo);
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Initialize coefficient buffer controller.
+- *
+- * Each passed coefficient array must be the right size for that
+- * coefficient: width_in_blocks wide and height_in_blocks high,
+- * with unitheight at least v_samp_factor.
+- */
+-
+-LOCAL(void)
+-transencode_coef_controller (j_compress_ptr cinfo,
+-			     jvirt_barray_ptr * coef_arrays)
+-{
+-  my_coef_ptr coef;
+-  JBLOCKROW buffer;
+-  int i;
+-
+-  coef = (my_coef_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_coef_controller));
+-  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
+-  coef->pub.start_pass = start_pass_coef;
+-  coef->pub.compress_data = compress_output;
+-
+-  /* Save pointer to virtual arrays */
+-  coef->whole_image = coef_arrays;
+-
+-  /* Allocate and pre-zero space for dummy DCT blocks. */
+-  buffer = (JBLOCKROW)
+-    (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+-  jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+-  for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
+-    coef->dummy_buffer[i] = buffer + i;
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdapimin.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdapimin.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdapimin.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdapimin.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,399 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdapimin.c
+- *
+- * Copyright (C) 1994-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains application interface code for the decompression half
+- * of the JPEG library.  These are the "minimum" API routines that may be
+- * needed in either the normal full-decompression case or the
+- * transcoding-only case.
+- *
+- * Most of the routines intended to be called directly by an application
+- * are in this file or in jdapistd.c.  But also see jcomapi.c for routines
+- * shared by compression and decompression, and jdtrans.c for the transcoding
+- * case.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * Initialization of a JPEG decompression object.
+- * The error manager must already be set up (in case memory manager fails).
+- */
+-
+-GLOBAL(void)
+-jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
+-{
+-  int i;
+-
+-  /* Guard against version mismatches between library and caller. */
+-  cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */
+-  if (version != JPEG_LIB_VERSION)
+-    ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
+-  if (structsize != SIZEOF(struct jpeg_decompress_struct))
+-    ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, 
+-	     (int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
+-
+-  /* For debugging purposes, we zero the whole master structure.
+-   * But the application has already set the err pointer, and may have set
+-   * client_data, so we have to save and restore those fields.
+-   * Note: if application hasn't set client_data, tools like Purify may
+-   * complain here.
+-   */
+-  {
+-    struct jpeg_error_mgr * err = cinfo->err;
+-    void * client_data = cinfo->client_data; /* ignore Purify complaint here */
+-    MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
+-    cinfo->err = err;
+-    cinfo->client_data = client_data;
+-  }
+-  cinfo->is_decompressor = TRUE;
+-
+-  /* Initialize a memory manager instance for this object */
+-  jinit_memory_mgr((j_common_ptr) cinfo);
+-
+-  /* Zero out pointers to permanent structures. */
+-  cinfo->progress = NULL;
+-  cinfo->src = NULL;
+-
+-  for (i = 0; i < NUM_QUANT_TBLS; i++)
+-    cinfo->quant_tbl_ptrs[i] = NULL;
+-
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    cinfo->dc_huff_tbl_ptrs[i] = NULL;
+-    cinfo->ac_huff_tbl_ptrs[i] = NULL;
+-  }
+-
+-  /* Initialize marker processor so application can override methods
+-   * for COM, APPn markers before calling jpeg_read_header.
+-   */
+-  cinfo->marker_list = NULL;
+-  jinit_marker_reader(cinfo);
+-
+-  /* And initialize the overall input controller. */
+-  jinit_input_controller(cinfo);
+-
+-  /* OK, I'm ready */
+-  cinfo->global_state = DSTATE_START;
+-}
+-
+-
+-/*
+- * Destruction of a JPEG decompression object
+- */
+-
+-GLOBAL(void)
+-jpeg_destroy_decompress (j_decompress_ptr cinfo)
+-{
+-  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+-}
+-
+-
+-/*
+- * Abort processing of a JPEG decompression operation,
+- * but don't destroy the object itself.
+- */
+-
+-GLOBAL(void)
+-jpeg_abort_decompress (j_decompress_ptr cinfo)
+-{
+-  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+-}
+-
+-
+-/*
+- * Set default decompression parameters.
+- */
+-
+-LOCAL(void)
+-default_decompress_parms (j_decompress_ptr cinfo)
+-{
+-  /* Guess the input colorspace, and set output colorspace accordingly. */
+-  /* (Wish JPEG committee had provided a real way to specify this...) */
+-  /* Note application may override our guesses. */
+-  switch (cinfo->num_components) {
+-  case 1:
+-    cinfo->jpeg_color_space = JCS_GRAYSCALE;
+-    cinfo->out_color_space = JCS_GRAYSCALE;
+-    break;
+-    
+-  case 3:
+-    if (cinfo->saw_JFIF_marker) {
+-      cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
+-    } else if (cinfo->saw_Adobe_marker) {
+-      switch (cinfo->Adobe_transform) {
+-      case 0:
+-	cinfo->jpeg_color_space = JCS_RGB;
+-	break;
+-      case 1:
+-	cinfo->jpeg_color_space = JCS_YCbCr;
+-	break;
+-      default:
+-	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+-	break;
+-      }
+-    } else {
+-      /* Saw no special markers, try to guess from the component IDs */
+-      int cid0 = cinfo->comp_info[0].component_id;
+-      int cid1 = cinfo->comp_info[1].component_id;
+-      int cid2 = cinfo->comp_info[2].component_id;
+-
+-      if (cid0 == 1 && cid1 == 2 && cid2 == 3)
+-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
+-      else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
+-	cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
+-      else {
+-	TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
+-	cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+-      }
+-    }
+-    /* Always guess RGB is proper output colorspace. */
+-    cinfo->out_color_space = JCS_RGB;
+-    break;
+-    
+-  case 4:
+-    if (cinfo->saw_Adobe_marker) {
+-      switch (cinfo->Adobe_transform) {
+-      case 0:
+-	cinfo->jpeg_color_space = JCS_CMYK;
+-	break;
+-      case 2:
+-	cinfo->jpeg_color_space = JCS_YCCK;
+-	break;
+-      default:
+-	WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+-	cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
+-	break;
+-      }
+-    } else {
+-      /* No special markers, assume straight CMYK. */
+-      cinfo->jpeg_color_space = JCS_CMYK;
+-    }
+-    cinfo->out_color_space = JCS_CMYK;
+-    break;
+-    
+-  default:
+-    cinfo->jpeg_color_space = JCS_UNKNOWN;
+-    cinfo->out_color_space = JCS_UNKNOWN;
+-    break;
+-  }
+-
+-  /* Set defaults for other decompression parameters. */
+-  cinfo->scale_num = 1;		/* 1:1 scaling */
+-  cinfo->scale_denom = 1;
+-  cinfo->output_gamma = 1.0;
+-  cinfo->buffered_image = FALSE;
+-  cinfo->raw_data_out = FALSE;
+-  cinfo->dct_method = JDCT_DEFAULT;
+-  cinfo->do_fancy_upsampling = TRUE;
+-  cinfo->do_block_smoothing = TRUE;
+-  cinfo->quantize_colors = FALSE;
+-  /* We set these in case application only sets quantize_colors. */
+-  cinfo->dither_mode = JDITHER_FS;
+-#ifdef QUANT_2PASS_SUPPORTED
+-  cinfo->two_pass_quantize = TRUE;
+-#else
+-  cinfo->two_pass_quantize = FALSE;
+-#endif
+-  cinfo->desired_number_of_colors = 256;
+-  cinfo->colormap = NULL;
+-  /* Initialize for no mode change in buffered-image mode. */
+-  cinfo->enable_1pass_quant = FALSE;
+-  cinfo->enable_external_quant = FALSE;
+-  cinfo->enable_2pass_quant = FALSE;
+-}
+-
+-
+-/*
+- * Decompression startup: read start of JPEG datastream to see what's there.
+- * Need only initialize JPEG object and supply a data source before calling.
+- *
+- * This routine will read as far as the first SOS marker (ie, actual start of
+- * compressed data), and will save all tables and parameters in the JPEG
+- * object.  It will also initialize the decompression parameters to default
+- * values, and finally return JPEG_HEADER_OK.  On return, the application may
+- * adjust the decompression parameters and then call jpeg_start_decompress.
+- * (Or, if the application only wanted to determine the image parameters,
+- * the data need not be decompressed.  In that case, call jpeg_abort or
+- * jpeg_destroy to release any temporary space.)
+- * If an abbreviated (tables only) datastream is presented, the routine will
+- * return JPEG_HEADER_TABLES_ONLY upon reaching EOI.  The application may then
+- * re-use the JPEG object to read the abbreviated image datastream(s).
+- * It is unnecessary (but OK) to call jpeg_abort in this case.
+- * The JPEG_SUSPENDED return code only occurs if the data source module
+- * requests suspension of the decompressor.  In this case the application
+- * should load more source data and then re-call jpeg_read_header to resume
+- * processing.
+- * If a non-suspending data source is used and require_image is TRUE, then the
+- * return code need not be inspected since only JPEG_HEADER_OK is possible.
+- *
+- * This routine is now just a front end to jpeg_consume_input, with some
+- * extra error checking.
+- */
+-
+-GLOBAL(int)
+-jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
+-{
+-  int retcode;
+-
+-  if (cinfo->global_state != DSTATE_START &&
+-      cinfo->global_state != DSTATE_INHEADER)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  retcode = jpeg_consume_input(cinfo);
+-
+-  switch (retcode) {
+-  case JPEG_REACHED_SOS:
+-    retcode = JPEG_HEADER_OK;
+-    break;
+-  case JPEG_REACHED_EOI:
+-    if (require_image)		/* Complain if application wanted an image */
+-      ERREXIT(cinfo, JERR_NO_IMAGE);
+-    /* Reset to start state; it would be safer to require the application to
+-     * call jpeg_abort, but we can't change it now for compatibility reasons.
+-     * A side effect is to free any temporary memory (there shouldn't be any).
+-     */
+-    jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
+-    retcode = JPEG_HEADER_TABLES_ONLY;
+-    break;
+-  case JPEG_SUSPENDED:
+-    /* no work */
+-    break;
+-  }
+-
+-  return retcode;
+-}
+-
+-
+-/*
+- * Consume data in advance of what the decompressor requires.
+- * This can be called at any time once the decompressor object has
+- * been created and a data source has been set up.
+- *
+- * This routine is essentially a state machine that handles a couple
+- * of critical state-transition actions, namely initial setup and
+- * transition from header scanning to ready-for-start_decompress.
+- * All the actual input is done via the input controller's consume_input
+- * method.
+- */
+-
+-GLOBAL(int)
+-jpeg_consume_input (j_decompress_ptr cinfo)
+-{
+-  int retcode = JPEG_SUSPENDED;
+-
+-  /* NB: every possible DSTATE value should be listed in this switch */
+-  switch (cinfo->global_state) {
+-  case DSTATE_START:
+-    /* Start-of-datastream actions: reset appropriate modules */
+-    (*cinfo->inputctl->reset_input_controller) (cinfo);
+-    /* Initialize application's data source module */
+-    (*cinfo->src->init_source) (cinfo);
+-    cinfo->global_state = DSTATE_INHEADER;
+-    /*FALLTHROUGH*/
+-  case DSTATE_INHEADER:
+-    retcode = (*cinfo->inputctl->consume_input) (cinfo);
+-    if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
+-      /* Set up default parameters based on header data */
+-      default_decompress_parms(cinfo);
+-      /* Set global state: ready for start_decompress */
+-      cinfo->global_state = DSTATE_READY;
+-    }
+-    break;
+-  case DSTATE_READY:
+-    /* Can't advance past first SOS until start_decompress is called */
+-    retcode = JPEG_REACHED_SOS;
+-    break;
+-  case DSTATE_PRELOAD:
+-  case DSTATE_PRESCAN:
+-  case DSTATE_SCANNING:
+-  case DSTATE_RAW_OK:
+-  case DSTATE_BUFIMAGE:
+-  case DSTATE_BUFPOST:
+-  case DSTATE_STOPPING:
+-    retcode = (*cinfo->inputctl->consume_input) (cinfo);
+-    break;
+-  default:
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  }
+-  return retcode;
+-}
+-
+-
+-/*
+- * Have we finished reading the input file?
+- */
+-
+-GLOBAL(boolean)
+-jpeg_input_complete (j_decompress_ptr cinfo)
+-{
+-  /* Check for valid jpeg object */
+-  if (cinfo->global_state < DSTATE_START ||
+-      cinfo->global_state > DSTATE_STOPPING)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  return cinfo->inputctl->eoi_reached;
+-}
+-
+-
+-/*
+- * Is there more than one scan?
+- */
+-
+-GLOBAL(boolean)
+-jpeg_has_multiple_scans (j_decompress_ptr cinfo)
+-{
+-  /* Only valid after jpeg_read_header completes */
+-  if (cinfo->global_state < DSTATE_READY ||
+-      cinfo->global_state > DSTATE_STOPPING)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  return cinfo->inputctl->has_multiple_scans;
+-}
+-
+-
+-/*
+- * Finish JPEG decompression.
+- *
+- * This will normally just verify the file trailer and release temp storage.
+- *
+- * Returns FALSE if suspended.  The return value need be inspected only if
+- * a suspending data source is used.
+- */
+-
+-GLOBAL(boolean)
+-jpeg_finish_decompress (j_decompress_ptr cinfo)
+-{
+-  if ((cinfo->global_state == DSTATE_SCANNING ||
+-       cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
+-    /* Terminate final pass of non-buffered mode */
+-    if (cinfo->output_scanline < cinfo->output_height)
+-      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+-    (*cinfo->master->finish_output_pass) (cinfo);
+-    cinfo->global_state = DSTATE_STOPPING;
+-  } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
+-    /* Finishing after a buffered-image operation */
+-    cinfo->global_state = DSTATE_STOPPING;
+-  } else if (cinfo->global_state != DSTATE_STOPPING) {
+-    /* STOPPING = repeat call after a suspension, anything else is error */
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  }
+-  /* Read until EOI */
+-  while (! cinfo->inputctl->eoi_reached) {
+-    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+-      return FALSE;		/* Suspend, come back later */
+-  }
+-  /* Do final cleanup */
+-  (*cinfo->src->term_source) (cinfo);
+-  /* We can use jpeg_abort to release memory and reset global_state */
+-  jpeg_abort((j_common_ptr) cinfo);
+-  return TRUE;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdapistd.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdapistd.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdapistd.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdapistd.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,279 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdapistd.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains application interface code for the decompression half
+- * of the JPEG library.  These are the "standard" API routines that are
+- * used in the normal full-decompression case.  They are not used by a
+- * transcoding-only application.  Note that if an application links in
+- * jpeg_start_decompress, it will end up linking in the entire decompressor.
+- * We thus must separate this file from jdapimin.c to avoid linking the
+- * whole decompression library into a transcoder.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Forward declarations */
+-LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
+-
+-
+-/*
+- * Decompression initialization.
+- * jpeg_read_header must be completed before calling this.
+- *
+- * If a multipass operating mode was selected, this will do all but the
+- * last pass, and thus may take a great deal of time.
+- *
+- * Returns FALSE if suspended.  The return value need be inspected only if
+- * a suspending data source is used.
+- */
+-
+-GLOBAL(boolean)
+-jpeg_start_decompress (j_decompress_ptr cinfo)
+-{
+-  if (cinfo->global_state == DSTATE_READY) {
+-    /* First call: initialize master control, select active modules */
+-    jinit_master_decompress(cinfo);
+-    if (cinfo->buffered_image) {
+-      /* No more work here; expecting jpeg_start_output next */
+-      cinfo->global_state = DSTATE_BUFIMAGE;
+-      return TRUE;
+-    }
+-    cinfo->global_state = DSTATE_PRELOAD;
+-  }
+-  if (cinfo->global_state == DSTATE_PRELOAD) {
+-    /* If file has multiple scans, absorb them all into the coef buffer */
+-    if (cinfo->inputctl->has_multiple_scans) {
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-      for (;;) {
+-	int retcode;
+-	/* Call progress monitor hook if present */
+-	if (cinfo->progress != NULL)
+-	  (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-	/* Absorb some more input */
+-	retcode = (*cinfo->inputctl->consume_input) (cinfo);
+-	if (retcode == JPEG_SUSPENDED)
+-	  return FALSE;
+-	if (retcode == JPEG_REACHED_EOI)
+-	  break;
+-	/* Advance progress counter if appropriate */
+-	if (cinfo->progress != NULL &&
+-	    (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+-	  if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+-	    /* jdmaster underestimated number of scans; ratchet up one scan */
+-	    cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+-	  }
+-	}
+-      }
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+-    }
+-    cinfo->output_scan_number = cinfo->input_scan_number;
+-  } else if (cinfo->global_state != DSTATE_PRESCAN)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  /* Perform any dummy output passes, and set up for the final pass */
+-  return output_pass_setup(cinfo);
+-}
+-
+-
+-/*
+- * Set up for an output pass, and perform any dummy pass(es) needed.
+- * Common subroutine for jpeg_start_decompress and jpeg_start_output.
+- * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
+- * Exit: If done, returns TRUE and sets global_state for proper output mode.
+- *       If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
+- */
+-
+-LOCAL(boolean)
+-output_pass_setup (j_decompress_ptr cinfo)
+-{
+-  if (cinfo->global_state != DSTATE_PRESCAN) {
+-    /* First call: do pass setup */
+-    (*cinfo->master->prepare_for_output_pass) (cinfo);
+-    cinfo->output_scanline = 0;
+-    cinfo->global_state = DSTATE_PRESCAN;
+-  }
+-  /* Loop over any required dummy passes */
+-  while (cinfo->master->is_dummy_pass) {
+-#ifdef QUANT_2PASS_SUPPORTED
+-    /* Crank through the dummy pass */
+-    while (cinfo->output_scanline < cinfo->output_height) {
+-      JDIMENSION last_scanline;
+-      /* Call progress monitor hook if present */
+-      if (cinfo->progress != NULL) {
+-	cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+-	cinfo->progress->pass_limit = (long) cinfo->output_height;
+-	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-      }
+-      /* Process some data */
+-      last_scanline = cinfo->output_scanline;
+-      (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
+-				    &cinfo->output_scanline, (JDIMENSION) 0);
+-      if (cinfo->output_scanline == last_scanline)
+-	return FALSE;		/* No progress made, must suspend */
+-    }
+-    /* Finish up dummy pass, and set up for another one */
+-    (*cinfo->master->finish_output_pass) (cinfo);
+-    (*cinfo->master->prepare_for_output_pass) (cinfo);
+-    cinfo->output_scanline = 0;
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif /* QUANT_2PASS_SUPPORTED */
+-  }
+-  /* Ready for application to drive output pass through
+-   * jpeg_read_scanlines or jpeg_read_raw_data.
+-   */
+-  cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Read some scanlines of data from the JPEG decompressor.
+- *
+- * The return value will be the number of lines actually read.
+- * This may be less than the number requested in several cases,
+- * including bottom of image, data source suspension, and operating
+- * modes that emit multiple scanlines at a time.
+- *
+- * Note: we warn about excess calls to jpeg_read_scanlines() since
+- * this likely signals an application programmer error.  However,
+- * an oversize buffer (max_lines > scanlines remaining) is not an error.
+- */
+-
+-GLOBAL(JDIMENSION)
+-jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
+-		     JDIMENSION max_lines)
+-{
+-  JDIMENSION row_ctr;
+-
+-  if (cinfo->global_state != DSTATE_SCANNING)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  if (cinfo->output_scanline >= cinfo->output_height) {
+-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+-    return 0;
+-  }
+-
+-  /* Call progress monitor hook if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+-    cinfo->progress->pass_limit = (long) cinfo->output_height;
+-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-  }
+-
+-  /* Process some data */
+-  row_ctr = 0;
+-  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
+-  cinfo->output_scanline += row_ctr;
+-  return row_ctr;
+-}
+-
+-
+-/*
+- * Alternate entry point to read raw data.
+- * Processes exactly one iMCU row per call, unless suspended.
+- */
+-
+-GLOBAL(JDIMENSION)
+-jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
+-		    JDIMENSION max_lines)
+-{
+-  JDIMENSION lines_per_iMCU_row;
+-
+-  if (cinfo->global_state != DSTATE_RAW_OK)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  if (cinfo->output_scanline >= cinfo->output_height) {
+-    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+-    return 0;
+-  }
+-
+-  /* Call progress monitor hook if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+-    cinfo->progress->pass_limit = (long) cinfo->output_height;
+-    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-  }
+-
+-  /* Verify that at least one iMCU row can be returned. */
+-  lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
+-  if (max_lines < lines_per_iMCU_row)
+-    ERREXIT(cinfo, JERR_BUFFER_SIZE);
+-
+-  /* Decompress directly into user's buffer. */
+-  if (! (*cinfo->coef->decompress_data) (cinfo, data))
+-    return 0;			/* suspension forced, can do nothing more */
+-
+-  /* OK, we processed one iMCU row. */
+-  cinfo->output_scanline += lines_per_iMCU_row;
+-  return lines_per_iMCU_row;
+-}
+-
+-
+-/* Additional entry points for buffered-image mode. */
+-
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-
+-/*
+- * Initialize for an output pass in buffered-image mode.
+- */
+-
+-GLOBAL(boolean)
+-jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
+-{
+-  if (cinfo->global_state != DSTATE_BUFIMAGE &&
+-      cinfo->global_state != DSTATE_PRESCAN)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  /* Limit scan number to valid range */
+-  if (scan_number <= 0)
+-    scan_number = 1;
+-  if (cinfo->inputctl->eoi_reached &&
+-      scan_number > cinfo->input_scan_number)
+-    scan_number = cinfo->input_scan_number;
+-  cinfo->output_scan_number = scan_number;
+-  /* Perform any dummy output passes, and set up for the real pass */
+-  return output_pass_setup(cinfo);
+-}
+-
+-
+-/*
+- * Finish up after an output pass in buffered-image mode.
+- *
+- * Returns FALSE if suspended.  The return value need be inspected only if
+- * a suspending data source is used.
+- */
+-
+-GLOBAL(boolean)
+-jpeg_finish_output (j_decompress_ptr cinfo)
+-{
+-  if ((cinfo->global_state == DSTATE_SCANNING ||
+-       cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
+-    /* Terminate this pass. */
+-    /* We do not require the whole pass to have been completed. */
+-    (*cinfo->master->finish_output_pass) (cinfo);
+-    cinfo->global_state = DSTATE_BUFPOST;
+-  } else if (cinfo->global_state != DSTATE_BUFPOST) {
+-    /* BUFPOST = repeat call after a suspension, anything else is error */
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  }
+-  /* Read markers looking for SOS or EOI */
+-  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+-	 ! cinfo->inputctl->eoi_reached) {
+-    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+-      return FALSE;		/* Suspend, come back later */
+-  }
+-  cinfo->global_state = DSTATE_BUFIMAGE;
+-  return TRUE;
+-}
+-
+-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdcoefct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdcoefct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdcoefct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdcoefct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,740 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdcoefct.c
+- *
+- * Copyright (C) 1994-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the coefficient buffer controller for decompression.
+- * This controller is the top level of the JPEG decompressor proper.
+- * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+- *
+- * In buffered-image mode, this controller is the interface between
+- * input-oriented processing and output-oriented processing.
+- * Also, the input side (only) is used when reading a file for transcoding.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-/* Block smoothing is only applicable for progressive JPEG, so: */
+-#ifndef D_PROGRESSIVE_SUPPORTED
+-#undef BLOCK_SMOOTHING_SUPPORTED
+-#endif
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_d_coef_controller pub; /* public fields */
+-
+-  /* These variables keep track of the current location of the input side. */
+-  /* cinfo->input_iMCU_row is also used for this. */
+-  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
+-  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
+-  int MCU_rows_per_iMCU_row;	/* number of such rows needed */
+-
+-  /* The output side's location is represented by cinfo->output_iMCU_row. */
+-
+-  /* In single-pass modes, it's sufficient to buffer just one MCU.
+-   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
+-   * and let the entropy decoder write into that workspace each time.
+-   * (On 80x86, the workspace is FAR even though it's not really very big;
+-   * this is to keep the module interfaces unchanged when a large coefficient
+-   * buffer is necessary.)
+-   * In multi-pass modes, this array points to the current MCU's blocks
+-   * within the virtual arrays; it is used only by the input side.
+-   */
+-  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
+-
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-  /* In multi-pass modes, we need a virtual block array for each component. */
+-  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+-#endif
+-
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-  /* When doing block smoothing, we latch coefficient Al values here */
+-  int * coef_bits_latch;
+-#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
+-#endif
+-} my_coef_controller;
+-
+-typedef my_coef_controller * my_coef_ptr;
+-
+-/* Forward declarations */
+-METHODDEF(int) decompress_onepass
+-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-METHODDEF(int) decompress_data
+-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+-#endif
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
+-METHODDEF(int) decompress_smooth_data
+-	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+-#endif
+-
+-
+-LOCAL(void)
+-start_iMCU_row (j_decompress_ptr cinfo)
+-/* Reset within-iMCU-row counters for a new row (input side) */
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  /* In an interleaved scan, an MCU row is the same as an iMCU row.
+-   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+-   * But at the bottom of the image, process only what's left.
+-   */
+-  if (cinfo->comps_in_scan > 1) {
+-    coef->MCU_rows_per_iMCU_row = 1;
+-  } else {
+-    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+-    else
+-      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+-  }
+-
+-  coef->MCU_ctr = 0;
+-  coef->MCU_vert_offset = 0;
+-}
+-
+-
+-/*
+- * Initialize for an input processing pass.
+- */
+-
+-METHODDEF(void)
+-start_input_pass (j_decompress_ptr cinfo)
+-{
+-  cinfo->input_iMCU_row = 0;
+-  start_iMCU_row(cinfo);
+-}
+-
+-
+-/*
+- * Initialize for an output processing pass.
+- */
+-
+-METHODDEF(void)
+-start_output_pass (j_decompress_ptr cinfo)
+-{
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-
+-  /* If multipass, check to see whether to use block smoothing on this pass */
+-  if (coef->pub.coef_arrays != NULL) {
+-    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+-      coef->pub.decompress_data = decompress_smooth_data;
+-    else
+-      coef->pub.decompress_data = decompress_data;
+-  }
+-#endif
+-  cinfo->output_iMCU_row = 0;
+-}
+-
+-
+-/*
+- * Decompress and return some data in the single-pass case.
+- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+- * Input and output must run in lockstep since we have only a one-MCU buffer.
+- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+- *
+- * NB: output_buf contains a plane for each component in image,
+- * which we index according to the component's SOF position.
+- */
+-
+-METHODDEF(int)
+-decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+-  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  int blkn, ci, xindex, yindex, yoffset, useful_width;
+-  JSAMPARRAY output_ptr;
+-  JDIMENSION start_col, output_col;
+-  jpeg_component_info *compptr;
+-  inverse_DCT_method_ptr inverse_DCT;
+-
+-  /* Loop to process as much as one whole iMCU row */
+-  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+-       yoffset++) {
+-    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+-	 MCU_col_num++) {
+-      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
+-      jzero_far((void FAR *) coef->MCU_buffer[0],
+-		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
+-      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+-	/* Suspension forced; update state counters and exit */
+-	coef->MCU_vert_offset = yoffset;
+-	coef->MCU_ctr = MCU_col_num;
+-	return JPEG_SUSPENDED;
+-      }
+-      /* Determine where data should go in output_buf and do the IDCT thing.
+-       * We skip dummy blocks at the right and bottom edges (but blkn gets
+-       * incremented past them!).  Note the inner loop relies on having
+-       * allocated the MCU_buffer[] blocks sequentially.
+-       */
+-      blkn = 0;			/* index of current DCT block within MCU */
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-	compptr = cinfo->cur_comp_info[ci];
+-	/* Don't bother to IDCT an uninteresting component. */
+-	if (! compptr->component_needed) {
+-	  blkn += compptr->MCU_blocks;
+-	  continue;
+-	}
+-	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+-	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+-						    : compptr->last_col_width;
+-	output_ptr = output_buf[compptr->component_index] +
+-	  yoffset * compptr->DCT_scaled_size;
+-	start_col = MCU_col_num * compptr->MCU_sample_width;
+-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+-	  if (cinfo->input_iMCU_row < last_iMCU_row ||
+-	      yoffset+yindex < compptr->last_row_height) {
+-	    output_col = start_col;
+-	    for (xindex = 0; xindex < useful_width; xindex++) {
+-	      (*inverse_DCT) (cinfo, compptr,
+-			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
+-			      output_ptr, output_col);
+-	      output_col += compptr->DCT_scaled_size;
+-	    }
+-	  }
+-	  blkn += compptr->MCU_width;
+-	  output_ptr += compptr->DCT_scaled_size;
+-	}
+-      }
+-    }
+-    /* Completed an MCU row, but perhaps not an iMCU row */
+-    coef->MCU_ctr = 0;
+-  }
+-  /* Completed the iMCU row, advance counters for next one */
+-  cinfo->output_iMCU_row++;
+-  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+-    start_iMCU_row(cinfo);
+-    return JPEG_ROW_COMPLETED;
+-  }
+-  /* Completed the scan */
+-  (*cinfo->inputctl->finish_input_pass) (cinfo);
+-  return JPEG_SCAN_COMPLETED;
+-}
+-
+-
+-/*
+- * Dummy consume-input routine for single-pass operation.
+- */
+-
+-METHODDEF(int)
+-dummy_consume_data (j_decompress_ptr cinfo)
+-{
+-  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
+-}
+-
+-
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-
+-/*
+- * Consume input data and store it in the full-image coefficient buffer.
+- * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+- * ie, v_samp_factor block rows for each component in the scan.
+- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+- */
+-
+-METHODDEF(int)
+-consume_data (j_decompress_ptr cinfo)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION MCU_col_num;	/* index of current MCU within row */
+-  int blkn, ci, xindex, yindex, yoffset;
+-  JDIMENSION start_col;
+-  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+-  JBLOCKROW buffer_ptr;
+-  jpeg_component_info *compptr;
+-
+-  /* Align the virtual buffers for the components used in this scan. */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    buffer[ci] = (*cinfo->mem->access_virt_barray)
+-      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+-       cinfo->input_iMCU_row * compptr->v_samp_factor,
+-       (JDIMENSION) compptr->v_samp_factor, TRUE);
+-    /* Note: entropy decoder expects buffer to be zeroed,
+-     * but this is handled automatically by the memory manager
+-     * because we requested a pre-zeroed array.
+-     */
+-  }
+-
+-  /* Loop to process one whole iMCU row */
+-  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+-       yoffset++) {
+-    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+-	 MCU_col_num++) {
+-      /* Construct list of pointers to DCT blocks belonging to this MCU */
+-      blkn = 0;			/* index of current DCT block within MCU */
+-      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-	compptr = cinfo->cur_comp_info[ci];
+-	start_col = MCU_col_num * compptr->MCU_width;
+-	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+-	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+-	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+-	    coef->MCU_buffer[blkn++] = buffer_ptr++;
+-	  }
+-	}
+-      }
+-      /* Try to fetch the MCU. */
+-      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+-	/* Suspension forced; update state counters and exit */
+-	coef->MCU_vert_offset = yoffset;
+-	coef->MCU_ctr = MCU_col_num;
+-	return JPEG_SUSPENDED;
+-      }
+-    }
+-    /* Completed an MCU row, but perhaps not an iMCU row */
+-    coef->MCU_ctr = 0;
+-  }
+-  /* Completed the iMCU row, advance counters for next one */
+-  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+-    start_iMCU_row(cinfo);
+-    return JPEG_ROW_COMPLETED;
+-  }
+-  /* Completed the scan */
+-  (*cinfo->inputctl->finish_input_pass) (cinfo);
+-  return JPEG_SCAN_COMPLETED;
+-}
+-
+-
+-/*
+- * Decompress and return some data in the multi-pass case.
+- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+- *
+- * NB: output_buf contains a plane for each component in image.
+- */
+-
+-METHODDEF(int)
+-decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  JDIMENSION block_num;
+-  int ci, block_row, block_rows;
+-  JBLOCKARRAY buffer;
+-  JBLOCKROW buffer_ptr;
+-  JSAMPARRAY output_ptr;
+-  JDIMENSION output_col;
+-  jpeg_component_info *compptr;
+-  inverse_DCT_method_ptr inverse_DCT;
+-
+-  /* Force some input to be done if we are getting ahead of the input. */
+-  while (cinfo->input_scan_number < cinfo->output_scan_number ||
+-	 (cinfo->input_scan_number == cinfo->output_scan_number &&
+-	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+-    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+-      return JPEG_SUSPENDED;
+-  }
+-
+-  /* OK, output from the virtual arrays. */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Don't bother to IDCT an uninteresting component. */
+-    if (! compptr->component_needed)
+-      continue;
+-    /* Align the virtual buffer for this component. */
+-    buffer = (*cinfo->mem->access_virt_barray)
+-      ((j_common_ptr) cinfo, coef->whole_image[ci],
+-       cinfo->output_iMCU_row * compptr->v_samp_factor,
+-       (JDIMENSION) compptr->v_samp_factor, FALSE);
+-    /* Count non-dummy DCT block rows in this iMCU row. */
+-    if (cinfo->output_iMCU_row < last_iMCU_row)
+-      block_rows = compptr->v_samp_factor;
+-    else {
+-      /* NB: can't use last_row_height here; it is input-side-dependent! */
+-      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+-      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+-    }
+-    inverse_DCT = cinfo->idct->inverse_DCT[ci];
+-    output_ptr = output_buf[ci];
+-    /* Loop over all DCT blocks to be processed. */
+-    for (block_row = 0; block_row < block_rows; block_row++) {
+-      buffer_ptr = buffer[block_row];
+-      output_col = 0;
+-      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
+-	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
+-			output_ptr, output_col);
+-	buffer_ptr++;
+-	output_col += compptr->DCT_scaled_size;
+-      }
+-      output_ptr += compptr->DCT_scaled_size;
+-    }
+-  }
+-
+-  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+-    return JPEG_ROW_COMPLETED;
+-  return JPEG_SCAN_COMPLETED;
+-}
+-
+-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+-
+-
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-
+-/*
+- * This code applies interblock smoothing as described by section K.8
+- * of the JPEG standard: the first 5 AC coefficients are estimated from
+- * the DC values of a DCT block and its 8 neighboring blocks.
+- * We apply smoothing only for progressive JPEG decoding, and only if
+- * the coefficients it can estimate are not yet known to full precision.
+- */
+-
+-/* Natural-order array positions of the first 5 zigzag-order coefficients */
+-#define Q01_POS  1
+-#define Q10_POS  8
+-#define Q20_POS  16
+-#define Q11_POS  9
+-#define Q02_POS  2
+-
+-/*
+- * Determine whether block smoothing is applicable and safe.
+- * We also latch the current states of the coef_bits[] entries for the
+- * AC coefficients; otherwise, if the input side of the decompressor
+- * advances into a new scan, we might think the coefficients are known
+- * more accurately than they really are.
+- */
+-
+-LOCAL(boolean)
+-smoothing_ok (j_decompress_ptr cinfo)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  boolean smoothing_useful = FALSE;
+-  int ci, coefi;
+-  jpeg_component_info *compptr;
+-  JQUANT_TBL * qtable;
+-  int * coef_bits;
+-  int * coef_bits_latch;
+-
+-  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
+-    return FALSE;
+-
+-  /* Allocate latch area if not already done */
+-  if (coef->coef_bits_latch == NULL)
+-    coef->coef_bits_latch = (int *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  cinfo->num_components *
+-				  (SAVED_COEFS * SIZEOF(int)));
+-  coef_bits_latch = coef->coef_bits_latch;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* All components' quantization values must already be latched. */
+-    if ((qtable = compptr->quant_table) == NULL)
+-      return FALSE;
+-    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+-    if (qtable->quantval[0] == 0 ||
+-	qtable->quantval[Q01_POS] == 0 ||
+-	qtable->quantval[Q10_POS] == 0 ||
+-	qtable->quantval[Q20_POS] == 0 ||
+-	qtable->quantval[Q11_POS] == 0 ||
+-	qtable->quantval[Q02_POS] == 0)
+-      return FALSE;
+-    /* DC values must be at least partly known for all components. */
+-    coef_bits = cinfo->coef_bits[ci];
+-    if (coef_bits[0] < 0)
+-      return FALSE;
+-    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+-    for (coefi = 1; coefi <= 5; coefi++) {
+-      coef_bits_latch[coefi] = coef_bits[coefi];
+-      if (coef_bits[coefi] != 0)
+-	smoothing_useful = TRUE;
+-    }
+-    coef_bits_latch += SAVED_COEFS;
+-  }
+-
+-  return smoothing_useful;
+-}
+-
+-
+-/*
+- * Variant of decompress_data for use when doing block smoothing.
+- */
+-
+-METHODDEF(int)
+-decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+-{
+-  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+-  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+-  JDIMENSION block_num, last_block_column;
+-  int ci, block_row, block_rows, access_rows;
+-  JBLOCKARRAY buffer;
+-  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+-  JSAMPARRAY output_ptr;
+-  JDIMENSION output_col;
+-  jpeg_component_info *compptr;
+-  inverse_DCT_method_ptr inverse_DCT;
+-  boolean first_row, last_row;
+-  JBLOCK workspace;
+-  int *coef_bits;
+-  JQUANT_TBL *quanttbl;
+-  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
+-  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
+-  int Al, pred;
+-
+-  /* Force some input to be done if we are getting ahead of the input. */
+-  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+-	 ! cinfo->inputctl->eoi_reached) {
+-    if (cinfo->input_scan_number == cinfo->output_scan_number) {
+-      /* If input is working on current scan, we ordinarily want it to
+-       * have completed the current row.  But if input scan is DC,
+-       * we want it to keep one row ahead so that next block row's DC
+-       * values are up to date.
+-       */
+-      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+-      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
+-	break;
+-    }
+-    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+-      return JPEG_SUSPENDED;
+-  }
+-
+-  /* OK, output from the virtual arrays. */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Don't bother to IDCT an uninteresting component. */
+-    if (! compptr->component_needed)
+-      continue;
+-    /* Count non-dummy DCT block rows in this iMCU row. */
+-    if (cinfo->output_iMCU_row < last_iMCU_row) {
+-      block_rows = compptr->v_samp_factor;
+-      access_rows = block_rows * 2; /* this and next iMCU row */
+-      last_row = FALSE;
+-    } else {
+-      /* NB: can't use last_row_height here; it is input-side-dependent! */
+-      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+-      if (block_rows == 0) block_rows = compptr->v_samp_factor;
+-      access_rows = block_rows; /* this iMCU row only */
+-      last_row = TRUE;
+-    }
+-    /* Align the virtual buffer for this component. */
+-    if (cinfo->output_iMCU_row > 0) {
+-      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+-      buffer = (*cinfo->mem->access_virt_barray)
+-	((j_common_ptr) cinfo, coef->whole_image[ci],
+-	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+-	 (JDIMENSION) access_rows, FALSE);
+-      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
+-      first_row = FALSE;
+-    } else {
+-      buffer = (*cinfo->mem->access_virt_barray)
+-	((j_common_ptr) cinfo, coef->whole_image[ci],
+-	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
+-      first_row = TRUE;
+-    }
+-    /* Fetch component-dependent info */
+-    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+-    quanttbl = compptr->quant_table;
+-    Q00 = quanttbl->quantval[0];
+-    Q01 = quanttbl->quantval[Q01_POS];
+-    Q10 = quanttbl->quantval[Q10_POS];
+-    Q20 = quanttbl->quantval[Q20_POS];
+-    Q11 = quanttbl->quantval[Q11_POS];
+-    Q02 = quanttbl->quantval[Q02_POS];
+-    inverse_DCT = cinfo->idct->inverse_DCT[ci];
+-    output_ptr = output_buf[ci];
+-    /* Loop over all DCT blocks to be processed. */
+-    for (block_row = 0; block_row < block_rows; block_row++) {
+-      buffer_ptr = buffer[block_row];
+-      if (first_row && block_row == 0)
+-	prev_block_row = buffer_ptr;
+-      else
+-	prev_block_row = buffer[block_row-1];
+-      if (last_row && block_row == block_rows-1)
+-	next_block_row = buffer_ptr;
+-      else
+-	next_block_row = buffer[block_row+1];
+-      /* We fetch the surrounding DC values using a sliding-register approach.
+-       * Initialize all nine here so as to do the right thing on narrow pics.
+-       */
+-      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
+-      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
+-      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
+-      output_col = 0;
+-      last_block_column = compptr->width_in_blocks - 1;
+-      for (block_num = 0; block_num <= last_block_column; block_num++) {
+-	/* Fetch current DCT block into workspace so we can modify it. */
+-	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
+-	/* Update DC values */
+-	if (block_num < last_block_column) {
+-	  DC3 = (int) prev_block_row[1][0];
+-	  DC6 = (int) buffer_ptr[1][0];
+-	  DC9 = (int) next_block_row[1][0];
+-	}
+-	/* Compute coefficient estimates per K.8.
+-	 * An estimate is applied only if coefficient is still zero,
+-	 * and is not known to be fully accurate.
+-	 */
+-	/* AC01 */
+-	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
+-	  num = 36 * Q00 * (DC4 - DC6);
+-	  if (num >= 0) {
+-	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	  } else {
+-	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	    pred = -pred;
+-	  }
+-	  workspace[1] = (JCOEF) pred;
+-	}
+-	/* AC10 */
+-	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
+-	  num = 36 * Q00 * (DC2 - DC8);
+-	  if (num >= 0) {
+-	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	  } else {
+-	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	    pred = -pred;
+-	  }
+-	  workspace[8] = (JCOEF) pred;
+-	}
+-	/* AC20 */
+-	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
+-	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
+-	  if (num >= 0) {
+-	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	  } else {
+-	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	    pred = -pred;
+-	  }
+-	  workspace[16] = (JCOEF) pred;
+-	}
+-	/* AC11 */
+-	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
+-	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+-	  if (num >= 0) {
+-	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	  } else {
+-	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	    pred = -pred;
+-	  }
+-	  workspace[9] = (JCOEF) pred;
+-	}
+-	/* AC02 */
+-	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
+-	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
+-	  if (num >= 0) {
+-	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	  } else {
+-	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
+-	    if (Al > 0 && pred >= (1<<Al))
+-	      pred = (1<<Al)-1;
+-	    pred = -pred;
+-	  }
+-	  workspace[2] = (JCOEF) pred;
+-	}
+-	/* OK, do the IDCT */
+-	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
+-			output_ptr, output_col);
+-	/* Advance for next column */
+-	DC1 = DC2; DC2 = DC3;
+-	DC4 = DC5; DC5 = DC6;
+-	DC7 = DC8; DC8 = DC9;
+-	buffer_ptr++, prev_block_row++, next_block_row++;
+-	output_col += compptr->DCT_scaled_size;
+-      }
+-      output_ptr += compptr->DCT_scaled_size;
+-    }
+-  }
+-
+-  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+-    return JPEG_ROW_COMPLETED;
+-  return JPEG_SCAN_COMPLETED;
+-}
+-
+-#endif /* BLOCK_SMOOTHING_SUPPORTED */
+-
+-
+-/*
+- * Initialize coefficient buffer controller.
+- */
+-
+-GLOBAL(void)
+-jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_coef_ptr coef;
+-
+-  coef = (my_coef_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_coef_controller));
+-  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
+-  coef->pub.start_input_pass = start_input_pass;
+-  coef->pub.start_output_pass = start_output_pass;
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-  coef->coef_bits_latch = NULL;
+-#endif
+-
+-  /* Create the coefficient buffer. */
+-  if (need_full_buffer) {
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-    /* Allocate a full-image virtual array for each component, */
+-    /* padded to a multiple of samp_factor DCT blocks in each direction. */
+-    /* Note we ask for a pre-zeroed array. */
+-    int ci, access_rows;
+-    jpeg_component_info *compptr;
+-
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      access_rows = compptr->v_samp_factor;
+-#ifdef BLOCK_SMOOTHING_SUPPORTED
+-      /* If block smoothing could be used, need a bigger window */
+-      if (cinfo->progressive_mode)
+-	access_rows *= 3;
+-#endif
+-      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
+-	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+-				(long) compptr->h_samp_factor),
+-	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+-				(long) compptr->v_samp_factor),
+-	 (JDIMENSION) access_rows);
+-    }
+-    coef->pub.consume_data = consume_data;
+-    coef->pub.decompress_data = decompress_data;
+-    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-  } else {
+-    /* We only need a single-MCU buffer. */
+-    JBLOCKROW buffer;
+-    int i;
+-
+-    buffer = (JBLOCKROW)
+-      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+-    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+-      coef->MCU_buffer[i] = buffer + i;
+-    }
+-    coef->pub.consume_data = dummy_consume_data;
+-    coef->pub.decompress_data = decompress_onepass;
+-    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdcolor.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdcolor.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdcolor.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdcolor.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,398 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdcolor.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains output colorspace conversion routines.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_color_deconverter pub; /* public fields */
+-
+-  /* Private state for YCC->RGB conversion */
+-  int * Cr_r_tab;		/* => table for Cr to R conversion */
+-  int * Cb_b_tab;		/* => table for Cb to B conversion */
+-  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
+-  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
+-} my_color_deconverter;
+-
+-typedef my_color_deconverter * my_cconvert_ptr;
+-
+-
+-/**************** YCbCr -> RGB conversion: most common case **************/
+-
+-/*
+- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+- * The conversion equations to be implemented are therefore
+- *	R = Y                + 1.40200 * Cr
+- *	G = Y - 0.34414 * Cb - 0.71414 * Cr
+- *	B = Y + 1.77200 * Cb
+- * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
+- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+- *
+- * To avoid floating-point arithmetic, we represent the fractional constants
+- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+- * the products by 2^16, with appropriate rounding, to get the correct answer.
+- * Notice that Y, being an integral input, does not contribute any fraction
+- * so it need not participate in the rounding.
+- *
+- * For even more speed, we avoid doing any multiplications in the inner loop
+- * by precalculating the constants times Cb and Cr for all possible values.
+- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+- * for 12-bit samples it is still acceptable.  It's not very reasonable for
+- * 16-bit samples, but if you want lossless storage you shouldn't be changing
+- * colorspace anyway.
+- * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
+- * values for the G calculation are left scaled up, since we must add them
+- * together before rounding.
+- */
+-
+-#define SCALEBITS	16	/* speediest right-shift on some machines */
+-#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+-#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+-
+-
+-/*
+- * Initialize tables for YCC->RGB colorspace conversion.
+- */
+-
+-LOCAL(void)
+-build_ycc_rgb_table (j_decompress_ptr cinfo)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  int i;
+-  INT32 x;
+-  SHIFT_TEMPS
+-
+-  cconvert->Cr_r_tab = (int *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(int));
+-  cconvert->Cb_b_tab = (int *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(int));
+-  cconvert->Cr_g_tab = (INT32 *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(INT32));
+-  cconvert->Cb_g_tab = (INT32 *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(INT32));
+-
+-  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+-    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+-    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+-    /* Cr=>R value is nearest int to 1.40200 * x */
+-    cconvert->Cr_r_tab[i] = (int)
+-		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+-    /* Cb=>B value is nearest int to 1.77200 * x */
+-    cconvert->Cb_b_tab[i] = (int)
+-		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+-    /* Cr=>G value is scaled-up -0.71414 * x */
+-    cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+-    /* Cb=>G value is scaled-up -0.34414 * x */
+-    /* We also add in ONE_HALF so that need not do it in inner loop */
+-    cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+-  }
+-}
+-
+-
+-/*
+- * Convert some rows of samples to the output colorspace.
+- *
+- * Note that we change from noninterleaved, one-plane-per-component format
+- * to interleaved-pixel format.  The output buffer is therefore three times
+- * as wide as the input buffer.
+- * A starting row offset is provided only for the input buffer.  The caller
+- * can easily adjust the passed output_buf value to accommodate any row
+- * offset required on that side.
+- */
+-
+-METHODDEF(void)
+-ycc_rgb_convert (j_decompress_ptr cinfo,
+-		 JSAMPIMAGE input_buf, JDIMENSION input_row,
+-		 JSAMPARRAY output_buf, int num_rows)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  register int y, cb, cr;
+-  register JSAMPROW outptr;
+-  register JSAMPROW inptr0, inptr1, inptr2;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->output_width;
+-  /* copy these pointers into registers if possible */
+-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+-  register int * Crrtab = cconvert->Cr_r_tab;
+-  register int * Cbbtab = cconvert->Cb_b_tab;
+-  register INT32 * Crgtab = cconvert->Cr_g_tab;
+-  register INT32 * Cbgtab = cconvert->Cb_g_tab;
+-  SHIFT_TEMPS
+-
+-  while (--num_rows >= 0) {
+-    inptr0 = input_buf[0][input_row];
+-    inptr1 = input_buf[1][input_row];
+-    inptr2 = input_buf[2][input_row];
+-    input_row++;
+-    outptr = *output_buf++;
+-    for (col = 0; col < num_cols; col++) {
+-      y  = GETJSAMPLE(inptr0[col]);
+-      cb = GETJSAMPLE(inptr1[col]);
+-      cr = GETJSAMPLE(inptr2[col]);
+-      /* Range-limiting is essential due to noise introduced by DCT losses. */
+-      outptr[RGB_RED] =   range_limit[y + Crrtab[cr]];
+-      outptr[RGB_GREEN] = range_limit[y +
+-			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+-						 SCALEBITS))];
+-      outptr[RGB_BLUE] =  range_limit[y + Cbbtab[cb]];
+-      outptr += RGB_PIXELSIZE;
+-    }
+-  }
+-}
+-
+-
+-/**************** Cases other than YCbCr -> RGB **************/
+-
+-
+-/*
+- * Color conversion for no colorspace change: just copy the data,
+- * converting from separate-planes to interleaved representation.
+- */
+-
+-METHODDEF(void)
+-null_convert (j_decompress_ptr cinfo,
+-	      JSAMPIMAGE input_buf, JDIMENSION input_row,
+-	      JSAMPARRAY output_buf, int num_rows)
+-{
+-  register JSAMPROW inptr, outptr;
+-  register JDIMENSION count;
+-  register int num_components = cinfo->num_components;
+-  JDIMENSION num_cols = cinfo->output_width;
+-  int ci;
+-
+-  while (--num_rows >= 0) {
+-    for (ci = 0; ci < num_components; ci++) {
+-      inptr = input_buf[ci][input_row];
+-      outptr = output_buf[0] + ci;
+-      for (count = num_cols; count > 0; count--) {
+-	*outptr = *inptr++;	/* needn't bother with GETJSAMPLE() here */
+-	outptr += num_components;
+-      }
+-    }
+-    input_row++;
+-    output_buf++;
+-  }
+-}
+-
+-
+-/*
+- * Color conversion for grayscale: just copy the data.
+- * This also works for YCbCr -> grayscale conversion, in which
+- * we just copy the Y (luminance) component and ignore chrominance.
+- */
+-
+-METHODDEF(void)
+-grayscale_convert (j_decompress_ptr cinfo,
+-		   JSAMPIMAGE input_buf, JDIMENSION input_row,
+-		   JSAMPARRAY output_buf, int num_rows)
+-{
+-  jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
+-		    num_rows, cinfo->output_width);
+-}
+-
+-/*
+- * Convert grayscale to RGB: just duplicate the graylevel three times.
+- * This is provided to support applications that don't want to cope
+- * with grayscale as a separate case.
+- */
+-
+-METHODDEF(void)
+-gray_rgb_convert (j_decompress_ptr cinfo,
+-		  JSAMPIMAGE input_buf, JDIMENSION input_row,
+-		  JSAMPARRAY output_buf, int num_rows)
+-{
+-  register JSAMPROW inptr, outptr;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->output_width;
+-
+-  while (--num_rows >= 0) {
+-    inptr = input_buf[0][input_row++];
+-    outptr = *output_buf++;
+-    for (col = 0; col < num_cols; col++) {
+-      /* We can dispense with GETJSAMPLE() here */
+-      outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
+-      outptr += RGB_PIXELSIZE;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Adobe-style YCCK->CMYK conversion.
+- * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
+- * conversion as above, while passing K (black) unchanged.
+- * We assume build_ycc_rgb_table has been called.
+- */
+-
+-METHODDEF(void)
+-ycck_cmyk_convert (j_decompress_ptr cinfo,
+-		   JSAMPIMAGE input_buf, JDIMENSION input_row,
+-		   JSAMPARRAY output_buf, int num_rows)
+-{
+-  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+-  register int y, cb, cr;
+-  register JSAMPROW outptr;
+-  register JSAMPROW inptr0, inptr1, inptr2, inptr3;
+-  register JDIMENSION col;
+-  JDIMENSION num_cols = cinfo->output_width;
+-  /* copy these pointers into registers if possible */
+-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+-  register int * Crrtab = cconvert->Cr_r_tab;
+-  register int * Cbbtab = cconvert->Cb_b_tab;
+-  register INT32 * Crgtab = cconvert->Cr_g_tab;
+-  register INT32 * Cbgtab = cconvert->Cb_g_tab;
+-  SHIFT_TEMPS
+-
+-  while (--num_rows >= 0) {
+-    inptr0 = input_buf[0][input_row];
+-    inptr1 = input_buf[1][input_row];
+-    inptr2 = input_buf[2][input_row];
+-    inptr3 = input_buf[3][input_row];
+-    input_row++;
+-    outptr = *output_buf++;
+-    for (col = 0; col < num_cols; col++) {
+-      y  = GETJSAMPLE(inptr0[col]);
+-      cb = GETJSAMPLE(inptr1[col]);
+-      cr = GETJSAMPLE(inptr2[col]);
+-      /* Range-limiting is essential due to noise introduced by DCT losses. */
+-      outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])];	/* red */
+-      outptr[1] = range_limit[MAXJSAMPLE - (y +			/* green */
+-			      ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+-						 SCALEBITS)))];
+-      outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])];	/* blue */
+-      /* K passes through unchanged */
+-      outptr[3] = inptr3[col];	/* don't need GETJSAMPLE here */
+-      outptr += 4;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Empty method for start_pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_dcolor (j_decompress_ptr cinfo)
+-{
+-  /* no work needed */
+-}
+-
+-
+-/*
+- * Module initialization routine for output colorspace conversion.
+- */
+-
+-GLOBAL(void)
+-jinit_color_deconverter (j_decompress_ptr cinfo)
+-{
+-  my_cconvert_ptr cconvert;
+-  int ci;
+-
+-  cconvert = (my_cconvert_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_color_deconverter));
+-  cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
+-  cconvert->pub.start_pass = start_pass_dcolor;
+-
+-  /* Make sure num_components agrees with jpeg_color_space */
+-  switch (cinfo->jpeg_color_space) {
+-  case JCS_GRAYSCALE:
+-    if (cinfo->num_components != 1)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    break;
+-  case JCS_RGB:
+-  case JCS_YCbCr:
+-    if (cinfo->num_components != 3)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    break;
+-
+-  case JCS_CMYK:
+-  case JCS_YCCK:
+-    if (cinfo->num_components != 4)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    break;
+-
+-  default:			/* JCS_UNKNOWN can be anything */
+-    if (cinfo->num_components < 1)
+-      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+-    break;
+-  }
+-
+-  /* Set out_color_components and conversion method based on requested space.
+-   * Also clear the component_needed flags for any unused components,
+-   * so that earlier pipeline stages can avoid useless computation.
+-   */
+-
+-  switch (cinfo->out_color_space) {
+-  case JCS_GRAYSCALE:
+-    cinfo->out_color_components = 1;
+-    if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
+-	cinfo->jpeg_color_space == JCS_YCbCr) {
+-      cconvert->pub.color_convert = grayscale_convert;
+-      /* For color->grayscale conversion, only the Y (0) component is needed */
+-      for (ci = 1; ci < cinfo->num_components; ci++)
+-	cinfo->comp_info[ci].component_needed = FALSE;
+-    } else 
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_RGB:
+-    cinfo->out_color_components = RGB_PIXELSIZE;
+-    if (cinfo->jpeg_color_space == JCS_YCbCr) {
+-      cconvert->pub.color_convert = ycc_rgb_convert;
+-      build_ycc_rgb_table(cinfo);
+-    } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) {
+-      cconvert->pub.color_convert = gray_rgb_convert;
+-    } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
+-      cconvert->pub.color_convert = null_convert;
+-    } else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  case JCS_CMYK:
+-    cinfo->out_color_components = 4;
+-    if (cinfo->jpeg_color_space == JCS_YCCK) {
+-      cconvert->pub.color_convert = ycck_cmyk_convert;
+-      build_ycc_rgb_table(cinfo);
+-    } else if (cinfo->jpeg_color_space == JCS_CMYK) {
+-      cconvert->pub.color_convert = null_convert;
+-    } else
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-
+-  default:
+-    /* Permit null conversion to same output space */
+-    if (cinfo->out_color_space == cinfo->jpeg_color_space) {
+-      cinfo->out_color_components = cinfo->num_components;
+-      cconvert->pub.color_convert = null_convert;
+-    } else			/* unsupported non-null conversion */
+-      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+-    break;
+-  }
+-
+-  if (cinfo->quantize_colors)
+-    cinfo->output_components = 1; /* single colormapped output component */
+-  else
+-    cinfo->output_components = cinfo->out_color_components;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdct.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdct.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdct.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdct.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,180 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdct.h
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This include file contains common declarations for the forward and
+- * inverse DCT modules.  These declarations are private to the DCT managers
+- * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
+- * The individual DCT algorithms are kept in separate files to ease 
+- * machine-dependent tuning (e.g., assembly coding).
+- */
+-
+-
+-/*
+- * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
+- * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
+- * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
+- * implementations use an array of type FAST_FLOAT, instead.)
+- * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
+- * The DCT outputs are returned scaled up by a factor of 8; they therefore
+- * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
+- * convention improves accuracy in integer implementations and saves some
+- * work in floating-point ones.
+- * Quantization of the output coefficients is done by jcdctmgr.c.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-typedef int DCTELEM;		/* 16 or 32 bits is fine */
+-#else
+-typedef INT32 DCTELEM;		/* must have 32 bits */
+-#endif
+-
+-typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
+-typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
+-
+-
+-/*
+- * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
+- * to an output sample array.  The routine must dequantize the input data as
+- * well as perform the IDCT; for dequantization, it uses the multiplier table
+- * pointed to by compptr->dct_table.  The output data is to be placed into the
+- * sample array starting at a specified column.  (Any row offset needed will
+- * be applied to the array pointer before it is passed to the IDCT code.)
+- * Note that the number of samples emitted by the IDCT routine is
+- * DCT_scaled_size * DCT_scaled_size.
+- */
+-
+-/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
+-
+-/*
+- * Each IDCT routine has its own ideas about the best dct_table element type.
+- */
+-
+-typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
+-#if BITS_IN_JSAMPLE == 8
+-typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
+-#define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */
+-#else
+-typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */
+-#define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */
+-#endif
+-typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
+-
+-
+-/*
+- * Each IDCT routine is responsible for range-limiting its results and
+- * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
+- * be quite far out of range if the input data is corrupt, so a bulletproof
+- * range-limiting step is required.  We use a mask-and-table-lookup method
+- * to do the combined operations quickly.  See the comments with
+- * prepare_range_limit_table (in jdmaster.c) for more info.
+- */
+-
+-#define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)
+-
+-#define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
+-
+-
+-/* Short forms of external names for systems with brain-damaged linkers. */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_fdct_islow		jFDislow
+-#define jpeg_fdct_ifast		jFDifast
+-#define jpeg_fdct_float		jFDfloat
+-#define jpeg_idct_islow		jRDislow
+-#define jpeg_idct_ifast		jRDifast
+-#define jpeg_idct_float		jRDfloat
+-#define jpeg_idct_4x4		jRD4x4
+-#define jpeg_idct_2x2		jRD2x2
+-#define jpeg_idct_1x1		jRD1x1
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-/* Extern declarations for the forward and inverse DCT routines. */
+-
+-EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
+-EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
+-EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
+-
+-EXTERN(void) jpeg_idct_islow
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-EXTERN(void) jpeg_idct_ifast
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-EXTERN(void) jpeg_idct_float
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-EXTERN(void) jpeg_idct_4x4
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-EXTERN(void) jpeg_idct_2x2
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-EXTERN(void) jpeg_idct_1x1
+-    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+-
+-
+-/*
+- * Macros for handling fixed-point arithmetic; these are used by many
+- * but not all of the DCT/IDCT modules.
+- *
+- * All values are expected to be of type INT32.
+- * Fractional constants are scaled left by CONST_BITS bits.
+- * CONST_BITS is defined within each module using these macros,
+- * and may differ from one module to the next.
+- */
+-
+-#define ONE	((INT32) 1)
+-#define CONST_SCALE (ONE << CONST_BITS)
+-
+-/* Convert a positive real constant to an integer scaled by CONST_SCALE.
+- * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
+- * thus causing a lot of useless floating-point operations at run time.
+- */
+-
+-#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))
+-
+-/* Descale and correctly round an INT32 value that's scaled by N bits.
+- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+- * the fudge factor is correct for either sign of X.
+- */
+-
+-#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
+-
+-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+- * This macro is used only when the two inputs will actually be no more than
+- * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
+- * full 32x32 multiply.  This provides a useful speedup on many machines.
+- * Unfortunately there is no way to specify a 16x16->32 multiply portably
+- * in C, but some C compilers will do the right thing if you provide the
+- * correct combination of casts.
+- */
+-
+-#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
+-#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
+-#endif
+-#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
+-#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
+-#endif
+-
+-#ifndef MULTIPLY16C16		/* default definition */
+-#define MULTIPLY16C16(var,const)  ((var) * (const))
+-#endif
+-
+-/* Same except both inputs are variables. */
+-
+-#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
+-#define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
+-#endif
+-
+-#ifndef MULTIPLY16V16		/* default definition */
+-#define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
+-#endif
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jddctmgr.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jddctmgr.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jddctmgr.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jddctmgr.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,273 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jddctmgr.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the inverse-DCT management logic.
+- * This code selects a particular IDCT implementation to be used,
+- * and it performs related housekeeping chores.  No code in this file
+- * is executed per IDCT step, only during output pass setup.
+- *
+- * Note that the IDCT routines are responsible for performing coefficient
+- * dequantization as well as the IDCT proper.  This module sets up the
+- * dequantization multiplier table needed by the IDCT routine.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-
+-/*
+- * The decompressor input side (jdinput.c) saves away the appropriate
+- * quantization table for each component at the start of the first scan
+- * involving that component.  (This is necessary in order to correctly
+- * decode files that reuse Q-table slots.)
+- * When we are ready to make an output pass, the saved Q-table is converted
+- * to a multiplier table that will actually be used by the IDCT routine.
+- * The multiplier table contents are IDCT-method-dependent.  To support
+- * application changes in IDCT method between scans, we can remake the
+- * multiplier tables if necessary.
+- * In buffered-image mode, the first output pass may occur before any data
+- * has been seen for some components, and thus before their Q-tables have
+- * been saved away.  To handle this case, multiplier tables are preset
+- * to zeroes; the result of the IDCT will be a neutral gray level.
+- */
+-
+-
+-/* Private subobject for this module */
+-
+-typedef struct {
+-  struct jpeg_inverse_dct pub;	/* public fields */
+-
+-  /* This array contains the IDCT method code that each multiplier table
+-   * is currently set up for, or -1 if it's not yet set up.
+-   * The actual multiplier tables are pointed to by dct_table in the
+-   * per-component comp_info structures.
+-   */
+-  int cur_method[MAX_COMPONENTS];
+-} my_idct_controller;
+-
+-typedef my_idct_controller * my_idct_ptr;
+-
+-
+-/* Allocated multiplier tables: big enough for any supported variant */
+-
+-typedef union {
+-  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
+-#ifdef DCT_IFAST_SUPPORTED
+-  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
+-#endif
+-#ifdef DCT_FLOAT_SUPPORTED
+-  FLOAT_MULT_TYPE float_array[DCTSIZE2];
+-#endif
+-} multiplier_table;
+-
+-
+-/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
+- * so be sure to compile that code if either ISLOW or SCALING is requested.
+- */
+-#ifdef DCT_ISLOW_SUPPORTED
+-#define PROVIDE_ISLOW_TABLES
+-#else
+-#ifdef IDCT_SCALING_SUPPORTED
+-#define PROVIDE_ISLOW_TABLES
+-#endif
+-#endif
+-
+-
+-/*
+- * Prepare for an output pass.
+- * Here we select the proper IDCT routine for each component and build
+- * a matching multiplier table.
+- */
+-
+-METHODDEF(void)
+-start_pass (j_decompress_ptr cinfo)
+-{
+-  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
+-  int ci, i;
+-  jpeg_component_info *compptr;
+-  int method = 0;
+-  inverse_DCT_method_ptr method_ptr = NULL;
+-  JQUANT_TBL * qtbl;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Select the proper IDCT routine for this component's scaling */
+-    switch (compptr->DCT_scaled_size) {
+-#ifdef IDCT_SCALING_SUPPORTED
+-    case 1:
+-      method_ptr = jpeg_idct_1x1;
+-      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+-      break;
+-    case 2:
+-      method_ptr = jpeg_idct_2x2;
+-      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+-      break;
+-    case 4:
+-      method_ptr = jpeg_idct_4x4;
+-      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
+-      break;
+-#endif
+-    case DCTSIZE:
+-      switch (cinfo->dct_method) {
+-#ifdef DCT_ISLOW_SUPPORTED
+-      case JDCT_ISLOW:
+-	method_ptr = jpeg_idct_islow;
+-	method = JDCT_ISLOW;
+-	break;
+-#endif
+-#ifdef DCT_IFAST_SUPPORTED
+-      case JDCT_IFAST:
+-	method_ptr = jpeg_idct_ifast;
+-	method = JDCT_IFAST;
+-	break;
+-#endif
+-#ifdef DCT_FLOAT_SUPPORTED
+-      case JDCT_FLOAT:
+-	method_ptr = jpeg_idct_float;
+-	method = JDCT_FLOAT;
+-	break;
+-#endif
+-      default:
+-	ERREXIT(cinfo, JERR_NOT_COMPILED);
+-	break;
+-      }
+-      break;
+-    default:
+-      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
+-      break;
+-    }
+-    idct->pub.inverse_DCT[ci] = method_ptr;
+-    /* Create multiplier table from quant table.
+-     * However, we can skip this if the component is uninteresting
+-     * or if we already built the table.  Also, if no quant table
+-     * has yet been saved for the component, we leave the
+-     * multiplier table all-zero; we'll be reading zeroes from the
+-     * coefficient controller's buffer anyway.
+-     */
+-    if (! compptr->component_needed || idct->cur_method[ci] == method)
+-      continue;
+-    qtbl = compptr->quant_table;
+-    if (qtbl == NULL)		/* happens if no data yet for component */
+-      continue;
+-    idct->cur_method[ci] = method;
+-    switch (method) {
+-#ifdef PROVIDE_ISLOW_TABLES
+-    case JDCT_ISLOW:
+-      {
+-	/* For LL&M IDCT method, multipliers are equal to raw quantization
+-	 * coefficients, but are stored as ints to ensure access efficiency.
+-	 */
+-	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
+-	for (i = 0; i < DCTSIZE2; i++) {
+-	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
+-	}
+-      }
+-      break;
+-#endif
+-#ifdef DCT_IFAST_SUPPORTED
+-    case JDCT_IFAST:
+-      {
+-	/* For AA&N IDCT method, multipliers are equal to quantization
+-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+-	 *   scalefactor[0] = 1
+-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+-	 * For integer operation, the multiplier table is to be scaled by
+-	 * IFAST_SCALE_BITS.
+-	 */
+-	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
+-#define CONST_BITS 14
+-	static const INT16 aanscales[DCTSIZE2] = {
+-	  /* precomputed values scaled up by 14 bits */
+-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+-	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
+-	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
+-	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
+-	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
+-	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
+-	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
+-	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
+-	};
+-	SHIFT_TEMPS
+-
+-	for (i = 0; i < DCTSIZE2; i++) {
+-	  ifmtbl[i] = (IFAST_MULT_TYPE)
+-	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
+-				  (INT32) aanscales[i]),
+-		    CONST_BITS-IFAST_SCALE_BITS);
+-	}
+-      }
+-      break;
+-#endif
+-#ifdef DCT_FLOAT_SUPPORTED
+-    case JDCT_FLOAT:
+-      {
+-	/* For float AA&N IDCT method, multipliers are equal to quantization
+-	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
+-	 *   scalefactor[0] = 1
+-	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
+-	 */
+-	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
+-	int row, col;
+-	static const double aanscalefactor[DCTSIZE] = {
+-	  1.0, 1.387039845, 1.306562965, 1.175875602,
+-	  1.0, 0.785694958, 0.541196100, 0.275899379
+-	};
+-
+-	i = 0;
+-	for (row = 0; row < DCTSIZE; row++) {
+-	  for (col = 0; col < DCTSIZE; col++) {
+-	    fmtbl[i] = (FLOAT_MULT_TYPE)
+-	      ((double) qtbl->quantval[i] *
+-	       aanscalefactor[row] * aanscalefactor[col]);
+-	    i++;
+-	  }
+-	}
+-      }
+-      break;
+-#endif
+-    default:
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-      break;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Initialize IDCT manager.
+- */
+-
+-GLOBAL(void)
+-jinit_inverse_dct (j_decompress_ptr cinfo)
+-{
+-  my_idct_ptr idct;
+-  int ci;
+-  jpeg_component_info *compptr;
+-
+-  idct = (my_idct_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_idct_controller));
+-  cinfo->idct = (struct jpeg_inverse_dct *) idct;
+-  idct->pub.start_pass = start_pass;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Allocate and pre-zero a multiplier table for each component */
+-    compptr->dct_table =
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(multiplier_table));
+-    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
+-    /* Mark multiplier table not yet set up for any method */
+-    idct->cur_method[ci] = -1;
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,655 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdhuff.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains Huffman entropy decoding routines.
+- *
+- * Much of the complexity here has to do with supporting input suspension.
+- * If the data source module demands suspension, we want to be able to back
+- * up to the start of the current MCU.  To do this, we copy state variables
+- * into local working storage, and update them back to the permanent
+- * storage only upon successful completion of an MCU.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdhuff.h"		/* Declarations shared with jdphuff.c */
+-
+-
+-/*
+- * Expanded entropy decoder object for Huffman decoding.
+- *
+- * The savable_state subrecord contains fields that change within an MCU,
+- * but must not be updated permanently until we complete the MCU.
+- */
+-
+-typedef struct {
+-  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+-} savable_state;
+-
+-/* This macro is to work around compilers with missing or broken
+- * structure assignment.  You'll need to fix this code if you have
+- * such a compiler and you change MAX_COMPS_IN_SCAN.
+- */
+-
+-#ifndef NO_STRUCT_ASSIGN
+-#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+-#else
+-#if MAX_COMPS_IN_SCAN == 4
+-#define ASSIGN_STATE(dest,src)  \
+-	((dest).last_dc_val[0] = (src).last_dc_val[0], \
+-	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+-	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+-	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+-#endif
+-#endif
+-
+-
+-typedef struct {
+-  struct jpeg_entropy_decoder pub; /* public fields */
+-
+-  /* These fields are loaded into local variables at start of each MCU.
+-   * In case of suspension, we exit WITHOUT updating them.
+-   */
+-  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
+-  savable_state saved;		/* Other state at start of MCU */
+-
+-  /* These fields are NOT loaded into local working state. */
+-  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+-
+-  /* Pointers to derived tables (these workspaces have image lifespan) */
+-  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+-  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+-
+-  /* Precalculated info set up by start_pass for use in decode_mcu: */
+-
+-  /* Pointers to derived tables to be used for each block within an MCU */
+-  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+-  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
+-  /* Whether we care about the DC and AC coefficient values for each block */
+-  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
+-  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
+-} huff_entropy_decoder;
+-
+-typedef huff_entropy_decoder * huff_entropy_ptr;
+-
+-
+-/*
+- * Initialize for a Huffman-compressed scan.
+- */
+-
+-METHODDEF(void)
+-start_pass_huff_decoder (j_decompress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int ci, blkn, dctbl, actbl;
+-  jpeg_component_info * compptr;
+-
+-  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+-   * This ought to be an error condition, but we make it a warning because
+-   * there are some baseline files out there with all zeroes in these bytes.
+-   */
+-  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
+-      cinfo->Ah != 0 || cinfo->Al != 0)
+-    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    dctbl = compptr->dc_tbl_no;
+-    actbl = compptr->ac_tbl_no;
+-    /* Compute derived values for Huffman tables */
+-    /* We may do this more than once for a table, but it's not expensive */
+-    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
+-			    & entropy->dc_derived_tbls[dctbl]);
+-    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
+-			    & entropy->ac_derived_tbls[actbl]);
+-    /* Initialize DC predictions to 0 */
+-    entropy->saved.last_dc_val[ci] = 0;
+-  }
+-
+-  /* Precalculate decoding info for each block in an MCU of this scan */
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    ci = cinfo->MCU_membership[blkn];
+-    compptr = cinfo->cur_comp_info[ci];
+-    /* Precalculate which table to use for each block */
+-    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+-    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+-    /* Decide whether we really care about the coefficient values */
+-    if (compptr->component_needed) {
+-      entropy->dc_needed[blkn] = TRUE;
+-      /* we don't need the ACs if producing a 1/8th-size image */
+-      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
+-    } else {
+-      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
+-    }
+-  }
+-
+-  /* Initialize bitread state variables */
+-  entropy->bitstate.bits_left = 0;
+-  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+-  entropy->pub.insufficient_data = FALSE;
+-
+-  /* Initialize restart counter */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-}
+-
+-
+-/*
+- * Compute the derived values for a Huffman table.
+- * This routine also performs some validation checks on the table.
+- *
+- * Note this is also used by jdphuff.c.
+- */
+-
+-GLOBAL(void)
+-jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
+-			 d_derived_tbl ** pdtbl)
+-{
+-  JHUFF_TBL *htbl;
+-  d_derived_tbl *dtbl;
+-  int p, i, l, si, numsymbols;
+-  int lookbits, ctr;
+-  char huffsize[257];
+-  unsigned int huffcode[257];
+-  unsigned int code;
+-
+-  /* Note that huffsize[] and huffcode[] are filled in code-length order,
+-   * paralleling the order of the symbols themselves in htbl->huffval[].
+-   */
+-
+-  /* Find the input Huffman table */
+-  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
+-    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+-  htbl =
+-    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
+-  if (htbl == NULL)
+-    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
+-
+-  /* Allocate a workspace if we haven't already done so. */
+-  if (*pdtbl == NULL)
+-    *pdtbl = (d_derived_tbl *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(d_derived_tbl));
+-  dtbl = *pdtbl;
+-  dtbl->pub = htbl;		/* fill in back link */
+-  
+-  /* Figure C.1: make table of Huffman code length for each symbol */
+-
+-  p = 0;
+-  for (l = 1; l <= 16; l++) {
+-    i = (int) htbl->bits[l];
+-    if (i < 0 || p + i > 256)	/* protect against table overrun */
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    while (i--)
+-      huffsize[p++] = (char) l;
+-  }
+-  huffsize[p] = 0;
+-  numsymbols = p;
+-  
+-  /* Figure C.2: generate the codes themselves */
+-  /* We also validate that the counts represent a legal Huffman code tree. */
+-  
+-  code = 0;
+-  si = huffsize[0];
+-  p = 0;
+-  while (huffsize[p]) {
+-    while (((int) huffsize[p]) == si) {
+-      huffcode[p++] = code;
+-      code++;
+-    }
+-    /* code is now 1 more than the last code used for codelength si; but
+-     * it must still fit in si bits, since no code is allowed to be all ones.
+-     */
+-    if (((INT32) code) >= (((INT32) 1) << si))
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    code <<= 1;
+-    si++;
+-  }
+-
+-  /* Figure F.15: generate decoding tables for bit-sequential decoding */
+-
+-  p = 0;
+-  for (l = 1; l <= 16; l++) {
+-    if (htbl->bits[l]) {
+-      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
+-       * minus the minimum code of length l
+-       */
+-      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
+-      p += htbl->bits[l];
+-      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+-    } else {
+-      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
+-    }
+-  }
+-  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+-
+-  /* Compute lookahead tables to speed up decoding.
+-   * First we set all the table entries to 0, indicating "too long";
+-   * then we iterate through the Huffman codes that are short enough and
+-   * fill in all the entries that correspond to bit sequences starting
+-   * with that code.
+-   */
+-
+-  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
+-
+-  p = 0;
+-  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+-    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+-      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+-      /* Generate left-justified code followed by all possible bit sequences */
+-      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+-      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+-	dtbl->look_nbits[lookbits] = l;
+-	dtbl->look_sym[lookbits] = htbl->huffval[p];
+-	lookbits++;
+-      }
+-    }
+-  }
+-
+-  /* Validate symbols as being reasonable.
+-   * For AC tables, we make no check, but accept all byte values 0..255.
+-   * For DC tables, we require the symbols to be in range 0..15.
+-   * (Tighter bounds could be applied depending on the data depth and mode,
+-   * but this is sufficient to ensure safe decoding.)
+-   */
+-  if (isDC) {
+-    for (i = 0; i < numsymbols; i++) {
+-      int sym = htbl->huffval[i];
+-      if (sym < 0 || sym > 15)
+-	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Out-of-line code for bit fetching (shared with jdphuff.c).
+- * See jdhuff.h for info about usage.
+- * Note: current values of get_buffer and bits_left are passed as parameters,
+- * but are returned in the corresponding fields of the state struct.
+- *
+- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
+- * of get_buffer to be used.  (On machines with wider words, an even larger
+- * buffer could be used.)  However, on some machines 32-bit shifts are
+- * quite slow and take time proportional to the number of places shifted.
+- * (This is true with most PC compilers, for instance.)  In this case it may
+- * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
+- * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
+- */
+-
+-#ifdef SLOW_SHIFT_32
+-#define MIN_GET_BITS  15	/* minimum allowable value */
+-#else
+-#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
+-#endif
+-
+-
+-GLOBAL(boolean)
+-jpeg_fill_bit_buffer (bitread_working_state * state,
+-		      register bit_buf_type get_buffer, register int bits_left,
+-		      int nbits)
+-/* Load up the bit buffer to a depth of at least nbits */
+-{
+-  /* Copy heavily used state fields into locals (hopefully registers) */
+-  register const JOCTET * next_input_byte = state->next_input_byte;
+-  register size_t bytes_in_buffer = state->bytes_in_buffer;
+-  j_decompress_ptr cinfo = state->cinfo;
+-
+-  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+-  /* (It is assumed that no request will be for more than that many bits.) */
+-  /* We fail to do so only if we hit a marker or are forced to suspend. */
+-
+-  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
+-    while (bits_left < MIN_GET_BITS) {
+-      register int c;
+-
+-      /* Attempt to read a byte */
+-      if (bytes_in_buffer == 0) {
+-	if (! (*cinfo->src->fill_input_buffer) (cinfo))
+-	  return FALSE;
+-	next_input_byte = cinfo->src->next_input_byte;
+-	bytes_in_buffer = cinfo->src->bytes_in_buffer;
+-      }
+-      bytes_in_buffer--;
+-      c = GETJOCTET(*next_input_byte++);
+-
+-      /* If it's 0xFF, check and discard stuffed zero byte */
+-      if (c == 0xFF) {
+-	/* Loop here to discard any padding FF's on terminating marker,
+-	 * so that we can save a valid unread_marker value.  NOTE: we will
+-	 * accept multiple FF's followed by a 0 as meaning a single FF data
+-	 * byte.  This data pattern is not valid according to the standard.
+-	 */
+-	do {
+-	  if (bytes_in_buffer == 0) {
+-	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
+-	      return FALSE;
+-	    next_input_byte = cinfo->src->next_input_byte;
+-	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
+-	  }
+-	  bytes_in_buffer--;
+-	  c = GETJOCTET(*next_input_byte++);
+-	} while (c == 0xFF);
+-
+-	if (c == 0) {
+-	  /* Found FF/00, which represents an FF data byte */
+-	  c = 0xFF;
+-	} else {
+-	  /* Oops, it's actually a marker indicating end of compressed data.
+-	   * Save the marker code for later use.
+-	   * Fine point: it might appear that we should save the marker into
+-	   * bitread working state, not straight into permanent state.  But
+-	   * once we have hit a marker, we cannot need to suspend within the
+-	   * current MCU, because we will read no more bytes from the data
+-	   * source.  So it is OK to update permanent state right away.
+-	   */
+-	  cinfo->unread_marker = c;
+-	  /* See if we need to insert some fake zero bits. */
+-	  goto no_more_bytes;
+-	}
+-      }
+-
+-      /* OK, load c into get_buffer */
+-      get_buffer = (get_buffer << 8) | c;
+-      bits_left += 8;
+-    } /* end while */
+-  } else {
+-  no_more_bytes:
+-    /* We get here if we've read the marker that terminates the compressed
+-     * data segment.  There should be enough bits in the buffer register
+-     * to satisfy the request; if so, no problem.
+-     */
+-    if (nbits > bits_left) {
+-      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
+-       * the data stream, so that we can produce some kind of image.
+-       * We use a nonvolatile flag to ensure that only one warning message
+-       * appears per data segment.
+-       */
+-      if (! cinfo->entropy->insufficient_data) {
+-	WARNMS(cinfo, JWRN_HIT_MARKER);
+-	cinfo->entropy->insufficient_data = TRUE;
+-      }
+-      /* Fill the buffer with zero bits */
+-      get_buffer <<= MIN_GET_BITS - bits_left;
+-      bits_left = MIN_GET_BITS;
+-    }
+-  }
+-
+-  /* Unload the local registers */
+-  state->next_input_byte = next_input_byte;
+-  state->bytes_in_buffer = bytes_in_buffer;
+-  state->get_buffer = get_buffer;
+-  state->bits_left = bits_left;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Out-of-line code for Huffman code decoding.
+- * See jdhuff.h for info about usage.
+- */
+-
+-GLOBAL(int)
+-jpeg_huff_decode (bitread_working_state * state,
+-		  register bit_buf_type get_buffer, register int bits_left,
+-		  d_derived_tbl * htbl, int min_bits)
+-{
+-  register int l = min_bits;
+-  register INT32 code;
+-
+-  /* HUFF_DECODE has determined that the code is at least min_bits */
+-  /* bits long, so fetch that many bits in one swoop. */
+-
+-  CHECK_BIT_BUFFER(*state, l, return -1);
+-  code = GET_BITS(l);
+-
+-  /* Collect the rest of the Huffman code one bit at a time. */
+-  /* This is per Figure F.16 in the JPEG spec. */
+-
+-  while (code > htbl->maxcode[l]) {
+-    code <<= 1;
+-    CHECK_BIT_BUFFER(*state, 1, return -1);
+-    code |= GET_BITS(1);
+-    l++;
+-  }
+-
+-  /* Unload the local registers */
+-  state->get_buffer = get_buffer;
+-  state->bits_left = bits_left;
+-
+-  /* With garbage input we may reach the sentinel value l = 17. */
+-
+-  if (l > 16) {
+-    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+-    return 0;			/* fake a zero as the safest result */
+-  }
+-
+-  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
+-}
+-
+-
+-/*
+- * Figure F.12: extend sign bit.
+- * On some machines, a shift and add will be faster than a table lookup.
+- */
+-
+-#ifdef AVOID_TABLES
+-
+-#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
+-
+-#else
+-
+-#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
+-
+-static const int extend_test[16] =   /* entry n is 2**(n-1) */
+-  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+-    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
+-
+-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
+-  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
+-    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
+-    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
+-    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
+-
+-#endif /* AVOID_TABLES */
+-
+-
+-/*
+- * Check for a restart marker & resynchronize decoder.
+- * Returns FALSE if must suspend.
+- */
+-
+-LOCAL(boolean)
+-process_restart (j_decompress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int ci;
+-
+-  /* Throw away any unused bits remaining in bit buffer; */
+-  /* include any full bytes in next_marker's count of discarded bytes */
+-  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+-  entropy->bitstate.bits_left = 0;
+-
+-  /* Advance past the RSTn marker */
+-  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+-    return FALSE;
+-
+-  /* Re-initialize DC predictions to 0 */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+-    entropy->saved.last_dc_val[ci] = 0;
+-
+-  /* Reset restart counter */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-
+-  /* Reset out-of-data flag, unless read_restart_marker left us smack up
+-   * against a marker.  In that case we will end up treating the next data
+-   * segment as empty, and we can avoid producing bogus output pixels by
+-   * leaving the flag set.
+-   */
+-  if (cinfo->unread_marker == 0)
+-    entropy->pub.insufficient_data = FALSE;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Decode and return one MCU's worth of Huffman-compressed coefficients.
+- * The coefficients are reordered from zigzag order into natural array order,
+- * but are not dequantized.
+- *
+- * The i'th block of the MCU is stored into the block pointed to by
+- * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
+- * (Wholesale zeroing is usually a little faster than retail...)
+- *
+- * Returns FALSE if data source requested suspension.  In that case no
+- * changes have been made to permanent state.  (Exception: some output
+- * coefficients may already have been assigned.  This is harmless for
+- * this module, since we'll just re-assign them on the next call.)
+- */
+-
+-METHODDEF(boolean)
+-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+-{
+-  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+-  int blkn;
+-  BITREAD_STATE_VARS;
+-  savable_state state;
+-
+-  /* Process restart marker if needed; may have to suspend */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! process_restart(cinfo))
+-	return FALSE;
+-  }
+-
+-  /* If we've run out of data, just leave the MCU set to zeroes.
+-   * This way, we return uniform gray for the remainder of the segment.
+-   */
+-  if (! entropy->pub.insufficient_data) {
+-
+-    /* Load up working state */
+-    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+-    ASSIGN_STATE(state, entropy->saved);
+-
+-    /* Outer loop handles each block in the MCU */
+-
+-    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-      JBLOCKROW block = MCU_data[blkn];
+-      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
+-      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
+-      register int s, k, r;
+-
+-      /* Decode a single block's worth of coefficients */
+-
+-      /* Section F.2.2.1: decode the DC coefficient difference */
+-      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
+-      if (s) {
+-	CHECK_BIT_BUFFER(br_state, s, return FALSE);
+-	r = GET_BITS(s);
+-	s = HUFF_EXTEND(r, s);
+-      }
+-
+-      if (entropy->dc_needed[blkn]) {
+-	/* Convert DC difference to actual value, update last_dc_val */
+-	int ci = cinfo->MCU_membership[blkn];
+-	s += state.last_dc_val[ci];
+-	state.last_dc_val[ci] = s;
+-	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+-	(*block)[0] = (JCOEF) s;
+-      }
+-
+-      if (entropy->ac_needed[blkn]) {
+-
+-	/* Section F.2.2.2: decode the AC coefficients */
+-	/* Since zeroes are skipped, output area must be cleared beforehand */
+-	for (k = 1; k < DCTSIZE2; k++) {
+-	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
+-      
+-	  r = s >> 4;
+-	  s &= 15;
+-      
+-	  if (s) {
+-	    k += r;
+-	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
+-	    r = GET_BITS(s);
+-	    s = HUFF_EXTEND(r, s);
+-	    /* Output coefficient in natural (dezigzagged) order.
+-	     * Note: the extra entries in jpeg_natural_order[] will save us
+-	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
+-	     */
+-	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+-	  } else {
+-	    if (r != 15)
+-	      break;
+-	    k += 15;
+-	  }
+-	}
+-
+-      } else {
+-
+-	/* Section F.2.2.2: decode the AC coefficients */
+-	/* In this path we just discard the values */
+-	for (k = 1; k < DCTSIZE2; k++) {
+-	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
+-      
+-	  r = s >> 4;
+-	  s &= 15;
+-      
+-	  if (s) {
+-	    k += r;
+-	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
+-	    DROP_BITS(s);
+-	  } else {
+-	    if (r != 15)
+-	      break;
+-	    k += 15;
+-	  }
+-	}
+-
+-      }
+-    }
+-
+-    /* Completed MCU, so update state */
+-    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+-    ASSIGN_STATE(entropy->saved, state);
+-  }
+-
+-  /* Account for restart interval (no-op if not using restarts) */
+-  entropy->restarts_to_go--;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Module initialization routine for Huffman entropy decoding.
+- */
+-
+-GLOBAL(void)
+-jinit_huff_decoder (j_decompress_ptr cinfo)
+-{
+-  huff_entropy_ptr entropy;
+-  int i;
+-
+-  entropy = (huff_entropy_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(huff_entropy_decoder));
+-  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+-  entropy->pub.start_pass = start_pass_huff_decoder;
+-  entropy->pub.decode_mcu = decode_mcu;
+-
+-  /* Mark tables unallocated */
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdhuff.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,205 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdhuff.h
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains declarations for Huffman entropy decoding routines
+- * that are shared between the sequential decoder (jdhuff.c) and the
+- * progressive decoder (jdphuff.c).  No other modules need to see these.
+- */
+-
+-/* Short forms of external names for systems with brain-damaged linkers. */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_make_d_derived_tbl	jMkDDerived
+-#define jpeg_fill_bit_buffer	jFilBitBuf
+-#define jpeg_huff_decode	jHufDecode
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-
+-/* Derived data constructed for each Huffman table */
+-
+-#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
+-
+-typedef struct {
+-  /* Basic tables: (element [0] of each array is unused) */
+-  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
+-  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+-  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
+-  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
+-   * the smallest code of length k; so given a code of length k, the
+-   * corresponding symbol is huffval[code + valoffset[k]]
+-   */
+-
+-  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+-  JHUFF_TBL *pub;
+-
+-  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+-   * the input data stream.  If the next Huffman code is no more
+-   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+-   * the corresponding symbol directly from these tables.
+-   */
+-  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+-  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+-} d_derived_tbl;
+-
+-/* Expand a Huffman table definition into the derived format */
+-EXTERN(void) jpeg_make_d_derived_tbl
+-	JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
+-	     d_derived_tbl ** pdtbl));
+-
+-
+-/*
+- * Fetching the next N bits from the input stream is a time-critical operation
+- * for the Huffman decoders.  We implement it with a combination of inline
+- * macros and out-of-line subroutines.  Note that N (the number of bits
+- * demanded at one time) never exceeds 15 for JPEG use.
+- *
+- * We read source bytes into get_buffer and dole out bits as needed.
+- * If get_buffer already contains enough bits, they are fetched in-line
+- * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
+- * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+- * as full as possible (not just to the number of bits needed; this
+- * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+- * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+- * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+- * at least the requested number of bits --- dummy zeroes are inserted if
+- * necessary.
+- */
+-
+-typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
+-#define BIT_BUF_SIZE  32	/* size of buffer in bits */
+-
+-/* If long is > 32 bits on your machine, and shifting/masking longs is
+- * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+- * appropriately should be a win.  Unfortunately we can't define the size
+- * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+- * because not all machines measure sizeof in 8-bit bytes.
+- */
+-
+-typedef struct {		/* Bitreading state saved across MCUs */
+-  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+-  int bits_left;		/* # of unused bits in it */
+-} bitread_perm_state;
+-
+-typedef struct {		/* Bitreading working state within an MCU */
+-  /* Current data source location */
+-  /* We need a copy, rather than munging the original, in case of suspension */
+-  const JOCTET * next_input_byte; /* => next byte to read from source */
+-  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
+-  /* Bit input buffer --- note these values are kept in register variables,
+-   * not in this struct, inside the inner loops.
+-   */
+-  bit_buf_type get_buffer;	/* current bit-extraction buffer */
+-  int bits_left;		/* # of unused bits in it */
+-  /* Pointer needed by jpeg_fill_bit_buffer. */
+-  j_decompress_ptr cinfo;	/* back link to decompress master record */
+-} bitread_working_state;
+-
+-/* Macros to declare and load/save bitread local variables. */
+-#define BITREAD_STATE_VARS  \
+-	register bit_buf_type get_buffer;  \
+-	register int bits_left;  \
+-	bitread_working_state br_state
+-
+-#define BITREAD_LOAD_STATE(cinfop,permstate)  \
+-	br_state.cinfo = cinfop; \
+-	br_state.next_input_byte = cinfop->src->next_input_byte; \
+-	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+-	get_buffer = permstate.get_buffer; \
+-	bits_left = permstate.bits_left;
+-
+-#define BITREAD_SAVE_STATE(cinfop,permstate)  \
+-	cinfop->src->next_input_byte = br_state.next_input_byte; \
+-	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+-	permstate.get_buffer = get_buffer; \
+-	permstate.bits_left = bits_left
+-
+-/*
+- * These macros provide the in-line portion of bit fetching.
+- * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+- * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+- * The variables get_buffer and bits_left are assumed to be locals,
+- * but the state struct might not be (jpeg_huff_decode needs this).
+- *	CHECK_BIT_BUFFER(state,n,action);
+- *		Ensure there are N bits in get_buffer; if suspend, take action.
+- *      val = GET_BITS(n);
+- *		Fetch next N bits.
+- *      val = PEEK_BITS(n);
+- *		Fetch next N bits without removing them from the buffer.
+- *	DROP_BITS(n);
+- *		Discard next N bits.
+- * The value N should be a simple variable, not an expression, because it
+- * is evaluated multiple times.
+- */
+-
+-#define CHECK_BIT_BUFFER(state,nbits,action) \
+-	{ if (bits_left < (nbits)) {  \
+-	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
+-	      { action; }  \
+-	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+-
+-#define GET_BITS(nbits) \
+-	(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
+-
+-#define PEEK_BITS(nbits) \
+-	(((int) (get_buffer >> (bits_left -  (nbits)))) & ((1<<(nbits))-1))
+-
+-#define DROP_BITS(nbits) \
+-	(bits_left -= (nbits))
+-
+-/* Load up the bit buffer to a depth of at least nbits */
+-EXTERN(boolean) jpeg_fill_bit_buffer
+-	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
+-	     register int bits_left, int nbits));
+-
+-
+-/*
+- * Code for extracting next Huffman-coded symbol from input bit stream.
+- * Again, this is time-critical and we make the main paths be macros.
+- *
+- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+- * without looping.  Usually, more than 95% of the Huffman codes will be 8
+- * or fewer bits long.  The few overlength codes are handled with a loop,
+- * which need not be inline code.
+- *
+- * Notes about the HUFF_DECODE macro:
+- * 1. Near the end of the data segment, we may fail to get enough bits
+- *    for a lookahead.  In that case, we do it the hard way.
+- * 2. If the lookahead table contains no entry, the next code must be
+- *    more than HUFF_LOOKAHEAD bits long.
+- * 3. jpeg_huff_decode returns -1 if forced to suspend.
+- */
+-
+-#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+-{ register int nb, look; \
+-  if (bits_left < HUFF_LOOKAHEAD) { \
+-    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+-    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+-    if (bits_left < HUFF_LOOKAHEAD) { \
+-      nb = 1; goto slowlabel; \
+-    } \
+-  } \
+-  look = PEEK_BITS(HUFF_LOOKAHEAD); \
+-  if ((nb = htbl->look_nbits[look]) != 0) { \
+-    DROP_BITS(nb); \
+-    result = htbl->look_sym[look]; \
+-  } else { \
+-    nb = HUFF_LOOKAHEAD+1; \
+-slowlabel: \
+-    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+-	{ failaction; } \
+-    get_buffer = state.get_buffer; bits_left = state.bits_left; \
+-  } \
+-}
+-
+-/* Out-of-line case for Huffman code fetching */
+-EXTERN(int) jpeg_huff_decode
+-	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
+-	     register int bits_left, d_derived_tbl * htbl, int min_bits));
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdinput.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdinput.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdinput.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdinput.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,385 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdinput.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains input control logic for the JPEG decompressor.
+- * These routines are concerned with controlling the decompressor's input
+- * processing (marker reading and coefficient decoding).  The actual input
+- * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private state */
+-
+-typedef struct {
+-  struct jpeg_input_controller pub; /* public fields */
+-
+-  boolean inheaders;		/* TRUE until first SOS is reached */
+-} my_input_controller;
+-
+-typedef my_input_controller * my_inputctl_ptr;
+-
+-
+-/* Forward declarations */
+-METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
+-
+-
+-/*
+- * Routines to calculate various quantities related to the size of the image.
+- */
+-
+-LOCAL(void)
+-initial_setup (j_decompress_ptr cinfo)
+-/* Called once, when first SOS marker is reached */
+-{
+-  int ci;
+-  jpeg_component_info *compptr;
+-
+-  /* Make sure image isn't bigger than I can handle */
+-  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+-      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+-    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+-
+-  /* For now, precision must match compiled-in value... */
+-  if (cinfo->data_precision != BITS_IN_JSAMPLE)
+-    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+-
+-  /* Check that number of components won't exceed internal array sizes */
+-  if (cinfo->num_components > MAX_COMPONENTS)
+-    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+-	     MAX_COMPONENTS);
+-
+-  /* Compute maximum sampling factors; check factor validity */
+-  cinfo->max_h_samp_factor = 1;
+-  cinfo->max_v_samp_factor = 1;
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+-	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+-      ERREXIT(cinfo, JERR_BAD_SAMPLING);
+-    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+-				   compptr->h_samp_factor);
+-    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+-				   compptr->v_samp_factor);
+-  }
+-
+-  /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
+-   * In the full decompressor, this will be overridden by jdmaster.c;
+-   * but in the transcoder, jdmaster.c is not used, so we must do it here.
+-   */
+-  cinfo->min_DCT_scaled_size = DCTSIZE;
+-
+-  /* Compute dimensions of components */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    compptr->DCT_scaled_size = DCTSIZE;
+-    /* Size in DCT blocks */
+-    compptr->width_in_blocks = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+-		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+-    compptr->height_in_blocks = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+-		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+-    /* downsampled_width and downsampled_height will also be overridden by
+-     * jdmaster.c if we are doing full decompression.  The transcoder library
+-     * doesn't use these values, but the calling application might.
+-     */
+-    /* Size in samples */
+-    compptr->downsampled_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+-		    (long) cinfo->max_h_samp_factor);
+-    compptr->downsampled_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+-		    (long) cinfo->max_v_samp_factor);
+-    /* Mark component needed, until color conversion says otherwise */
+-    compptr->component_needed = TRUE;
+-    /* Mark no quantization table yet saved for component */
+-    compptr->quant_table = NULL;
+-  }
+-
+-  /* Compute number of fully interleaved MCU rows. */
+-  cinfo->total_iMCU_rows = (JDIMENSION)
+-    jdiv_round_up((long) cinfo->image_height,
+-		  (long) (cinfo->max_v_samp_factor*DCTSIZE));
+-
+-  /* Decide whether file contains multiple scans */
+-  if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
+-    cinfo->inputctl->has_multiple_scans = TRUE;
+-  else
+-    cinfo->inputctl->has_multiple_scans = FALSE;
+-}
+-
+-
+-LOCAL(void)
+-per_scan_setup (j_decompress_ptr cinfo)
+-/* Do computations that are needed before processing a JPEG scan */
+-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
+-{
+-  int ci, mcublks, tmp;
+-  jpeg_component_info *compptr;
+-  
+-  if (cinfo->comps_in_scan == 1) {
+-    
+-    /* Noninterleaved (single-component) scan */
+-    compptr = cinfo->cur_comp_info[0];
+-    
+-    /* Overall image size in MCUs */
+-    cinfo->MCUs_per_row = compptr->width_in_blocks;
+-    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+-    
+-    /* For noninterleaved scan, always one block per MCU */
+-    compptr->MCU_width = 1;
+-    compptr->MCU_height = 1;
+-    compptr->MCU_blocks = 1;
+-    compptr->MCU_sample_width = compptr->DCT_scaled_size;
+-    compptr->last_col_width = 1;
+-    /* For noninterleaved scans, it is convenient to define last_row_height
+-     * as the number of block rows present in the last iMCU row.
+-     */
+-    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+-    if (tmp == 0) tmp = compptr->v_samp_factor;
+-    compptr->last_row_height = tmp;
+-    
+-    /* Prepare array describing MCU composition */
+-    cinfo->blocks_in_MCU = 1;
+-    cinfo->MCU_membership[0] = 0;
+-    
+-  } else {
+-    
+-    /* Interleaved (multi-component) scan */
+-    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+-      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+-	       MAX_COMPS_IN_SCAN);
+-    
+-    /* Overall image size in MCUs */
+-    cinfo->MCUs_per_row = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width,
+-		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
+-    cinfo->MCU_rows_in_scan = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height,
+-		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
+-    
+-    cinfo->blocks_in_MCU = 0;
+-    
+-    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-      compptr = cinfo->cur_comp_info[ci];
+-      /* Sampling factors give # of blocks of component in each MCU */
+-      compptr->MCU_width = compptr->h_samp_factor;
+-      compptr->MCU_height = compptr->v_samp_factor;
+-      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+-      compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
+-      /* Figure number of non-dummy blocks in last MCU column & row */
+-      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+-      if (tmp == 0) tmp = compptr->MCU_width;
+-      compptr->last_col_width = tmp;
+-      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+-      if (tmp == 0) tmp = compptr->MCU_height;
+-      compptr->last_row_height = tmp;
+-      /* Prepare array describing MCU composition */
+-      mcublks = compptr->MCU_blocks;
+-      if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
+-	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+-      while (mcublks-- > 0) {
+-	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+-      }
+-    }
+-    
+-  }
+-}
+-
+-
+-/*
+- * Save away a copy of the Q-table referenced by each component present
+- * in the current scan, unless already saved during a prior scan.
+- *
+- * In a multiple-scan JPEG file, the encoder could assign different components
+- * the same Q-table slot number, but change table definitions between scans
+- * so that each component uses a different Q-table.  (The IJG encoder is not
+- * currently capable of doing this, but other encoders might.)  Since we want
+- * to be able to dequantize all the components at the end of the file, this
+- * means that we have to save away the table actually used for each component.
+- * We do this by copying the table at the start of the first scan containing
+- * the component.
+- * The JPEG spec prohibits the encoder from changing the contents of a Q-table
+- * slot between scans of a component using that slot.  If the encoder does so
+- * anyway, this decoder will simply use the Q-table values that were current
+- * at the start of the first scan for the component.
+- *
+- * The decompressor output side looks only at the saved quant tables,
+- * not at the current Q-table slots.
+- */
+-
+-LOCAL(void)
+-latch_quant_tables (j_decompress_ptr cinfo)
+-{
+-  int ci, qtblno;
+-  jpeg_component_info *compptr;
+-  JQUANT_TBL * qtbl;
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    /* No work if we already saved Q-table for this component */
+-    if (compptr->quant_table != NULL)
+-      continue;
+-    /* Make sure specified quantization table is present */
+-    qtblno = compptr->quant_tbl_no;
+-    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+-	cinfo->quant_tbl_ptrs[qtblno] == NULL)
+-      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+-    /* OK, save away the quantization table */
+-    qtbl = (JQUANT_TBL *)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(JQUANT_TBL));
+-    MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
+-    compptr->quant_table = qtbl;
+-  }
+-}
+-
+-
+-/*
+- * Initialize the input modules to read a scan of compressed data.
+- * The first call to this is done by jdmaster.c after initializing
+- * the entire decompressor (during jpeg_start_decompress).
+- * Subsequent calls come from consume_markers, below.
+- */
+-
+-METHODDEF(void)
+-start_input_pass (j_decompress_ptr cinfo)
+-{
+-  per_scan_setup(cinfo);
+-  latch_quant_tables(cinfo);
+-  (*cinfo->entropy->start_pass) (cinfo);
+-  (*cinfo->coef->start_input_pass) (cinfo);
+-  cinfo->inputctl->consume_input = cinfo->coef->consume_data;
+-}
+-
+-
+-/*
+- * Finish up after inputting a compressed-data scan.
+- * This is called by the coefficient controller after it's read all
+- * the expected data of the scan.
+- */
+-
+-METHODDEF(void)
+-finish_input_pass (j_decompress_ptr cinfo)
+-{
+-  cinfo->inputctl->consume_input = consume_markers;
+-}
+-
+-
+-/*
+- * Read JPEG markers before, between, or after compressed-data scans.
+- * Change state as necessary when a new scan is reached.
+- * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+- *
+- * The consume_input method pointer points either here or to the
+- * coefficient controller's consume_data routine, depending on whether
+- * we are reading a compressed data segment or inter-segment markers.
+- */
+-
+-METHODDEF(int)
+-consume_markers (j_decompress_ptr cinfo)
+-{
+-  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+-  int val;
+-
+-  if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
+-    return JPEG_REACHED_EOI;
+-
+-  val = (*cinfo->marker->read_markers) (cinfo);
+-
+-  switch (val) {
+-  case JPEG_REACHED_SOS:	/* Found SOS */
+-    if (inputctl->inheaders) {	/* 1st SOS */
+-      initial_setup(cinfo);
+-      inputctl->inheaders = FALSE;
+-      /* Note: start_input_pass must be called by jdmaster.c
+-       * before any more input can be consumed.  jdapimin.c is
+-       * responsible for enforcing this sequencing.
+-       */
+-    } else {			/* 2nd or later SOS marker */
+-      if (! inputctl->pub.has_multiple_scans)
+-	ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
+-      start_input_pass(cinfo);
+-    }
+-    break;
+-  case JPEG_REACHED_EOI:	/* Found EOI */
+-    inputctl->pub.eoi_reached = TRUE;
+-    if (inputctl->inheaders) {	/* Tables-only datastream, apparently */
+-      if (cinfo->marker->saw_SOF)
+-	ERREXIT(cinfo, JERR_SOF_NO_SOS);
+-    } else {
+-      /* Prevent infinite loop in coef ctlr's decompress_data routine
+-       * if user set output_scan_number larger than number of scans.
+-       */
+-      if (cinfo->output_scan_number > cinfo->input_scan_number)
+-	cinfo->output_scan_number = cinfo->input_scan_number;
+-    }
+-    break;
+-  case JPEG_SUSPENDED:
+-    break;
+-  }
+-
+-  return val;
+-}
+-
+-
+-/*
+- * Reset state to begin a fresh datastream.
+- */
+-
+-METHODDEF(void)
+-reset_input_controller (j_decompress_ptr cinfo)
+-{
+-  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+-
+-  inputctl->pub.consume_input = consume_markers;
+-  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+-  inputctl->pub.eoi_reached = FALSE;
+-  inputctl->inheaders = TRUE;
+-  /* Reset other modules */
+-  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+-  (*cinfo->marker->reset_marker_reader) (cinfo);
+-  /* Reset progression state -- would be cleaner if entropy decoder did this */
+-  cinfo->coef_bits = NULL;
+-}
+-
+-
+-/*
+- * Initialize the input controller module.
+- * This is called only once, when the decompression object is created.
+- */
+-
+-GLOBAL(void)
+-jinit_input_controller (j_decompress_ptr cinfo)
+-{
+-  my_inputctl_ptr inputctl;
+-
+-  /* Create subobject in permanent pool */
+-  inputctl = (my_inputctl_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+-				SIZEOF(my_input_controller));
+-  cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
+-  /* Initialize method pointers */
+-  inputctl->pub.consume_input = consume_markers;
+-  inputctl->pub.reset_input_controller = reset_input_controller;
+-  inputctl->pub.start_input_pass = start_input_pass;
+-  inputctl->pub.finish_input_pass = finish_input_pass;
+-  /* Initialize state: can't use reset_input_controller since we don't
+-   * want to try to reset other modules yet.
+-   */
+-  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+-  inputctl->pub.eoi_reached = FALSE;
+-  inputctl->inheaders = TRUE;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmainct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmainct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmainct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmainct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,516 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdmainct.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the main buffer controller for decompression.
+- * The main buffer lies between the JPEG decompressor proper and the
+- * post-processor; it holds downsampled data in the JPEG colorspace.
+- *
+- * Note that this code is bypassed in raw-data mode, since the application
+- * supplies the equivalent of the main buffer in that case.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * In the current system design, the main buffer need never be a full-image
+- * buffer; any full-height buffers will be found inside the coefficient or
+- * postprocessing controllers.  Nonetheless, the main controller is not
+- * trivial.  Its responsibility is to provide context rows for upsampling/
+- * rescaling, and doing this in an efficient fashion is a bit tricky.
+- *
+- * Postprocessor input data is counted in "row groups".  A row group
+- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+- * sample rows of each component.  (We require DCT_scaled_size values to be
+- * chosen such that these numbers are integers.  In practice DCT_scaled_size
+- * values will likely be powers of two, so we actually have the stronger
+- * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
+- * Upsampling will typically produce max_v_samp_factor pixel rows from each
+- * row group (times any additional scale factor that the upsampler is
+- * applying).
+- *
+- * The coefficient controller will deliver data to us one iMCU row at a time;
+- * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
+- * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
+- * to one row of MCUs when the image is fully interleaved.)  Note that the
+- * number of sample rows varies across components, but the number of row
+- * groups does not.  Some garbage sample rows may be included in the last iMCU
+- * row at the bottom of the image.
+- *
+- * Depending on the vertical scaling algorithm used, the upsampler may need
+- * access to the sample row(s) above and below its current input row group.
+- * The upsampler is required to set need_context_rows TRUE at global selection
+- * time if so.  When need_context_rows is FALSE, this controller can simply
+- * obtain one iMCU row at a time from the coefficient controller and dole it
+- * out as row groups to the postprocessor.
+- *
+- * When need_context_rows is TRUE, this controller guarantees that the buffer
+- * passed to postprocessing contains at least one row group's worth of samples
+- * above and below the row group(s) being processed.  Note that the context
+- * rows "above" the first passed row group appear at negative row offsets in
+- * the passed buffer.  At the top and bottom of the image, the required
+- * context rows are manufactured by duplicating the first or last real sample
+- * row; this avoids having special cases in the upsampling inner loops.
+- *
+- * The amount of context is fixed at one row group just because that's a
+- * convenient number for this controller to work with.  The existing
+- * upsamplers really only need one sample row of context.  An upsampler
+- * supporting arbitrary output rescaling might wish for more than one row
+- * group of context when shrinking the image; tough, we don't handle that.
+- * (This is justified by the assumption that downsizing will be handled mostly
+- * by adjusting the DCT_scaled_size values, so that the actual scale factor at
+- * the upsample step needn't be much less than one.)
+- *
+- * To provide the desired context, we have to retain the last two row groups
+- * of one iMCU row while reading in the next iMCU row.  (The last row group
+- * can't be processed until we have another row group for its below-context,
+- * and so we have to save the next-to-last group too for its above-context.)
+- * We could do this most simply by copying data around in our buffer, but
+- * that'd be very slow.  We can avoid copying any data by creating a rather
+- * strange pointer structure.  Here's how it works.  We allocate a workspace
+- * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
+- * of row groups per iMCU row).  We create two sets of redundant pointers to
+- * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
+- * pointer lists look like this:
+- *                   M+1                          M-1
+- * master pointer --> 0         master pointer --> 0
+- *                    1                            1
+- *                   ...                          ...
+- *                   M-3                          M-3
+- *                   M-2                           M
+- *                   M-1                          M+1
+- *                    M                           M-2
+- *                   M+1                          M-1
+- *                    0                            0
+- * We read alternate iMCU rows using each master pointer; thus the last two
+- * row groups of the previous iMCU row remain un-overwritten in the workspace.
+- * The pointer lists are set up so that the required context rows appear to
+- * be adjacent to the proper places when we pass the pointer lists to the
+- * upsampler.
+- *
+- * The above pictures describe the normal state of the pointer lists.
+- * At top and bottom of the image, we diddle the pointer lists to duplicate
+- * the first or last sample row as necessary (this is cheaper than copying
+- * sample rows around).
+- *
+- * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
+- * situation each iMCU row provides only one row group so the buffering logic
+- * must be different (eg, we must read two iMCU rows before we can emit the
+- * first row group).  For now, we simply do not support providing context
+- * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
+- * be worth providing --- if someone wants a 1/8th-size preview, they probably
+- * want it quick and dirty, so a context-free upsampler is sufficient.
+- */
+-
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_d_main_controller pub; /* public fields */
+-
+-  /* Pointer to allocated workspace (M or M+2 row groups). */
+-  JSAMPARRAY buffer[MAX_COMPONENTS];
+-
+-  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
+-  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */
+-
+-  /* Remaining fields are only used in the context case. */
+-
+-  /* These are the master pointers to the funny-order pointer lists. */
+-  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */
+-
+-  int whichptr;			/* indicates which pointer set is now in use */
+-  int context_state;		/* process_data state machine status */
+-  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
+-  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
+-} my_main_controller;
+-
+-typedef my_main_controller * my_main_ptr;
+-
+-/* context_state values: */
+-#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
+-#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
+-#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */
+-
+-
+-/* Forward declarations */
+-METHODDEF(void) process_data_simple_main
+-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+-METHODDEF(void) process_data_context_main
+-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+-#ifdef QUANT_2PASS_SUPPORTED
+-METHODDEF(void) process_data_crank_post
+-	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+-	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+-#endif
+-
+-
+-LOCAL(void)
+-alloc_funny_pointers (j_decompress_ptr cinfo)
+-/* Allocate space for the funny pointer lists.
+- * This is done only once, not once per pass.
+- */
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  int ci, rgroup;
+-  int M = cinfo->min_DCT_scaled_size;
+-  jpeg_component_info *compptr;
+-  JSAMPARRAY xbuf;
+-
+-  /* Get top-level space for component array pointers.
+-   * We alloc both arrays with one call to save a few cycles.
+-   */
+-  _main->xbuffer[0] = (JSAMPIMAGE)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
+-  _main->xbuffer[1] = _main->xbuffer[0] + cinfo->num_components;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
+-    /* Get space for pointer lists --- M+4 row groups in each list.
+-     * We alloc both pointer lists with one call to save a few cycles.
+-     */
+-    xbuf = (JSAMPARRAY)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
+-    xbuf += rgroup;		/* want one row group at negative offsets */
+-    _main->xbuffer[0][ci] = xbuf;
+-    xbuf += rgroup * (M + 4);
+-    _main->xbuffer[1][ci] = xbuf;
+-  }
+-}
+-
+-
+-LOCAL(void)
+-make_funny_pointers (j_decompress_ptr cinfo)
+-/* Create the funny pointer lists discussed in the comments above.
+- * The actual workspace is already allocated (in main->buffer),
+- * and the space for the pointer lists is allocated too.
+- * This routine just fills in the curiously ordered lists.
+- * This will be repeated at the beginning of each pass.
+- */
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  int ci, i, rgroup;
+-  int M = cinfo->min_DCT_scaled_size;
+-  jpeg_component_info *compptr;
+-  JSAMPARRAY buf, xbuf0, xbuf1;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
+-    xbuf0 = _main->xbuffer[0][ci];
+-    xbuf1 = _main->xbuffer[1][ci];
+-    /* First copy the workspace pointers as-is */
+-    buf = _main->buffer[ci];
+-    for (i = 0; i < rgroup * (M + 2); i++) {
+-      xbuf0[i] = xbuf1[i] = buf[i];
+-    }
+-    /* In the second list, put the last four row groups in swapped order */
+-    for (i = 0; i < rgroup * 2; i++) {
+-      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
+-      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
+-    }
+-    /* The wraparound pointers at top and bottom will be filled later
+-     * (see set_wraparound_pointers, below).  Initially we want the "above"
+-     * pointers to duplicate the first actual data line.  This only needs
+-     * to happen in xbuffer[0].
+-     */
+-    for (i = 0; i < rgroup; i++) {
+-      xbuf0[i - rgroup] = xbuf0[0];
+-    }
+-  }
+-}
+-
+-
+-LOCAL(void)
+-set_wraparound_pointers (j_decompress_ptr cinfo)
+-/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
+- * This changes the pointer list state from top-of-image to the normal state.
+- */
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  int ci, i, rgroup;
+-  int M = cinfo->min_DCT_scaled_size;
+-  jpeg_component_info *compptr;
+-  JSAMPARRAY xbuf0, xbuf1;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
+-    xbuf0 = _main->xbuffer[0][ci];
+-    xbuf1 = _main->xbuffer[1][ci];
+-    for (i = 0; i < rgroup; i++) {
+-      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
+-      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
+-      xbuf0[rgroup*(M+2) + i] = xbuf0[i];
+-      xbuf1[rgroup*(M+2) + i] = xbuf1[i];
+-    }
+-  }
+-}
+-
+-
+-LOCAL(void)
+-set_bottom_pointers (j_decompress_ptr cinfo)
+-/* Change the pointer lists to duplicate the last sample row at the bottom
+- * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
+- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
+- */
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  int ci, i, rgroup, iMCUheight, rows_left;
+-  jpeg_component_info *compptr;
+-  JSAMPARRAY xbuf;
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Count sample rows in one iMCU row and in one row group */
+-    iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
+-    rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
+-    /* Count nondummy sample rows remaining for this component */
+-    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
+-    if (rows_left == 0) rows_left = iMCUheight;
+-    /* Count nondummy row groups.  Should get same answer for each component,
+-     * so we need only do it once.
+-     */
+-    if (ci == 0) {
+-      _main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
+-    }
+-    /* Duplicate the last real sample row rgroup*2 times; this pads out the
+-     * last partial rowgroup and ensures at least one full rowgroup of context.
+-     */
+-    xbuf = _main->xbuffer[_main->whichptr][ci];
+-    for (i = 0; i < rgroup * 2; i++) {
+-      xbuf[rows_left + i] = xbuf[rows_left-1];
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-
+-  switch (pass_mode) {
+-  case JBUF_PASS_THRU:
+-    if (cinfo->upsample->need_context_rows) {
+-      _main->pub.process_data = process_data_context_main;
+-      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
+-      _main->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
+-      _main->context_state = CTX_PREPARE_FOR_IMCU;
+-      _main->iMCU_row_ctr = 0;
+-    } else {
+-      /* Simple case with no context needed */
+-      _main->pub.process_data = process_data_simple_main;
+-    }
+-    _main->buffer_full = FALSE;	/* Mark buffer empty */
+-    _main->rowgroup_ctr = 0;
+-    break;
+-#ifdef QUANT_2PASS_SUPPORTED
+-  case JBUF_CRANK_DEST:
+-    /* For last pass of 2-pass quantization, just crank the postprocessor */
+-    _main->pub.process_data = process_data_crank_post;
+-    break;
+-#endif
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    break;
+-  }
+-}
+-
+-
+-/*
+- * Process some data.
+- * This handles the simple case where no context is required.
+- */
+-
+-METHODDEF(void)
+-process_data_simple_main (j_decompress_ptr cinfo,
+-			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-			  JDIMENSION out_rows_avail)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-  JDIMENSION rowgroups_avail;
+-
+-  /* Read input data if we haven't filled the main buffer yet */
+-  if (! _main->buffer_full) {
+-    if (! (*cinfo->coef->decompress_data) (cinfo, _main->buffer))
+-      return;			/* suspension forced, can do nothing more */
+-    _main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
+-  }
+-
+-  /* There are always min_DCT_scaled_size row groups in an iMCU row. */
+-  rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
+-  /* Note: at the bottom of the image, we may pass extra garbage row groups
+-   * to the postprocessor.  The postprocessor has to check for bottom
+-   * of image anyway (at row resolution), so no point in us doing it too.
+-   */
+-
+-  /* Feed the postprocessor */
+-  (*cinfo->post->post_process_data) (cinfo, _main->buffer,
+-				     &_main->rowgroup_ctr, rowgroups_avail,
+-				     output_buf, out_row_ctr, out_rows_avail);
+-
+-  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
+-  if (_main->rowgroup_ctr >= rowgroups_avail) {
+-    _main->buffer_full = FALSE;
+-    _main->rowgroup_ctr = 0;
+-  }
+-}
+-
+-
+-/*
+- * Process some data.
+- * This handles the case where context rows must be provided.
+- */
+-
+-METHODDEF(void)
+-process_data_context_main (j_decompress_ptr cinfo,
+-			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-			   JDIMENSION out_rows_avail)
+-{
+-  my_main_ptr _main = (my_main_ptr) cinfo->main;
+-
+-  /* Read input data if we haven't filled the _main buffer yet */
+-  if (! _main->buffer_full) {
+-    if (! (*cinfo->coef->decompress_data) (cinfo,
+-					   _main->xbuffer[_main->whichptr]))
+-      return;			/* suspension forced, can do nothing more */
+-    _main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
+-    _main->iMCU_row_ctr++;	/* count rows received */
+-  }
+-
+-  /* Postprocessor typically will not swallow all the input data it is handed
+-   * in one call (due to filling the output buffer first).  Must be prepared
+-   * to exit and restart.  This switch lets us keep track of how far we got.
+-   * Note that each case falls through to the next on successful completion.
+-   */
+-  switch (_main->context_state) {
+-  case CTX_POSTPONED_ROW:
+-    /* Call postprocessor using previously set pointers for postponed row */
+-    (*cinfo->post->post_process_data) (cinfo, _main->xbuffer[_main->whichptr],
+-			&_main->rowgroup_ctr, _main->rowgroups_avail,
+-			output_buf, out_row_ctr, out_rows_avail);
+-    if (_main->rowgroup_ctr < _main->rowgroups_avail)
+-      return;			/* Need to suspend */
+-    _main->context_state = CTX_PREPARE_FOR_IMCU;
+-    if (*out_row_ctr >= out_rows_avail)
+-      return;			/* Postprocessor exactly filled output buf */
+-    /*FALLTHROUGH*/
+-  case CTX_PREPARE_FOR_IMCU:
+-    /* Prepare to process first M-1 row groups of this iMCU row */
+-    _main->rowgroup_ctr = 0;
+-    _main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
+-    /* Check for bottom of image: if so, tweak pointers to "duplicate"
+-     * the last sample row, and adjust rowgroups_avail to ignore padding rows.
+-     */
+-    if (_main->iMCU_row_ctr == cinfo->total_iMCU_rows)
+-      set_bottom_pointers(cinfo);
+-    _main->context_state = CTX_PROCESS_IMCU;
+-    /*FALLTHROUGH*/
+-  case CTX_PROCESS_IMCU:
+-    /* Call postprocessor using previously set pointers */
+-    (*cinfo->post->post_process_data) (cinfo, _main->xbuffer[_main->whichptr],
+-			&_main->rowgroup_ctr, _main->rowgroups_avail,
+-			output_buf, out_row_ctr, out_rows_avail);
+-    if (_main->rowgroup_ctr < _main->rowgroups_avail)
+-      return;			/* Need to suspend */
+-    /* After the first iMCU, change wraparound pointers to normal state */
+-    if (_main->iMCU_row_ctr == 1)
+-      set_wraparound_pointers(cinfo);
+-    /* Prepare to load new iMCU row using other xbuffer list */
+-    _main->whichptr ^= 1;	/* 0=>1 or 1=>0 */
+-    _main->buffer_full = FALSE;
+-    /* Still need to process last row group of this iMCU row, */
+-    /* which is saved at index M+1 of the other xbuffer */
+-    _main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
+-    _main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
+-    _main->context_state = CTX_POSTPONED_ROW;
+-  }
+-}
+-
+-
+-/*
+- * Process some data.
+- * Final pass of two-pass quantization: just call the postprocessor.
+- * Source data will be the postprocessor controller's internal buffer.
+- */
+-
+-#ifdef QUANT_2PASS_SUPPORTED
+-
+-METHODDEF(void)
+-process_data_crank_post (j_decompress_ptr cinfo,
+-			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-			 JDIMENSION out_rows_avail)
+-{
+-  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
+-				     (JDIMENSION *) NULL, (JDIMENSION) 0,
+-				     output_buf, out_row_ctr, out_rows_avail);
+-}
+-
+-#endif /* QUANT_2PASS_SUPPORTED */
+-
+-
+-/*
+- * Initialize main buffer controller.
+- */
+-
+-GLOBAL(void)
+-jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_main_ptr _main;
+-  int ci, rgroup, ngroups;
+-  jpeg_component_info *compptr;
+-
+-  _main = (my_main_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_main_controller));
+-  cinfo->main = (struct jpeg_d_main_controller *) _main;
+-  _main->pub.start_pass = start_pass_main;
+-
+-  if (need_full_buffer)		/* shouldn't happen */
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-
+-  /* Allocate the workspace.
+-   * ngroups is the number of row groups we need.
+-   */
+-  if (cinfo->upsample->need_context_rows) {
+-    if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
+-      ERREXIT(cinfo, JERR_NOTIMPL);
+-    alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
+-    ngroups = cinfo->min_DCT_scaled_size + 2;
+-  } else {
+-    ngroups = cinfo->min_DCT_scaled_size;
+-  }
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+-      cinfo->min_DCT_scaled_size; /* height of a row group of component */
+-    _main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+-			((j_common_ptr) cinfo, JPOOL_IMAGE,
+-			 compptr->width_in_blocks * compptr->DCT_scaled_size,
+-			 (JDIMENSION) (rgroup * ngroups));
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmarker.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmarker.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmarker.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmarker.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,1384 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdmarker.c
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains routines to decode JPEG datastream markers.
+- * Most of the complexity arises from our desire to support input
+- * suspension: if not all of the data for a marker is available,
+- * we must exit back to the application.  On resumption, we reprocess
+- * the marker.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-typedef enum {			/* JPEG marker codes */
+-  M_SOF0  = 0xc0,
+-  M_SOF1  = 0xc1,
+-  M_SOF2  = 0xc2,
+-  M_SOF3  = 0xc3,
+-  
+-  M_SOF5  = 0xc5,
+-  M_SOF6  = 0xc6,
+-  M_SOF7  = 0xc7,
+-  
+-  M_JPG   = 0xc8,
+-  M_SOF9  = 0xc9,
+-  M_SOF10 = 0xca,
+-  M_SOF11 = 0xcb,
+-  
+-  M_SOF13 = 0xcd,
+-  M_SOF14 = 0xce,
+-  M_SOF15 = 0xcf,
+-  
+-  M_DHT   = 0xc4,
+-  
+-  M_DAC   = 0xcc,
+-  
+-  M_RST0  = 0xd0,
+-  M_RST1  = 0xd1,
+-  M_RST2  = 0xd2,
+-  M_RST3  = 0xd3,
+-  M_RST4  = 0xd4,
+-  M_RST5  = 0xd5,
+-  M_RST6  = 0xd6,
+-  M_RST7  = 0xd7,
+-  
+-  M_SOI   = 0xd8,
+-  M_EOI   = 0xd9,
+-  M_SOS   = 0xda,
+-  M_DQT   = 0xdb,
+-  M_DNL   = 0xdc,
+-  M_DRI   = 0xdd,
+-  M_DHP   = 0xde,
+-  M_EXP   = 0xdf,
+-  
+-  M_APP0  = 0xe0,
+-  M_APP1  = 0xe1,
+-  M_APP2  = 0xe2,
+-  M_APP3  = 0xe3,
+-  M_APP4  = 0xe4,
+-  M_APP5  = 0xe5,
+-  M_APP6  = 0xe6,
+-  M_APP7  = 0xe7,
+-  M_APP8  = 0xe8,
+-  M_APP9  = 0xe9,
+-  M_APP10 = 0xea,
+-  M_APP11 = 0xeb,
+-  M_APP12 = 0xec,
+-  M_APP13 = 0xed,
+-  M_APP14 = 0xee,
+-  M_APP15 = 0xef,
+-  
+-  M_JPG0  = 0xf0,
+-  M_JPG13 = 0xfd,
+-  M_COM   = 0xfe,
+-  
+-  M_TEM   = 0x01,
+-  
+-  M_ERROR = 0x100
+-} JPEG_MARKER;
+-
+-
+-/* Private state */
+-
+-typedef struct {
+-  struct jpeg_marker_reader pub; /* public fields */
+-
+-  /* Application-overridable marker processing methods */
+-  jpeg_marker_parser_method process_COM;
+-  jpeg_marker_parser_method process_APPn[16];
+-
+-  /* Limit on marker data length to save for each marker type */
+-  unsigned int length_limit_COM;
+-  unsigned int length_limit_APPn[16];
+-
+-  /* Status of COM/APPn marker saving */
+-  jpeg_saved_marker_ptr cur_marker;	/* NULL if not processing a marker */
+-  unsigned int bytes_read;		/* data bytes read so far in marker */
+-  /* Note: cur_marker is not linked into marker_list until it's all read. */
+-} my_marker_reader;
+-
+-typedef my_marker_reader * my_marker_ptr;
+-
+-
+-/*
+- * Macros for fetching data from the data source module.
+- *
+- * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
+- * the current restart point; we update them only when we have reached a
+- * suitable place to restart if a suspension occurs.
+- */
+-
+-/* Declare and initialize local copies of input pointer/count */
+-#define INPUT_VARS(cinfo)  \
+-	struct jpeg_source_mgr * datasrc = (cinfo)->src;  \
+-	const JOCTET * next_input_byte = datasrc->next_input_byte;  \
+-	size_t bytes_in_buffer = datasrc->bytes_in_buffer
+-
+-/* Unload the local copies --- do this only at a restart boundary */
+-#define INPUT_SYNC(cinfo)  \
+-	( datasrc->next_input_byte = next_input_byte,  \
+-	  datasrc->bytes_in_buffer = bytes_in_buffer )
+-
+-/* Reload the local copies --- used only in MAKE_BYTE_AVAIL */
+-#define INPUT_RELOAD(cinfo)  \
+-	( next_input_byte = datasrc->next_input_byte,  \
+-	  bytes_in_buffer = datasrc->bytes_in_buffer )
+-
+-/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
+- * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
+- * but we must reload the local copies after a successful fill.
+- */
+-#define MAKE_BYTE_AVAIL(cinfo,action)  \
+-	if (bytes_in_buffer == 0) {  \
+-	  if (! (*datasrc->fill_input_buffer) (cinfo))  \
+-	    { action; }  \
+-	  INPUT_RELOAD(cinfo);  \
+-	}
+-
+-/* Read a byte into variable V.
+- * If must suspend, take the specified action (typically "return FALSE").
+- */
+-#define INPUT_BYTE(cinfo,V,action)  \
+-	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+-		  bytes_in_buffer--; \
+-		  V = GETJOCTET(*next_input_byte++); )
+-
+-/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
+- * V should be declared unsigned int or perhaps INT32.
+- */
+-#define INPUT_2BYTES(cinfo,V,action)  \
+-	MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+-		  bytes_in_buffer--; \
+-		  V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
+-		  MAKE_BYTE_AVAIL(cinfo,action); \
+-		  bytes_in_buffer--; \
+-		  V += GETJOCTET(*next_input_byte++); )
+-
+-
+-/*
+- * Routines to process JPEG markers.
+- *
+- * Entry condition: JPEG marker itself has been read and its code saved
+- *   in cinfo->unread_marker; input restart point is just after the marker.
+- *
+- * Exit: if return TRUE, have read and processed any parameters, and have
+- *   updated the restart point to point after the parameters.
+- *   If return FALSE, was forced to suspend before reaching end of
+- *   marker parameters; restart point has not been moved.  Same routine
+- *   will be called again after application supplies more input data.
+- *
+- * This approach to suspension assumes that all of a marker's parameters
+- * can fit into a single input bufferload.  This should hold for "normal"
+- * markers.  Some COM/APPn markers might have large parameter segments
+- * that might not fit.  If we are simply dropping such a marker, we use
+- * skip_input_data to get past it, and thereby put the problem on the
+- * source manager's shoulders.  If we are saving the marker's contents
+- * into memory, we use a slightly different convention: when forced to
+- * suspend, the marker processor updates the restart point to the end of
+- * what it's consumed (ie, the end of the buffer) before returning FALSE.
+- * On resumption, cinfo->unread_marker still contains the marker code,
+- * but the data source will point to the next chunk of marker data.
+- * The marker processor must retain internal state to deal with this.
+- *
+- * Note that we don't bother to avoid duplicate trace messages if a
+- * suspension occurs within marker parameters.  Other side effects
+- * require more care.
+- */
+-
+-
+-LOCAL(boolean)
+-get_soi (j_decompress_ptr cinfo)
+-/* Process an SOI marker */
+-{
+-  int i;
+-  
+-  TRACEMS(cinfo, 1, JTRC_SOI);
+-
+-  if (cinfo->marker->saw_SOI)
+-    ERREXIT(cinfo, JERR_SOI_DUPLICATE);
+-
+-  /* Reset all parameters that are defined to be reset by SOI */
+-
+-  for (i = 0; i < NUM_ARITH_TBLS; i++) {
+-    cinfo->arith_dc_L[i] = 0;
+-    cinfo->arith_dc_U[i] = 1;
+-    cinfo->arith_ac_K[i] = 5;
+-  }
+-  cinfo->restart_interval = 0;
+-
+-  /* Set initial assumptions for colorspace etc */
+-
+-  cinfo->jpeg_color_space = JCS_UNKNOWN;
+-  cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
+-
+-  cinfo->saw_JFIF_marker = FALSE;
+-  cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */
+-  cinfo->JFIF_minor_version = 1;
+-  cinfo->density_unit = 0;
+-  cinfo->X_density = 1;
+-  cinfo->Y_density = 1;
+-  cinfo->saw_Adobe_marker = FALSE;
+-  cinfo->Adobe_transform = 0;
+-
+-  cinfo->marker->saw_SOI = TRUE;
+-
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith)
+-/* Process a SOFn marker */
+-{
+-  INT32 length;
+-  int c, ci;
+-  jpeg_component_info * compptr;
+-  INPUT_VARS(cinfo);
+-
+-  cinfo->progressive_mode = is_prog;
+-  cinfo->arith_code = is_arith;
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-
+-  INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
+-  INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
+-  INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
+-  INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
+-
+-  length -= 8;
+-
+-  TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
+-	   (int) cinfo->image_width, (int) cinfo->image_height,
+-	   cinfo->num_components);
+-
+-  if (cinfo->marker->saw_SOF)
+-    ERREXIT(cinfo, JERR_SOF_DUPLICATE);
+-
+-  /* We don't support files in which the image height is initially specified */
+-  /* as 0 and is later redefined by DNL.  As long as we have to check that,  */
+-  /* might as well have a general sanity check. */
+-  if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+-      || cinfo->num_components <= 0)
+-    ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+-
+-  if (length != (cinfo->num_components * 3))
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  if (cinfo->comp_info == NULL)	{ /* do only once, even if suspend */
+-    cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
+-			((j_common_ptr) cinfo, JPOOL_IMAGE,
+-			 cinfo->num_components * SIZEOF(jpeg_component_info));
+-    MEMZERO(cinfo->comp_info,
+-	    cinfo->num_components * SIZEOF(jpeg_component_info));
+-  }
+-
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    compptr->component_index = ci;
+-    INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
+-    INPUT_BYTE(cinfo, c, return FALSE);
+-    compptr->h_samp_factor = (c >> 4) & 15;
+-    compptr->v_samp_factor = (c     ) & 15;
+-    INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
+-
+-    TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
+-	     compptr->component_id, compptr->h_samp_factor,
+-	     compptr->v_samp_factor, compptr->quant_tbl_no);
+-  }
+-
+-  cinfo->marker->saw_SOF = TRUE;
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-get_sos (j_decompress_ptr cinfo)
+-/* Process a SOS marker */
+-{
+-  INT32 length;
+-  int i, ci, n, c, cc;
+-  jpeg_component_info * compptr;
+-  INPUT_VARS(cinfo);
+-
+-  if (! cinfo->marker->saw_SOF)
+-    ERREXIT(cinfo, JERR_SOS_NO_SOF);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-
+-  INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
+-
+-  TRACEMS1(cinfo, 1, JTRC_SOS, n);
+-
+-  if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  cinfo->comps_in_scan = n;
+-
+-  /* Collect the component-spec parameters */
+-
+-  for (i = 0; i < n; i++) {
+-    INPUT_BYTE(cinfo, cc, return FALSE);
+-    INPUT_BYTE(cinfo, c, return FALSE);
+-    
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      if (cc == compptr->component_id)
+-	goto id_found;
+-    }
+-
+-    ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
+-
+-  id_found:
+-
+-    cinfo->cur_comp_info[i] = compptr;
+-    compptr->dc_tbl_no = (c >> 4) & 15;
+-    compptr->ac_tbl_no = (c     ) & 15;
+-    
+-    TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
+-	     compptr->dc_tbl_no, compptr->ac_tbl_no);
+-  }
+-
+-  /* Collect the additional scan parameters Ss, Se, Ah/Al. */
+-  INPUT_BYTE(cinfo, c, return FALSE);
+-  cinfo->Ss = c;
+-  INPUT_BYTE(cinfo, c, return FALSE);
+-  cinfo->Se = c;
+-  INPUT_BYTE(cinfo, c, return FALSE);
+-  cinfo->Ah = (c >> 4) & 15;
+-  cinfo->Al = (c     ) & 15;
+-
+-  TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
+-	   cinfo->Ah, cinfo->Al);
+-
+-  /* Prepare to scan data & restart markers */
+-  cinfo->marker->next_restart_num = 0;
+-
+-  /* Count another SOS marker */
+-  cinfo->input_scan_number++;
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-#ifdef D_ARITH_CODING_SUPPORTED
+-
+-LOCAL(boolean)
+-get_dac (j_decompress_ptr cinfo)
+-/* Process a DAC marker */
+-{
+-  INT32 length;
+-  int index, val;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  length -= 2;
+-  
+-  while (length > 0) {
+-    INPUT_BYTE(cinfo, index, return FALSE);
+-    INPUT_BYTE(cinfo, val, return FALSE);
+-
+-    length -= 2;
+-
+-    TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
+-
+-    if (index < 0 || index >= (2*NUM_ARITH_TBLS))
+-      ERREXIT1(cinfo, JERR_DAC_INDEX, index);
+-
+-    if (index >= NUM_ARITH_TBLS) { /* define AC table */
+-      cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
+-    } else {			/* define DC table */
+-      cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
+-      cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
+-      if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
+-	ERREXIT1(cinfo, JERR_DAC_VALUE, val);
+-    }
+-  }
+-
+-  if (length != 0)
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-#else /* ! D_ARITH_CODING_SUPPORTED */
+-
+-#define get_dac(cinfo)  skip_variable(cinfo)
+-
+-#endif /* D_ARITH_CODING_SUPPORTED */
+-
+-
+-LOCAL(boolean)
+-get_dht (j_decompress_ptr cinfo)
+-/* Process a DHT marker */
+-{
+-  INT32 length;
+-  UINT8 bits[17];
+-  UINT8 huffval[256];
+-  int i, index, count;
+-  JHUFF_TBL **htblptr;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  length -= 2;
+-  
+-  while (length > 16) {
+-    INPUT_BYTE(cinfo, index, return FALSE);
+-
+-    TRACEMS1(cinfo, 1, JTRC_DHT, index);
+-      
+-    bits[0] = 0;
+-    count = 0;
+-    for (i = 1; i <= 16; i++) {
+-      INPUT_BYTE(cinfo, bits[i], return FALSE);
+-      count += bits[i];
+-    }
+-
+-    length -= 1 + 16;
+-
+-    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+-	     bits[1], bits[2], bits[3], bits[4],
+-	     bits[5], bits[6], bits[7], bits[8]);
+-    TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+-	     bits[9], bits[10], bits[11], bits[12],
+-	     bits[13], bits[14], bits[15], bits[16]);
+-
+-    /* Here we just do minimal validation of the counts to avoid walking
+-     * off the end of our table space.  jdhuff.c will check more carefully.
+-     */
+-    if (count > 256 || ((INT32) count) > length)
+-      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
+-
+-    for (i = 0; i < count; i++)
+-      INPUT_BYTE(cinfo, huffval[i], return FALSE);
+-
+-    length -= count;
+-
+-    if (index & 0x10) {		/* AC table definition */
+-      index -= 0x10;
+-      htblptr = &cinfo->ac_huff_tbl_ptrs[index];
+-    } else {			/* DC table definition */
+-      htblptr = &cinfo->dc_huff_tbl_ptrs[index];
+-    }
+-
+-    if (index < 0 || index >= NUM_HUFF_TBLS)
+-      ERREXIT1(cinfo, JERR_DHT_INDEX, index);
+-
+-    if (*htblptr == NULL)
+-      *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+-  
+-    MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+-    MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
+-  }
+-
+-  if (length != 0)
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-get_dqt (j_decompress_ptr cinfo)
+-/* Process a DQT marker */
+-{
+-  INT32 length;
+-  int n, i, prec;
+-  unsigned int tmp;
+-  JQUANT_TBL *quant_ptr;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  length -= 2;
+-
+-  while (length > 0) {
+-    INPUT_BYTE(cinfo, n, return FALSE);
+-    prec = n >> 4;
+-    n &= 0x0F;
+-
+-    TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
+-
+-    if (n >= NUM_QUANT_TBLS)
+-      ERREXIT1(cinfo, JERR_DQT_INDEX, n);
+-      
+-    if (cinfo->quant_tbl_ptrs[n] == NULL)
+-      cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+-    quant_ptr = cinfo->quant_tbl_ptrs[n];
+-
+-    for (i = 0; i < DCTSIZE2; i++) {
+-      if (prec)
+-	INPUT_2BYTES(cinfo, tmp, return FALSE);
+-      else
+-	INPUT_BYTE(cinfo, tmp, return FALSE);
+-      /* We convert the zigzag-order table to natural array order. */
+-      quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16) tmp;
+-    }
+-
+-    if (cinfo->err->trace_level >= 2) {
+-      for (i = 0; i < DCTSIZE2; i += 8) {
+-	TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
+-		 quant_ptr->quantval[i],   quant_ptr->quantval[i+1],
+-		 quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
+-		 quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
+-		 quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
+-      }
+-    }
+-
+-    length -= DCTSIZE2+1;
+-    if (prec) length -= DCTSIZE2;
+-  }
+-
+-  if (length != 0)
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-get_dri (j_decompress_ptr cinfo)
+-/* Process a DRI marker */
+-{
+-  INT32 length;
+-  unsigned int tmp;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  
+-  if (length != 4)
+-    ERREXIT(cinfo, JERR_BAD_LENGTH);
+-
+-  INPUT_2BYTES(cinfo, tmp, return FALSE);
+-
+-  TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
+-
+-  cinfo->restart_interval = tmp;
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Routines for processing APPn and COM markers.
+- * These are either saved in memory or discarded, per application request.
+- * APP0 and APP14 are specially checked to see if they are
+- * JFIF and Adobe markers, respectively.
+- */
+-
+-#define APP0_DATA_LEN	14	/* Length of interesting data in APP0 */
+-#define APP14_DATA_LEN	12	/* Length of interesting data in APP14 */
+-#define APPN_DATA_LEN	14	/* Must be the largest of the above!! */
+-
+-
+-LOCAL(void)
+-examine_app0 (j_decompress_ptr cinfo, JOCTET FAR * data,
+-	      unsigned int datalen, INT32 remaining)
+-/* Examine first few bytes from an APP0.
+- * Take appropriate action if it is a JFIF marker.
+- * datalen is # of bytes at data[], remaining is length of rest of marker data.
+- */
+-{
+-  INT32 totallen = (INT32) datalen + remaining;
+-
+-  if (datalen >= APP0_DATA_LEN &&
+-      GETJOCTET(data[0]) == 0x4A &&
+-      GETJOCTET(data[1]) == 0x46 &&
+-      GETJOCTET(data[2]) == 0x49 &&
+-      GETJOCTET(data[3]) == 0x46 &&
+-      GETJOCTET(data[4]) == 0) {
+-    /* Found JFIF APP0 marker: save info */
+-    cinfo->saw_JFIF_marker = TRUE;
+-    cinfo->JFIF_major_version = GETJOCTET(data[5]);
+-    cinfo->JFIF_minor_version = GETJOCTET(data[6]);
+-    cinfo->density_unit = GETJOCTET(data[7]);
+-    cinfo->X_density = (GETJOCTET(data[8]) << 8) + GETJOCTET(data[9]);
+-    cinfo->Y_density = (GETJOCTET(data[10]) << 8) + GETJOCTET(data[11]);
+-    /* Check version.
+-     * Major version must be 1, anything else signals an incompatible change.
+-     * (We used to treat this as an error, but now it's a nonfatal warning,
+-     * because some bozo at Hijaak couldn't read the spec.)
+-     * Minor version should be 0..2, but process anyway if newer.
+-     */
+-    if (cinfo->JFIF_major_version != 1)
+-      WARNMS2(cinfo, JWRN_JFIF_MAJOR,
+-	      cinfo->JFIF_major_version, cinfo->JFIF_minor_version);
+-    /* Generate trace messages */
+-    TRACEMS5(cinfo, 1, JTRC_JFIF,
+-	     cinfo->JFIF_major_version, cinfo->JFIF_minor_version,
+-	     cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
+-    /* Validate thumbnail dimensions and issue appropriate messages */
+-    if (GETJOCTET(data[12]) | GETJOCTET(data[13]))
+-      TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL,
+-	       GETJOCTET(data[12]), GETJOCTET(data[13]));
+-    totallen -= APP0_DATA_LEN;
+-    if (totallen !=
+-	((INT32)GETJOCTET(data[12]) * (INT32)GETJOCTET(data[13]) * (INT32) 3))
+-      TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) totallen);
+-  } else if (datalen >= 6 &&
+-      GETJOCTET(data[0]) == 0x4A &&
+-      GETJOCTET(data[1]) == 0x46 &&
+-      GETJOCTET(data[2]) == 0x58 &&
+-      GETJOCTET(data[3]) == 0x58 &&
+-      GETJOCTET(data[4]) == 0) {
+-    /* Found JFIF "JFXX" extension APP0 marker */
+-    /* The library doesn't actually do anything with these,
+-     * but we try to produce a helpful trace message.
+-     */
+-    switch (GETJOCTET(data[5])) {
+-    case 0x10:
+-      TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int) totallen);
+-      break;
+-    case 0x11:
+-      TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int) totallen);
+-      break;
+-    case 0x13:
+-      TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int) totallen);
+-      break;
+-    default:
+-      TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION,
+-	       GETJOCTET(data[5]), (int) totallen);
+-      break;
+-    }
+-  } else {
+-    /* Start of APP0 does not match "JFIF" or "JFXX", or too short */
+-    TRACEMS1(cinfo, 1, JTRC_APP0, (int) totallen);
+-
+-    /*
+-     * In this case we have seen the APP0 marker but the remaining
+-     * APP0 section may be corrupt.  Regardless, we will set the
+-     * saw_JFIF_marker flag as it is important for making the
+-     * correct choice of JPEG color space later (we will assume
+-     * YCbCr in this case).  The version and density fields will
+-     * contain default values, which should be sufficient for our needs. 
+-     */
+-    cinfo->saw_JFIF_marker = TRUE;
+-  }
+-}
+-
+-
+-LOCAL(void)
+-examine_app14 (j_decompress_ptr cinfo, JOCTET FAR * data,
+-	       unsigned int datalen, INT32 remaining)
+-/* Examine first few bytes from an APP14.
+- * Take appropriate action if it is an Adobe marker.
+- * datalen is # of bytes at data[], remaining is length of rest of marker data.
+- */
+-{
+-  unsigned int version, flags0, flags1, transform;
+-
+-  if (datalen >= APP14_DATA_LEN &&
+-      GETJOCTET(data[0]) == 0x41 &&
+-      GETJOCTET(data[1]) == 0x64 &&
+-      GETJOCTET(data[2]) == 0x6F &&
+-      GETJOCTET(data[3]) == 0x62 &&
+-      GETJOCTET(data[4]) == 0x65) {
+-    /* Found Adobe APP14 marker */
+-    version = (GETJOCTET(data[5]) << 8) + GETJOCTET(data[6]);
+-    flags0 = (GETJOCTET(data[7]) << 8) + GETJOCTET(data[8]);
+-    flags1 = (GETJOCTET(data[9]) << 8) + GETJOCTET(data[10]);
+-    transform = GETJOCTET(data[11]);
+-    TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
+-    cinfo->saw_Adobe_marker = TRUE;
+-    cinfo->Adobe_transform = (UINT8) transform;
+-  } else {
+-    /* Start of APP14 does not match "Adobe", or too short */
+-    TRACEMS1(cinfo, 1, JTRC_APP14, (int) (datalen + remaining));
+-  }
+-}
+-
+-
+-METHODDEF(boolean)
+-get_interesting_appn (j_decompress_ptr cinfo)
+-/* Process an APP0 or APP14 marker without saving it */
+-{
+-  INT32 length;
+-  JOCTET b[APPN_DATA_LEN];
+-  unsigned int i, numtoread;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  length -= 2;
+-
+-  /* get the interesting part of the marker data */
+-  if (length >= APPN_DATA_LEN)
+-    numtoread = APPN_DATA_LEN;
+-  else if (length > 0)
+-    numtoread = (unsigned int) length;
+-  else
+-    numtoread = 0;
+-  for (i = 0; i < numtoread; i++)
+-    INPUT_BYTE(cinfo, b[i], return FALSE);
+-  length -= numtoread;
+-
+-  /* process it */
+-  switch (cinfo->unread_marker) {
+-  case M_APP0:
+-    examine_app0(cinfo, (JOCTET FAR *) b, numtoread, length);
+-    break;
+-  case M_APP14:
+-    examine_app14(cinfo, (JOCTET FAR *) b, numtoread, length);
+-    break;
+-  default:
+-    /* can't get here unless jpeg_save_markers chooses wrong processor */
+-    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+-    break;
+-  }
+-
+-  /* skip any remaining data -- could be lots */
+-  INPUT_SYNC(cinfo);
+-  if (length > 0)
+-    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+-
+-  return TRUE;
+-}
+-
+-
+-#ifdef SAVE_MARKERS_SUPPORTED
+-
+-METHODDEF(boolean)
+-save_marker (j_decompress_ptr cinfo)
+-/* Save an APPn or COM marker into the marker list */
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-  jpeg_saved_marker_ptr cur_marker = marker->cur_marker;
+-  unsigned int bytes_read, data_length;
+-  JOCTET FAR * data;
+-  INT32 length = 0;
+-  INPUT_VARS(cinfo);
+-
+-  if (cur_marker == NULL) {
+-    /* begin reading a marker */
+-    INPUT_2BYTES(cinfo, length, return FALSE);
+-    length -= 2;
+-    if (length >= 0) {		/* watch out for bogus length word */
+-      /* figure out how much we want to save */
+-      unsigned int limit;
+-      if (cinfo->unread_marker == (int) M_COM)
+-	limit = marker->length_limit_COM;
+-      else
+-	limit = marker->length_limit_APPn[cinfo->unread_marker - (int) M_APP0];
+-      if ((unsigned int) length < limit)
+-	limit = (unsigned int) length;
+-      /* allocate and initialize the marker item */
+-      cur_marker = (jpeg_saved_marker_ptr)
+-	(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				    SIZEOF(struct jpeg_marker_struct) + limit);
+-      cur_marker->next = NULL;
+-      cur_marker->marker = (UINT8) cinfo->unread_marker;
+-      cur_marker->original_length = (unsigned int) length;
+-      cur_marker->data_length = limit;
+-      /* data area is just beyond the jpeg_marker_struct */
+-      data = cur_marker->data = (JOCTET FAR *) (cur_marker + 1);
+-      marker->cur_marker = cur_marker;
+-      marker->bytes_read = 0;
+-      bytes_read = 0;
+-      data_length = limit;
+-    } else {
+-      /* deal with bogus length word */
+-      bytes_read = data_length = 0;
+-      data = NULL;
+-    }
+-  } else {
+-    /* resume reading a marker */
+-    bytes_read = marker->bytes_read;
+-    data_length = cur_marker->data_length;
+-    data = cur_marker->data + bytes_read;
+-  }
+-
+-  while (bytes_read < data_length) {
+-    INPUT_SYNC(cinfo);		/* move the restart point to here */
+-    marker->bytes_read = bytes_read;
+-    /* If there's not at least one byte in buffer, suspend */
+-    MAKE_BYTE_AVAIL(cinfo, return FALSE);
+-    /* Copy bytes with reasonable rapidity */
+-    while (bytes_read < data_length && bytes_in_buffer > 0) {
+-      *data++ = *next_input_byte++;
+-      bytes_in_buffer--;
+-      bytes_read++;
+-    }
+-  }
+-
+-  /* Done reading what we want to read */
+-  if (cur_marker != NULL) {	/* will be NULL if bogus length word */
+-    /* Add new marker to end of list */
+-    if (cinfo->marker_list == NULL) {
+-      cinfo->marker_list = cur_marker;
+-    } else {
+-      jpeg_saved_marker_ptr prev = cinfo->marker_list;
+-      while (prev->next != NULL)
+-	prev = prev->next;
+-      prev->next = cur_marker;
+-    }
+-    /* Reset pointer & calc remaining data length */
+-    data = cur_marker->data;
+-    length = cur_marker->original_length - data_length;
+-  }
+-  /* Reset to initial state for next marker */
+-  marker->cur_marker = NULL;
+-
+-  /* Process the marker if interesting; else just make a generic trace msg */
+-  switch (cinfo->unread_marker) {
+-  case M_APP0:
+-    examine_app0(cinfo, data, data_length, length);
+-    break;
+-  case M_APP14:
+-    examine_app14(cinfo, data, data_length, length);
+-    break;
+-  default:
+-    TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker,
+-	     (int) (data_length + length));
+-    break;
+-  }
+-
+-  /* skip any remaining data -- could be lots */
+-  INPUT_SYNC(cinfo);		/* do before skip_input_data */
+-  if (length > 0)
+-    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+-
+-  return TRUE;
+-}
+-
+-#endif /* SAVE_MARKERS_SUPPORTED */
+-
+-
+-METHODDEF(boolean)
+-skip_variable (j_decompress_ptr cinfo)
+-/* Skip over an unknown or uninteresting variable-length marker */
+-{
+-  INT32 length;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_2BYTES(cinfo, length, return FALSE);
+-  length -= 2;
+-  
+-  TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
+-
+-  INPUT_SYNC(cinfo);		/* do before skip_input_data */
+-  if (length > 0)
+-    (*cinfo->src->skip_input_data) (cinfo, (long) length);
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Find the next JPEG marker, save it in cinfo->unread_marker.
+- * Returns FALSE if had to suspend before reaching a marker;
+- * in that case cinfo->unread_marker is unchanged.
+- *
+- * Note that the result might not be a valid marker code,
+- * but it will never be 0 or FF.
+- */
+-
+-LOCAL(boolean)
+-next_marker (j_decompress_ptr cinfo)
+-{
+-  int c;
+-  INPUT_VARS(cinfo);
+-
+-  for (;;) {
+-    INPUT_BYTE(cinfo, c, return FALSE);
+-    /* Skip any non-FF bytes.
+-     * This may look a bit inefficient, but it will not occur in a valid file.
+-     * We sync after each discarded byte so that a suspending data source
+-     * can discard the byte from its buffer.
+-     */
+-    while (c != 0xFF) {
+-      cinfo->marker->discarded_bytes++;
+-      INPUT_SYNC(cinfo);
+-      INPUT_BYTE(cinfo, c, return FALSE);
+-    }
+-    /* This loop swallows any duplicate FF bytes.  Extra FFs are legal as
+-     * pad bytes, so don't count them in discarded_bytes.  We assume there
+-     * will not be so many consecutive FF bytes as to overflow a suspending
+-     * data source's input buffer.
+-     */
+-    do {
+-      INPUT_BYTE(cinfo, c, return FALSE);
+-    } while (c == 0xFF);
+-    if (c != 0)
+-      break;			/* found a valid marker, exit loop */
+-    /* Reach here if we found a stuffed-zero data sequence (FF/00).
+-     * Discard it and loop back to try again.
+-     */
+-    cinfo->marker->discarded_bytes += 2;
+-    INPUT_SYNC(cinfo);
+-  }
+-
+-  if (cinfo->marker->discarded_bytes != 0) {
+-    WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
+-    cinfo->marker->discarded_bytes = 0;
+-  }
+-
+-  cinfo->unread_marker = c;
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-LOCAL(boolean)
+-first_marker (j_decompress_ptr cinfo)
+-/* Like next_marker, but used to obtain the initial SOI marker. */
+-/* For this marker, we do not allow preceding garbage or fill; otherwise,
+- * we might well scan an entire input file before realizing it ain't JPEG.
+- * If an application wants to process non-JFIF files, it must seek to the
+- * SOI before calling the JPEG library.
+- */
+-{
+-  int c, c2;
+-  INPUT_VARS(cinfo);
+-
+-  INPUT_BYTE(cinfo, c, return FALSE);
+-  INPUT_BYTE(cinfo, c2, return FALSE);
+-  if (c != 0xFF || c2 != (int) M_SOI)
+-    ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
+-
+-  cinfo->unread_marker = c2;
+-
+-  INPUT_SYNC(cinfo);
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Read markers until SOS or EOI.
+- *
+- * Returns same codes as are defined for jpeg_consume_input:
+- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+- */
+-
+-METHODDEF(int)
+-read_markers (j_decompress_ptr cinfo)
+-{
+-  /* Outer loop repeats once for each marker. */
+-  for (;;) {
+-    /* Collect the marker proper, unless we already did. */
+-    /* NB: first_marker() enforces the requirement that SOI appear first. */
+-    if (cinfo->unread_marker == 0) {
+-      if (! cinfo->marker->saw_SOI) {
+-	if (! first_marker(cinfo))
+-	  return JPEG_SUSPENDED;
+-      } else {
+-	if (! next_marker(cinfo))
+-	  return JPEG_SUSPENDED;
+-      }
+-    }
+-    /* At this point cinfo->unread_marker contains the marker code and the
+-     * input point is just past the marker proper, but before any parameters.
+-     * A suspension will cause us to return with this state still true.
+-     */
+-    switch (cinfo->unread_marker) {
+-    case M_SOI:
+-      if (! get_soi(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    case M_SOF0:		/* Baseline */
+-    case M_SOF1:		/* Extended sequential, Huffman */
+-      if (! get_sof(cinfo, FALSE, FALSE))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    case M_SOF2:		/* Progressive, Huffman */
+-      if (! get_sof(cinfo, TRUE, FALSE))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    case M_SOF9:		/* Extended sequential, arithmetic */
+-      if (! get_sof(cinfo, FALSE, TRUE))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    case M_SOF10:		/* Progressive, arithmetic */
+-      if (! get_sof(cinfo, TRUE, TRUE))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    /* Currently unsupported SOFn types */
+-    case M_SOF3:		/* Lossless, Huffman */
+-    case M_SOF5:		/* Differential sequential, Huffman */
+-    case M_SOF6:		/* Differential progressive, Huffman */
+-    case M_SOF7:		/* Differential lossless, Huffman */
+-    case M_JPG:			/* Reserved for JPEG extensions */
+-    case M_SOF11:		/* Lossless, arithmetic */
+-    case M_SOF13:		/* Differential sequential, arithmetic */
+-    case M_SOF14:		/* Differential progressive, arithmetic */
+-    case M_SOF15:		/* Differential lossless, arithmetic */
+-      ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
+-      break;
+-
+-    case M_SOS:
+-      if (! get_sos(cinfo))
+-	return JPEG_SUSPENDED;
+-      cinfo->unread_marker = 0;	/* processed the marker */
+-      return JPEG_REACHED_SOS;
+-    
+-    case M_EOI:
+-      TRACEMS(cinfo, 1, JTRC_EOI);
+-      cinfo->unread_marker = 0;	/* processed the marker */
+-      return JPEG_REACHED_EOI;
+-      
+-    case M_DAC:
+-      if (! get_dac(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-      
+-    case M_DHT:
+-      if (! get_dht(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-      
+-    case M_DQT:
+-      if (! get_dqt(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-      
+-    case M_DRI:
+-      if (! get_dri(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-      
+-    case M_APP0:
+-    case M_APP1:
+-    case M_APP2:
+-    case M_APP3:
+-    case M_APP4:
+-    case M_APP5:
+-    case M_APP6:
+-    case M_APP7:
+-    case M_APP8:
+-    case M_APP9:
+-    case M_APP10:
+-    case M_APP11:
+-    case M_APP12:
+-    case M_APP13:
+-    case M_APP14:
+-    case M_APP15:
+-      if (! (*((my_marker_ptr) cinfo->marker)->process_APPn[
+-		cinfo->unread_marker - (int) M_APP0]) (cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-      
+-    case M_COM:
+-      if (! (*((my_marker_ptr) cinfo->marker)->process_COM) (cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    case M_RST0:		/* these are all parameterless */
+-    case M_RST1:
+-    case M_RST2:
+-    case M_RST3:
+-    case M_RST4:
+-    case M_RST5:
+-    case M_RST6:
+-    case M_RST7:
+-    case M_TEM:
+-      TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
+-      break;
+-
+-    case M_DNL:			/* Ignore DNL ... perhaps the wrong thing */
+-      if (! skip_variable(cinfo))
+-	return JPEG_SUSPENDED;
+-      break;
+-
+-    default:			/* must be DHP, EXP, JPGn, or RESn */
+-      /* For now, we treat the reserved markers as fatal errors since they are
+-       * likely to be used to signal incompatible JPEG Part 3 extensions.
+-       * Once the JPEG 3 version-number marker is well defined, this code
+-       * ought to change!
+-       * [To be behaviorally compatible with other popular image display
+-       * applications, we are now treating these unknown markers as warnings,
+-       * rather than errors.  This allows processing to continue, although
+-       * any portions of the image after the bad marker may be corrupted
+-       * and/or rendered gray.  See 4511441.]
+-       */
+-      WARNMS1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+-      break;
+-    }
+-    /* Successfully processed marker, so reset state variable */
+-    cinfo->unread_marker = 0;
+-  } /* end loop */
+-}
+-
+-
+-/*
+- * Read a restart marker, which is expected to appear next in the datastream;
+- * if the marker is not there, take appropriate recovery action.
+- * Returns FALSE if suspension is required.
+- *
+- * This is called by the entropy decoder after it has read an appropriate
+- * number of MCUs.  cinfo->unread_marker may be nonzero if the entropy decoder
+- * has already read a marker from the data source.  Under normal conditions
+- * cinfo->unread_marker will be reset to 0 before returning; if not reset,
+- * it holds a marker which the decoder will be unable to read past.
+- */
+-
+-METHODDEF(boolean)
+-read_restart_marker (j_decompress_ptr cinfo)
+-{
+-  /* Obtain a marker unless we already did. */
+-  /* Note that next_marker will complain if it skips any data. */
+-  if (cinfo->unread_marker == 0) {
+-    if (! next_marker(cinfo))
+-      return FALSE;
+-  }
+-
+-  if (cinfo->unread_marker ==
+-      ((int) M_RST0 + cinfo->marker->next_restart_num)) {
+-    /* Normal case --- swallow the marker and let entropy decoder continue */
+-    TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num);
+-    cinfo->unread_marker = 0;
+-  } else {
+-    /* Uh-oh, the restart markers have been messed up. */
+-    /* Let the data source manager determine how to resync. */
+-    if (! (*cinfo->src->resync_to_restart) (cinfo,
+-					    cinfo->marker->next_restart_num))
+-      return FALSE;
+-  }
+-
+-  /* Update next-restart state */
+-  cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * This is the default resync_to_restart method for data source managers
+- * to use if they don't have any better approach.  Some data source managers
+- * may be able to back up, or may have additional knowledge about the data
+- * which permits a more intelligent recovery strategy; such managers would
+- * presumably supply their own resync method.
+- *
+- * read_restart_marker calls resync_to_restart if it finds a marker other than
+- * the restart marker it was expecting.  (This code is *not* used unless
+- * a nonzero restart interval has been declared.)  cinfo->unread_marker is
+- * the marker code actually found (might be anything, except 0 or FF).
+- * The desired restart marker number (0..7) is passed as a parameter.
+- * This routine is supposed to apply whatever error recovery strategy seems
+- * appropriate in order to position the input stream to the next data segment.
+- * Note that cinfo->unread_marker is treated as a marker appearing before
+- * the current data-source input point; usually it should be reset to zero
+- * before returning.
+- * Returns FALSE if suspension is required.
+- *
+- * This implementation is substantially constrained by wanting to treat the
+- * input as a data stream; this means we can't back up.  Therefore, we have
+- * only the following actions to work with:
+- *   1. Simply discard the marker and let the entropy decoder resume at next
+- *      byte of file.
+- *   2. Read forward until we find another marker, discarding intervening
+- *      data.  (In theory we could look ahead within the current bufferload,
+- *      without having to discard data if we don't find the desired marker.
+- *      This idea is not implemented here, in part because it makes behavior
+- *      dependent on buffer size and chance buffer-boundary positions.)
+- *   3. Leave the marker unread (by failing to zero cinfo->unread_marker).
+- *      This will cause the entropy decoder to process an empty data segment,
+- *      inserting dummy zeroes, and then we will reprocess the marker.
+- *
+- * #2 is appropriate if we think the desired marker lies ahead, while #3 is
+- * appropriate if the found marker is a future restart marker (indicating
+- * that we have missed the desired restart marker, probably because it got
+- * corrupted).
+- * We apply #2 or #3 if the found marker is a restart marker no more than
+- * two counts behind or ahead of the expected one.  We also apply #2 if the
+- * found marker is not a legal JPEG marker code (it's certainly bogus data).
+- * If the found marker is a restart marker more than 2 counts away, we do #1
+- * (too much risk that the marker is erroneous; with luck we will be able to
+- * resync at some future point).
+- * For any valid non-restart JPEG marker, we apply #3.  This keeps us from
+- * overrunning the end of a scan.  An implementation limited to single-scan
+- * files might find it better to apply #2 for markers other than EOI, since
+- * any other marker would have to be bogus data in that case.
+- */
+-
+-GLOBAL(boolean)
+-jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
+-{
+-  int marker = cinfo->unread_marker;
+-  int action = 1;
+-  
+-  /* Always put up a warning. */
+-  WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
+-  
+-  /* Outer loop handles repeated decision after scanning forward. */
+-  for (;;) {
+-    if (marker < (int) M_SOF0)
+-      action = 2;		/* invalid marker */
+-    else if (marker < (int) M_RST0 || marker > (int) M_RST7)
+-      action = 3;		/* valid non-restart marker */
+-    else {
+-      if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
+-	  marker == ((int) M_RST0 + ((desired+2) & 7)))
+-	action = 3;		/* one of the next two expected restarts */
+-      else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
+-	       marker == ((int) M_RST0 + ((desired-2) & 7)))
+-	action = 2;		/* a prior restart, so advance */
+-      else
+-	action = 1;		/* desired restart or too far away */
+-    }
+-    TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
+-    switch (action) {
+-    case 1:
+-      /* Discard marker and let entropy decoder resume processing. */
+-      cinfo->unread_marker = 0;
+-      return TRUE;
+-    case 2:
+-      /* Scan to the next marker, and repeat the decision loop. */
+-      if (! next_marker(cinfo))
+-	return FALSE;
+-      marker = cinfo->unread_marker;
+-      break;
+-    case 3:
+-      /* Return without advancing past this marker. */
+-      /* Entropy decoder will be forced to process an empty segment. */
+-      return TRUE;
+-    }
+-  } /* end loop */
+-}
+-
+-
+-/*
+- * Reset marker processing state to begin a fresh datastream.
+- */
+-
+-METHODDEF(void)
+-reset_marker_reader (j_decompress_ptr cinfo)
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-
+-  cinfo->comp_info = NULL;		/* until allocated by get_sof */
+-  cinfo->input_scan_number = 0;		/* no SOS seen yet */
+-  cinfo->unread_marker = 0;		/* no pending marker */
+-  marker->pub.saw_SOI = FALSE;		/* set internal state too */
+-  marker->pub.saw_SOF = FALSE;
+-  marker->pub.discarded_bytes = 0;
+-  marker->cur_marker = NULL;
+-}
+-
+-
+-/*
+- * Initialize the marker reader module.
+- * This is called only once, when the decompression object is created.
+- */
+-
+-GLOBAL(void)
+-jinit_marker_reader (j_decompress_ptr cinfo)
+-{
+-  my_marker_ptr marker;
+-  int i;
+-
+-  /* Create subobject in permanent pool */
+-  marker = (my_marker_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+-				SIZEOF(my_marker_reader));
+-  cinfo->marker = (struct jpeg_marker_reader *) marker;
+-  /* Initialize public method pointers */
+-  marker->pub.reset_marker_reader = reset_marker_reader;
+-  marker->pub.read_markers = read_markers;
+-  marker->pub.read_restart_marker = read_restart_marker;
+-  /* Initialize COM/APPn processing.
+-   * By default, we examine and then discard APP0 and APP14.
+-   * We also may need to save APP1 to detect the case of EXIF images (see 4881314).
+-   * COM and all other APPn are simply discarded.
+-   */
+-  marker->process_COM = skip_variable;
+-  marker->length_limit_COM = 0;
+-  for (i = 0; i < 16; i++) {
+-    marker->process_APPn[i] = skip_variable;
+-    marker->length_limit_APPn[i] = 0;
+-  }
+-  marker->process_APPn[0] = get_interesting_appn;
+-  marker->process_APPn[1] = save_marker;
+-  marker->process_APPn[14] = get_interesting_appn;
+-  /* Reset marker processing state */
+-  reset_marker_reader(cinfo);
+-}
+-
+-
+-/*
+- * Control saving of COM and APPn markers into marker_list.
+- */
+-
+-#ifdef SAVE_MARKERS_SUPPORTED
+-
+-GLOBAL(void)
+-jpeg_save_markers (j_decompress_ptr cinfo, int marker_code,
+-		   unsigned int length_limit)
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-  long maxlength;
+-  jpeg_marker_parser_method processor;
+-
+-  /* Length limit mustn't be larger than what we can allocate
+-   * (should only be a concern in a 16-bit environment).
+-   */
+-  maxlength = cinfo->mem->max_alloc_chunk - SIZEOF(struct jpeg_marker_struct);
+-  if (((long) length_limit) > maxlength)
+-    length_limit = (unsigned int) maxlength;
+-
+-  /* Choose processor routine to use.
+-   * APP0/APP14 have special requirements.
+-   */
+-  if (length_limit) {
+-    processor = save_marker;
+-    /* If saving APP0/APP14, save at least enough for our internal use. */
+-    if (marker_code == (int) M_APP0 && length_limit < APP0_DATA_LEN)
+-      length_limit = APP0_DATA_LEN;
+-    else if (marker_code == (int) M_APP14 && length_limit < APP14_DATA_LEN)
+-      length_limit = APP14_DATA_LEN;
+-  } else {
+-    processor = skip_variable;
+-    /* If discarding APP0/APP14, use our regular on-the-fly processor. */
+-    if (marker_code == (int) M_APP0 || marker_code == (int) M_APP14)
+-      processor = get_interesting_appn;
+-  }
+-
+-  if (marker_code == (int) M_COM) {
+-    marker->process_COM = processor;
+-    marker->length_limit_COM = length_limit;
+-  } else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15) {
+-    marker->process_APPn[marker_code - (int) M_APP0] = processor;
+-    marker->length_limit_APPn[marker_code - (int) M_APP0] = length_limit;
+-  } else
+-    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+-}
+-
+-#endif /* SAVE_MARKERS_SUPPORTED */
+-
+-
+-/*
+- * Install a special processing method for COM or APPn markers.
+- */
+-
+-GLOBAL(void)
+-jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
+-			   jpeg_marker_parser_method routine)
+-{
+-  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
+-
+-  if (marker_code == (int) M_COM)
+-    marker->process_COM = routine;
+-  else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
+-    marker->process_APPn[marker_code - (int) M_APP0] = routine;
+-  else
+-    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmaster.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmaster.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmaster.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmaster.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,561 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdmaster.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains master control logic for the JPEG decompressor.
+- * These routines are concerned with selecting the modules to be executed
+- * and with determining the number of passes and the work to be done in each
+- * pass.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private state */
+-
+-typedef struct {
+-  struct jpeg_decomp_master pub; /* public fields */
+-
+-  int pass_number;		/* # of passes completed */
+-
+-  boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
+-
+-  /* Saved references to initialized quantizer modules,
+-   * in case we need to switch modes.
+-   */
+-  struct jpeg_color_quantizer * quantizer_1pass;
+-  struct jpeg_color_quantizer * quantizer_2pass;
+-} my_decomp_master;
+-
+-typedef my_decomp_master * my_master_ptr;
+-
+-
+-/*
+- * Determine whether merged upsample/color conversion should be used.
+- * CRUCIAL: this must match the actual capabilities of jdmerge.c!
+- */
+-
+-LOCAL(boolean)
+-use_merged_upsample (j_decompress_ptr cinfo)
+-{
+-#ifdef UPSAMPLE_MERGING_SUPPORTED
+-  /* Merging is the equivalent of plain box-filter upsampling */
+-  if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
+-    return FALSE;
+-  /* jdmerge.c only supports YCC=>RGB color conversion */
+-  if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
+-      cinfo->out_color_space != JCS_RGB ||
+-      cinfo->out_color_components != RGB_PIXELSIZE)
+-    return FALSE;
+-  /* and it only handles 2h1v or 2h2v sampling ratios */
+-  if (cinfo->comp_info[0].h_samp_factor != 2 ||
+-      cinfo->comp_info[1].h_samp_factor != 1 ||
+-      cinfo->comp_info[2].h_samp_factor != 1 ||
+-      cinfo->comp_info[0].v_samp_factor >  2 ||
+-      cinfo->comp_info[1].v_samp_factor != 1 ||
+-      cinfo->comp_info[2].v_samp_factor != 1)
+-    return FALSE;
+-  /* furthermore, it doesn't work if we've scaled the IDCTs differently */
+-  if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
+-      cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
+-      cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
+-    return FALSE;
+-  /* ??? also need to test for upsample-time rescaling, when & if supported */
+-  return TRUE;			/* by golly, it'll work... */
+-#else
+-  return FALSE;
+-#endif
+-}
+-
+-
+-/*
+- * Compute output image dimensions and related values.
+- * NOTE: this is exported for possible use by application.
+- * Hence it mustn't do anything that can't be done twice.
+- * Also note that it may be called before the master module is initialized!
+- */
+-
+-GLOBAL(void)
+-jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
+-/* Do computations that are needed before master selection phase */
+-{
+-#ifdef IDCT_SCALING_SUPPORTED
+-  int ci;
+-  jpeg_component_info *compptr;
+-#endif
+-
+-  /* Prevent application from calling me at wrong times */
+-  if (cinfo->global_state != DSTATE_READY)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-#ifdef IDCT_SCALING_SUPPORTED
+-
+-  /* Compute actual output image dimensions and DCT scaling choices. */
+-  if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
+-    /* Provide 1/8 scaling */
+-    cinfo->output_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width, 8L);
+-    cinfo->output_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height, 8L);
+-    cinfo->min_DCT_scaled_size = 1;
+-  } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
+-    /* Provide 1/4 scaling */
+-    cinfo->output_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width, 4L);
+-    cinfo->output_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height, 4L);
+-    cinfo->min_DCT_scaled_size = 2;
+-  } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
+-    /* Provide 1/2 scaling */
+-    cinfo->output_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width, 2L);
+-    cinfo->output_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height, 2L);
+-    cinfo->min_DCT_scaled_size = 4;
+-  } else {
+-    /* Provide 1/1 scaling */
+-    cinfo->output_width = cinfo->image_width;
+-    cinfo->output_height = cinfo->image_height;
+-    cinfo->min_DCT_scaled_size = DCTSIZE;
+-  }
+-  /* In selecting the actual DCT scaling for each component, we try to
+-   * scale up the chroma components via IDCT scaling rather than upsampling.
+-   * This saves time if the upsampler gets to use 1:1 scaling.
+-   * Note this code assumes that the supported DCT scalings are powers of 2.
+-   */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    int ssize = cinfo->min_DCT_scaled_size;
+-    while (ssize < DCTSIZE &&
+-	   (compptr->h_samp_factor * ssize * 2 <=
+-	    cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
+-	   (compptr->v_samp_factor * ssize * 2 <=
+-	    cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
+-      ssize = ssize * 2;
+-    }
+-    compptr->DCT_scaled_size = ssize;
+-  }
+-
+-  /* Recompute downsampled dimensions of components;
+-   * application needs to know these if using raw downsampled data.
+-   */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Size in samples, after IDCT scaling */
+-    compptr->downsampled_width = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_width *
+-		    (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
+-		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
+-    compptr->downsampled_height = (JDIMENSION)
+-      jdiv_round_up((long) cinfo->image_height *
+-		    (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
+-		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
+-  }
+-
+-#else /* !IDCT_SCALING_SUPPORTED */
+-
+-  /* Hardwire it to "no scaling" */
+-  cinfo->output_width = cinfo->image_width;
+-  cinfo->output_height = cinfo->image_height;
+-  /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
+-   * and has computed unscaled downsampled_width and downsampled_height.
+-   */
+-
+-#endif /* IDCT_SCALING_SUPPORTED */
+-
+-  /* Report number of components in selected colorspace. */
+-  /* Probably this should be in the color conversion module... */
+-  switch (cinfo->out_color_space) {
+-  case JCS_GRAYSCALE:
+-    cinfo->out_color_components = 1;
+-    break;
+-  case JCS_RGB:
+-#if RGB_PIXELSIZE != 3
+-    cinfo->out_color_components = RGB_PIXELSIZE;
+-    break;
+-#endif /* else share code with YCbCr */
+-  case JCS_YCbCr:
+-    cinfo->out_color_components = 3;
+-    break;
+-  case JCS_CMYK:
+-  case JCS_YCCK:
+-    cinfo->out_color_components = 4;
+-    break;
+-  default:			/* else must be same colorspace as in file */
+-    cinfo->out_color_components = cinfo->num_components;
+-    break;
+-  }
+-  cinfo->output_components = (cinfo->quantize_colors ? 1 :
+-			      cinfo->out_color_components);
+-
+-  /* See if upsampler will want to emit more than one row at a time */
+-  if (use_merged_upsample(cinfo))
+-    cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
+-  else
+-    cinfo->rec_outbuf_height = 1;
+-}
+-
+-
+-/*
+- * Several decompression processes need to range-limit values to the range
+- * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
+- * due to noise introduced by quantization, roundoff error, etc.  These
+- * processes are inner loops and need to be as fast as possible.  On most
+- * machines, particularly CPUs with pipelines or instruction prefetch,
+- * a (subscript-check-less) C table lookup
+- *		x = sample_range_limit[x];
+- * is faster than explicit tests
+- *		if (x < 0)  x = 0;
+- *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE;
+- * These processes all use a common table prepared by the routine below.
+- *
+- * For most steps we can mathematically guarantee that the initial value
+- * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
+- * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient.  But for the initial
+- * limiting step (just after the IDCT), a wildly out-of-range value is 
+- * possible if the input data is corrupt.  To avoid any chance of indexing
+- * off the end of memory and getting a bad-pointer trap, we perform the
+- * post-IDCT limiting thus:
+- *		x = range_limit[x & MASK];
+- * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
+- * samples.  Under normal circumstances this is more than enough range and
+- * a correct output will be generated; with bogus input data the mask will
+- * cause wraparound, and we will safely generate a bogus-but-in-range output.
+- * For the post-IDCT step, we want to convert the data from signed to unsigned
+- * representation by adding CENTERJSAMPLE at the same time that we limit it.
+- * So the post-IDCT limiting table ends up looking like this:
+- *   CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
+- *   MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+- *   0          (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+- *   0,1,...,CENTERJSAMPLE-1
+- * Negative inputs select values from the upper half of the table after
+- * masking.
+- *
+- * We can save some space by overlapping the start of the post-IDCT table
+- * with the simpler range limiting table.  The post-IDCT table begins at
+- * sample_range_limit + CENTERJSAMPLE.
+- *
+- * Note that the table is allocated in near data space on PCs; it's small
+- * enough and used often enough to justify this.
+- */
+-
+-LOCAL(void)
+-prepare_range_limit_table (j_decompress_ptr cinfo)
+-/* Allocate and fill in the sample_range_limit table */
+-{
+-  JSAMPLE * table;
+-  int i;
+-
+-  table = (JSAMPLE *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-		(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+-  table += (MAXJSAMPLE+1);	/* allow negative subscripts of simple table */
+-  cinfo->sample_range_limit = table;
+-  /* First segment of "simple" table: limit[x] = 0 for x < 0 */
+-  MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
+-  /* Main part of "simple" table: limit[x] = x */
+-  for (i = 0; i <= MAXJSAMPLE; i++)
+-    table[i] = (JSAMPLE) i;
+-  table += CENTERJSAMPLE;	/* Point to where post-IDCT table starts */
+-  /* End of simple table, rest of first half of post-IDCT table */
+-  for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
+-    table[i] = MAXJSAMPLE;
+-  /* Second half of post-IDCT table */
+-  MEMZERO(table + (2 * (MAXJSAMPLE+1)),
+-	  (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+-  MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
+-	  cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
+-}
+-
+-
+-/*
+- * Master selection of decompression modules.
+- * This is done once at jpeg_start_decompress time.  We determine
+- * which modules will be used and give them appropriate initialization calls.
+- * We also initialize the decompressor input side to begin consuming data.
+- *
+- * Since jpeg_read_header has finished, we know what is in the SOF
+- * and (first) SOS markers.  We also have all the application parameter
+- * settings.
+- */
+-
+-LOCAL(void)
+-master_selection (j_decompress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-  boolean use_c_buffer;
+-  long samplesperrow;
+-  JDIMENSION jd_samplesperrow;
+-
+-  /* Initialize dimensions and other stuff */
+-  jpeg_calc_output_dimensions(cinfo);
+-  prepare_range_limit_table(cinfo);
+-
+-  /* Width of an output scanline must be representable as JDIMENSION. */
+-  samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
+-  jd_samplesperrow = (JDIMENSION) samplesperrow;
+-  if ((long) jd_samplesperrow != samplesperrow)
+-    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+-
+-  /* Initialize my private state */
+-  master->pass_number = 0;
+-  master->using_merged_upsample = use_merged_upsample(cinfo);
+-
+-  /* Color quantizer selection */
+-  master->quantizer_1pass = NULL;
+-  master->quantizer_2pass = NULL;
+-  /* No mode changes if not using buffered-image mode. */
+-  if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
+-    cinfo->enable_1pass_quant = FALSE;
+-    cinfo->enable_external_quant = FALSE;
+-    cinfo->enable_2pass_quant = FALSE;
+-  }
+-  if (cinfo->quantize_colors) {
+-    if (cinfo->raw_data_out)
+-      ERREXIT(cinfo, JERR_NOTIMPL);
+-    /* 2-pass quantizer only works in 3-component color space. */
+-    if (cinfo->out_color_components != 3) {
+-      cinfo->enable_1pass_quant = TRUE;
+-      cinfo->enable_external_quant = FALSE;
+-      cinfo->enable_2pass_quant = FALSE;
+-      cinfo->colormap = NULL;
+-    } else if (cinfo->colormap != NULL) {
+-      cinfo->enable_external_quant = TRUE;
+-    } else if (cinfo->two_pass_quantize) {
+-      cinfo->enable_2pass_quant = TRUE;
+-    } else {
+-      cinfo->enable_1pass_quant = TRUE;
+-    }
+-
+-    if (cinfo->enable_1pass_quant) {
+-#ifdef QUANT_1PASS_SUPPORTED
+-      jinit_1pass_quantizer(cinfo);
+-      master->quantizer_1pass = cinfo->cquantize;
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    }
+-
+-    /* We use the 2-pass code to map to external colormaps. */
+-    if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
+-#ifdef QUANT_2PASS_SUPPORTED
+-      jinit_2pass_quantizer(cinfo);
+-      master->quantizer_2pass = cinfo->cquantize;
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    }
+-    /* If both quantizers are initialized, the 2-pass one is left active;
+-     * this is necessary for starting with quantization to an external map.
+-     */
+-  }
+-
+-  /* Post-processing: in particular, color conversion first */
+-  if (! cinfo->raw_data_out) {
+-    if (master->using_merged_upsample) {
+-#ifdef UPSAMPLE_MERGING_SUPPORTED
+-      jinit_merged_upsampler(cinfo); /* does color conversion too */
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    } else {
+-      jinit_color_deconverter(cinfo);
+-      jinit_upsampler(cinfo);
+-    }
+-    jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
+-  }
+-  /* Inverse DCT */
+-  jinit_inverse_dct(cinfo);
+-  /* Entropy decoding: either Huffman or arithmetic coding. */
+-  if (cinfo->arith_code) {
+-    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+-  } else {
+-    if (cinfo->progressive_mode) {
+-#ifdef D_PROGRESSIVE_SUPPORTED
+-      jinit_phuff_decoder(cinfo);
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    } else
+-      jinit_huff_decoder(cinfo);
+-  }
+-
+-  /* Initialize principal buffer controllers. */
+-  use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
+-  jinit_d_coef_controller(cinfo, use_c_buffer);
+-
+-  if (! cinfo->raw_data_out)
+-    jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
+-
+-  /* We can now tell the memory manager to allocate virtual arrays. */
+-  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+-
+-  /* Initialize input side of decompressor to consume first scan. */
+-  (*cinfo->inputctl->start_input_pass) (cinfo);
+-
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-  /* If jpeg_start_decompress will read the whole file, initialize
+-   * progress monitoring appropriately.  The input step is counted
+-   * as one pass.
+-   */
+-  if (cinfo->progress != NULL && ! cinfo->buffered_image &&
+-      cinfo->inputctl->has_multiple_scans) {
+-    int nscans;
+-    /* Estimate number of scans to set pass_limit. */
+-    if (cinfo->progressive_mode) {
+-      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+-      nscans = 2 + 3 * cinfo->num_components;
+-    } else {
+-      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+-      nscans = cinfo->num_components;
+-    }
+-    cinfo->progress->pass_counter = 0L;
+-    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+-    cinfo->progress->completed_passes = 0;
+-    cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
+-    /* Count the input pass as done */
+-    master->pass_number++;
+-  }
+-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+-}
+-
+-
+-/*
+- * Per-pass setup.
+- * This is called at the beginning of each output pass.  We determine which
+- * modules will be active during this pass and give them appropriate
+- * start_pass calls.  We also set is_dummy_pass to indicate whether this
+- * is a "real" output pass or a dummy pass for color quantization.
+- * (In the latter case, jdapistd.c will crank the pass to completion.)
+- */
+-
+-METHODDEF(void)
+-prepare_for_output_pass (j_decompress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-
+-  if (master->pub.is_dummy_pass) {
+-#ifdef QUANT_2PASS_SUPPORTED
+-    /* Final pass of 2-pass quantization */
+-    master->pub.is_dummy_pass = FALSE;
+-    (*cinfo->cquantize->start_pass) (cinfo, FALSE);
+-    (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
+-    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
+-#else
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif /* QUANT_2PASS_SUPPORTED */
+-  } else {
+-    if (cinfo->quantize_colors && cinfo->colormap == NULL) {
+-      /* Select new quantization method */
+-      if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
+-	cinfo->cquantize = master->quantizer_2pass;
+-	master->pub.is_dummy_pass = TRUE;
+-      } else if (cinfo->enable_1pass_quant) {
+-	cinfo->cquantize = master->quantizer_1pass;
+-      } else {
+-	ERREXIT(cinfo, JERR_MODE_CHANGE);
+-      }
+-    }
+-    (*cinfo->idct->start_pass) (cinfo);
+-    (*cinfo->coef->start_output_pass) (cinfo);
+-    if (! cinfo->raw_data_out) {
+-      if (! master->using_merged_upsample)
+-	(*cinfo->cconvert->start_pass) (cinfo);
+-      (*cinfo->upsample->start_pass) (cinfo);
+-      if (cinfo->quantize_colors)
+-	(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
+-      (*cinfo->post->start_pass) (cinfo,
+-	    (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+-      (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+-    }
+-  }
+-
+-  /* Set up progress monitor's pass info if present */
+-  if (cinfo->progress != NULL) {
+-    cinfo->progress->completed_passes = master->pass_number;
+-    cinfo->progress->total_passes = master->pass_number +
+-				    (master->pub.is_dummy_pass ? 2 : 1);
+-    /* In buffered-image mode, we assume one more output pass if EOI not
+-     * yet reached, but no more passes if EOI has been reached.
+-     */
+-    if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
+-      cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Finish up at end of an output pass.
+- */
+-
+-METHODDEF(void)
+-finish_output_pass (j_decompress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-
+-  if (cinfo->quantize_colors)
+-    (*cinfo->cquantize->finish_pass) (cinfo);
+-  master->pass_number++;
+-}
+-
+-
+-#ifdef D_MULTISCAN_FILES_SUPPORTED
+-
+-/*
+- * Switch to a new external colormap between output passes.
+- */
+-
+-GLOBAL(void)
+-jpeg_new_colormap (j_decompress_ptr cinfo)
+-{
+-  my_master_ptr master = (my_master_ptr) cinfo->master;
+-
+-  /* Prevent application from calling me at wrong times */
+-  if (cinfo->global_state != DSTATE_BUFIMAGE)
+-    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-
+-  if (cinfo->quantize_colors && cinfo->enable_external_quant &&
+-      cinfo->colormap != NULL) {
+-    /* Select 2-pass quantizer for external colormap use */
+-    cinfo->cquantize = master->quantizer_2pass;
+-    /* Notify quantizer of colormap change */
+-    (*cinfo->cquantize->new_color_map) (cinfo);
+-    master->pub.is_dummy_pass = FALSE; /* just in case */
+-  } else
+-    ERREXIT(cinfo, JERR_MODE_CHANGE);
+-}
+-
+-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+-
+-
+-/*
+- * Initialize master decompression control and select active modules.
+- * This is performed at the start of jpeg_start_decompress.
+- */
+-
+-GLOBAL(void)
+-jinit_master_decompress (j_decompress_ptr cinfo)
+-{
+-  my_master_ptr master;
+-
+-  master = (my_master_ptr)
+-      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				  SIZEOF(my_decomp_master));
+-  cinfo->master = (struct jpeg_decomp_master *) master;
+-  master->pub.prepare_for_output_pass = prepare_for_output_pass;
+-  master->pub.finish_output_pass = finish_output_pass;
+-
+-  master->pub.is_dummy_pass = FALSE;
+-
+-  master_selection(cinfo);
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmerge.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmerge.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdmerge.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdmerge.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,404 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdmerge.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains code for merged upsampling/color conversion.
+- *
+- * This file combines functions from jdsample.c and jdcolor.c;
+- * read those files first to understand what's going on.
+- *
+- * When the chroma components are to be upsampled by simple replication
+- * (ie, box filtering), we can save some work in color conversion by
+- * calculating all the output pixels corresponding to a pair of chroma
+- * samples at one time.  In the conversion equations
+- *	R = Y           + K1 * Cr
+- *	G = Y + K2 * Cb + K3 * Cr
+- *	B = Y + K4 * Cb
+- * only the Y term varies among the group of pixels corresponding to a pair
+- * of chroma samples, so the rest of the terms can be calculated just once.
+- * At typical sampling ratios, this eliminates half or three-quarters of the
+- * multiplications needed for color conversion.
+- *
+- * This file currently provides implementations for the following cases:
+- *	YCbCr => RGB color conversion only.
+- *	Sampling ratios of 2h1v or 2h2v.
+- *	No scaling needed at upsample time.
+- *	Corner-aligned (non-CCIR601) sampling alignment.
+- * Other special cases could be added, but in most applications these are
+- * the only common cases.  (For uncommon cases we fall back on the more
+- * general code in jdsample.c and jdcolor.c.)
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-#ifdef UPSAMPLE_MERGING_SUPPORTED
+-
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_upsampler pub;	/* public fields */
+-
+-  /* Pointer to routine to do actual upsampling/conversion of one row group */
+-  JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
+-			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+-			   JSAMPARRAY output_buf));
+-
+-  /* Private state for YCC->RGB conversion */
+-  int * Cr_r_tab;		/* => table for Cr to R conversion */
+-  int * Cb_b_tab;		/* => table for Cb to B conversion */
+-  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
+-  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */
+-
+-  /* For 2:1 vertical sampling, we produce two output rows at a time.
+-   * We need a "spare" row buffer to hold the second output row if the
+-   * application provides just a one-row buffer; we also use the spare
+-   * to discard the dummy last row if the image height is odd.
+-   */
+-  JSAMPROW spare_row;
+-  boolean spare_full;		/* T if spare buffer is occupied */
+-
+-  JDIMENSION out_row_width;	/* samples per output row */
+-  JDIMENSION rows_to_go;	/* counts rows remaining in image */
+-} my_upsampler;
+-
+-typedef my_upsampler * my_upsample_ptr;
+-
+-#define SCALEBITS	16	/* speediest right-shift on some machines */
+-#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
+-#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+-
+-
+-/*
+- * Initialize tables for YCC->RGB colorspace conversion.
+- * This is taken directly from jdcolor.c; see that file for more info.
+- */
+-
+-LOCAL(void)
+-build_ycc_rgb_table (j_decompress_ptr cinfo)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  int i;
+-  INT32 x;
+-  SHIFT_TEMPS
+-
+-  upsample->Cr_r_tab = (int *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(int));
+-  upsample->Cb_b_tab = (int *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(int));
+-  upsample->Cr_g_tab = (INT32 *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(INT32));
+-  upsample->Cb_g_tab = (INT32 *)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				(MAXJSAMPLE+1) * SIZEOF(INT32));
+-
+-  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+-    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+-    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+-    /* Cr=>R value is nearest int to 1.40200 * x */
+-    upsample->Cr_r_tab[i] = (int)
+-		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+-    /* Cb=>B value is nearest int to 1.77200 * x */
+-    upsample->Cb_b_tab[i] = (int)
+-		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+-    /* Cr=>G value is scaled-up -0.71414 * x */
+-    upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+-    /* Cb=>G value is scaled-up -0.34414 * x */
+-    /* We also add in ONE_HALF so that need not do it in inner loop */
+-    upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+-  }
+-}
+-
+-
+-/*
+- * Initialize for an upsampling pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_merged_upsample (j_decompress_ptr cinfo)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-
+-  /* Mark the spare buffer empty */
+-  upsample->spare_full = FALSE;
+-  /* Initialize total-height counter for detecting bottom of image */
+-  upsample->rows_to_go = cinfo->output_height;
+-}
+-
+-
+-/*
+- * Control routine to do upsampling (and color conversion).
+- *
+- * The control routine just handles the row buffering considerations.
+- */
+-
+-METHODDEF(void)
+-merged_2v_upsample (j_decompress_ptr cinfo,
+-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-		    JDIMENSION in_row_groups_avail,
+-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-		    JDIMENSION out_rows_avail)
+-/* 2:1 vertical sampling case: may need a spare row. */
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  JSAMPROW work_ptrs[2];
+-  JDIMENSION num_rows;		/* number of rows returned to caller */
+-
+-  if (upsample->spare_full) {
+-    /* If we have a spare row saved from a previous cycle, just return it. */
+-    jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
+-		      1, upsample->out_row_width);
+-    num_rows = 1;
+-    upsample->spare_full = FALSE;
+-  } else {
+-    /* Figure number of rows to return to caller. */
+-    num_rows = 2;
+-    /* Not more than the distance to the end of the image. */
+-    if (num_rows > upsample->rows_to_go)
+-      num_rows = upsample->rows_to_go;
+-    /* And not more than what the client can accept: */
+-    out_rows_avail -= *out_row_ctr;
+-    if (num_rows > out_rows_avail)
+-      num_rows = out_rows_avail;
+-    /* Create output pointer array for upsampler. */
+-    work_ptrs[0] = output_buf[*out_row_ctr];
+-    if (num_rows > 1) {
+-      work_ptrs[1] = output_buf[*out_row_ctr + 1];
+-    } else {
+-      work_ptrs[1] = upsample->spare_row;
+-      upsample->spare_full = TRUE;
+-    }
+-    /* Now do the upsampling. */
+-    (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
+-  }
+-
+-  /* Adjust counts */
+-  *out_row_ctr += num_rows;
+-  upsample->rows_to_go -= num_rows;
+-  /* When the buffer is emptied, declare this input row group consumed */
+-  if (! upsample->spare_full)
+-    (*in_row_group_ctr)++;
+-}
+-
+-
+-METHODDEF(void)
+-merged_1v_upsample (j_decompress_ptr cinfo,
+-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-		    JDIMENSION in_row_groups_avail,
+-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-		    JDIMENSION out_rows_avail)
+-/* 1:1 vertical sampling case: much easier, never need a spare row. */
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-
+-  /* Just do the upsampling. */
+-  (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
+-			 output_buf + *out_row_ctr);
+-  /* Adjust counts */
+-  (*out_row_ctr)++;
+-  (*in_row_group_ctr)++;
+-}
+-
+-
+-/*
+- * These are the routines invoked by the control routines to do
+- * the actual upsampling/conversion.  One row group is processed per call.
+- *
+- * Note: since we may be writing directly into application-supplied buffers,
+- * we have to be honest about the output width; we can't assume the buffer
+- * has been rounded up to an even width.
+- */
+-
+-
+-/*
+- * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
+- */
+-
+-METHODDEF(void)
+-h2v1_merged_upsample (j_decompress_ptr cinfo,
+-		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+-		      JSAMPARRAY output_buf)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  register int y, cred, cgreen, cblue;
+-  int cb, cr;
+-  register JSAMPROW outptr;
+-  JSAMPROW inptr0, inptr1, inptr2;
+-  JDIMENSION col;
+-  /* copy these pointers into registers if possible */
+-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+-  int * Crrtab = upsample->Cr_r_tab;
+-  int * Cbbtab = upsample->Cb_b_tab;
+-  INT32 * Crgtab = upsample->Cr_g_tab;
+-  INT32 * Cbgtab = upsample->Cb_g_tab;
+-  SHIFT_TEMPS
+-
+-  inptr0 = input_buf[0][in_row_group_ctr];
+-  inptr1 = input_buf[1][in_row_group_ctr];
+-  inptr2 = input_buf[2][in_row_group_ctr];
+-  outptr = output_buf[0];
+-  /* Loop for each pair of output pixels */
+-  for (col = cinfo->output_width >> 1; col > 0; col--) {
+-    /* Do the chroma part of the calculation */
+-    cb = GETJSAMPLE(*inptr1++);
+-    cr = GETJSAMPLE(*inptr2++);
+-    cred = Crrtab[cr];
+-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+-    cblue = Cbbtab[cb];
+-    /* Fetch 2 Y values and emit 2 pixels */
+-    y  = GETJSAMPLE(*inptr0++);
+-    outptr[RGB_RED] =   range_limit[y + cred];
+-    outptr[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr += RGB_PIXELSIZE;
+-    y  = GETJSAMPLE(*inptr0++);
+-    outptr[RGB_RED] =   range_limit[y + cred];
+-    outptr[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr += RGB_PIXELSIZE;
+-  }
+-  /* If image width is odd, do the last output column separately */
+-  if (cinfo->output_width & 1) {
+-    cb = GETJSAMPLE(*inptr1);
+-    cr = GETJSAMPLE(*inptr2);
+-    cred = Crrtab[cr];
+-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+-    cblue = Cbbtab[cb];
+-    y  = GETJSAMPLE(*inptr0);
+-    outptr[RGB_RED] =   range_limit[y + cred];
+-    outptr[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr[RGB_BLUE] =  range_limit[y + cblue];
+-  }
+-}
+-
+-
+-/*
+- * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
+- */
+-
+-METHODDEF(void)
+-h2v2_merged_upsample (j_decompress_ptr cinfo,
+-		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
+-		      JSAMPARRAY output_buf)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  register int y, cred, cgreen, cblue;
+-  int cb, cr;
+-  register JSAMPROW outptr0, outptr1;
+-  JSAMPROW inptr00, inptr01, inptr1, inptr2;
+-  JDIMENSION col;
+-  /* copy these pointers into registers if possible */
+-  register JSAMPLE * range_limit = cinfo->sample_range_limit;
+-  int * Crrtab = upsample->Cr_r_tab;
+-  int * Cbbtab = upsample->Cb_b_tab;
+-  INT32 * Crgtab = upsample->Cr_g_tab;
+-  INT32 * Cbgtab = upsample->Cb_g_tab;
+-  SHIFT_TEMPS
+-
+-  inptr00 = input_buf[0][in_row_group_ctr*2];
+-  inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
+-  inptr1 = input_buf[1][in_row_group_ctr];
+-  inptr2 = input_buf[2][in_row_group_ctr];
+-  outptr0 = output_buf[0];
+-  outptr1 = output_buf[1];
+-  /* Loop for each group of output pixels */
+-  for (col = cinfo->output_width >> 1; col > 0; col--) {
+-    /* Do the chroma part of the calculation */
+-    cb = GETJSAMPLE(*inptr1++);
+-    cr = GETJSAMPLE(*inptr2++);
+-    cred = Crrtab[cr];
+-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+-    cblue = Cbbtab[cb];
+-    /* Fetch 4 Y values and emit 4 pixels */
+-    y  = GETJSAMPLE(*inptr00++);
+-    outptr0[RGB_RED] =   range_limit[y + cred];
+-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr0 += RGB_PIXELSIZE;
+-    y  = GETJSAMPLE(*inptr00++);
+-    outptr0[RGB_RED] =   range_limit[y + cred];
+-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr0 += RGB_PIXELSIZE;
+-    y  = GETJSAMPLE(*inptr01++);
+-    outptr1[RGB_RED] =   range_limit[y + cred];
+-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr1 += RGB_PIXELSIZE;
+-    y  = GETJSAMPLE(*inptr01++);
+-    outptr1[RGB_RED] =   range_limit[y + cred];
+-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+-    outptr1 += RGB_PIXELSIZE;
+-  }
+-  /* If image width is odd, do the last output column separately */
+-  if (cinfo->output_width & 1) {
+-    cb = GETJSAMPLE(*inptr1);
+-    cr = GETJSAMPLE(*inptr2);
+-    cred = Crrtab[cr];
+-    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
+-    cblue = Cbbtab[cb];
+-    y  = GETJSAMPLE(*inptr00);
+-    outptr0[RGB_RED] =   range_limit[y + cred];
+-    outptr0[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr0[RGB_BLUE] =  range_limit[y + cblue];
+-    y  = GETJSAMPLE(*inptr01);
+-    outptr1[RGB_RED] =   range_limit[y + cred];
+-    outptr1[RGB_GREEN] = range_limit[y + cgreen];
+-    outptr1[RGB_BLUE] =  range_limit[y + cblue];
+-  }
+-}
+-
+-
+-/*
+- * Module initialization routine for merged upsampling/color conversion.
+- *
+- * NB: this is called under the conditions determined by use_merged_upsample()
+- * in jdmaster.c.  That routine MUST correspond to the actual capabilities
+- * of this module; no safety checks are made here.
+- */
+-
+-GLOBAL(void)
+-jinit_merged_upsampler (j_decompress_ptr cinfo)
+-{
+-  my_upsample_ptr upsample;
+-
+-  upsample = (my_upsample_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_upsampler));
+-  cinfo->upsample = (struct jpeg_upsampler *) upsample;
+-  upsample->pub.start_pass = start_pass_merged_upsample;
+-  upsample->pub.need_context_rows = FALSE;
+-
+-  upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
+-
+-  if (cinfo->max_v_samp_factor == 2) {
+-    upsample->pub.upsample = merged_2v_upsample;
+-    upsample->upmethod = h2v2_merged_upsample;
+-    /* Allocate a spare row buffer */
+-    upsample->spare_row = (JSAMPROW)
+-      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-		(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
+-  } else {
+-    upsample->pub.upsample = merged_1v_upsample;
+-    upsample->upmethod = h2v1_merged_upsample;
+-    /* No spare row needed */
+-    upsample->spare_row = NULL;
+-  }
+-
+-  build_ycc_rgb_table(cinfo);
+-}
+-
+-#endif /* UPSAMPLE_MERGING_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdphuff.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdphuff.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdphuff.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdphuff.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,672 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdphuff.c
+- *
+- * Copyright (C) 1995-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains Huffman entropy decoding routines for progressive JPEG.
+- *
+- * Much of the complexity here has to do with supporting input suspension.
+- * If the data source module demands suspension, we want to be able to back
+- * up to the start of the current MCU.  To do this, we copy state variables
+- * into local working storage, and update them back to the permanent
+- * storage only upon successful completion of an MCU.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdhuff.h"		/* Declarations shared with jdhuff.c */
+-
+-
+-#ifdef D_PROGRESSIVE_SUPPORTED
+-
+-/*
+- * Expanded entropy decoder object for progressive Huffman decoding.
+- *
+- * The savable_state subrecord contains fields that change within an MCU,
+- * but must not be updated permanently until we complete the MCU.
+- */
+-
+-typedef struct {
+-  unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
+-  int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
+-} savable_state;
+-
+-/* This macro is to work around compilers with missing or broken
+- * structure assignment.  You'll need to fix this code if you have
+- * such a compiler and you change MAX_COMPS_IN_SCAN.
+- */
+-
+-#ifndef NO_STRUCT_ASSIGN
+-#define ASSIGN_STATE(dest,src)  ((dest) = (src))
+-#else
+-#if MAX_COMPS_IN_SCAN == 4
+-#define ASSIGN_STATE(dest,src)  \
+-	((dest).EOBRUN = (src).EOBRUN, \
+-	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
+-	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
+-	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
+-	 (dest).last_dc_val[3] = (src).last_dc_val[3])
+-#endif
+-#endif
+-
+-
+-typedef struct {
+-  struct jpeg_entropy_decoder pub; /* public fields */
+-
+-  /* These fields are loaded into local variables at start of each MCU.
+-   * In case of suspension, we exit WITHOUT updating them.
+-   */
+-  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
+-  savable_state saved;		/* Other state at start of MCU */
+-
+-  /* These fields are NOT loaded into local working state. */
+-  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
+-
+-  /* Pointers to derived tables (these workspaces have image lifespan) */
+-  d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
+-
+-  d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
+-} phuff_entropy_decoder;
+-
+-typedef phuff_entropy_decoder * phuff_entropy_ptr;
+-
+-/* Forward declarations */
+-METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
+-					    JBLOCKROW *MCU_data));
+-METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
+-					    JBLOCKROW *MCU_data));
+-METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
+-					     JBLOCKROW *MCU_data));
+-METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
+-					     JBLOCKROW *MCU_data));
+-
+-
+-/*
+- * Initialize for a Huffman-compressed scan.
+- */
+-
+-METHODDEF(void)
+-start_pass_phuff_decoder (j_decompress_ptr cinfo)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  boolean is_DC_band, bad;
+-  int ci, coefi, tbl;
+-  int *coef_bit_ptr;
+-  jpeg_component_info * compptr;
+-
+-  is_DC_band = (cinfo->Ss == 0);
+-
+-  /* Validate scan parameters */
+-  bad = FALSE;
+-  if (is_DC_band) {
+-    if (cinfo->Se != 0)
+-      bad = TRUE;
+-  } else {
+-    /* need not check Ss/Se < 0 since they came from unsigned bytes */
+-    if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
+-      bad = TRUE;
+-    /* AC scans may have only one component */
+-    if (cinfo->comps_in_scan != 1)
+-      bad = TRUE;
+-  }
+-  if (cinfo->Ah != 0) {
+-    /* Successive approximation refinement scan: must have Al = Ah-1. */
+-    if (cinfo->Al != cinfo->Ah-1)
+-      bad = TRUE;
+-  }
+-  if (cinfo->Al > 13)		/* need not check for < 0 */
+-    bad = TRUE;
+-  /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
+-   * but the spec doesn't say so, and we try to be liberal about what we
+-   * accept.  Note: large Al values could result in out-of-range DC
+-   * coefficients during early scans, leading to bizarre displays due to
+-   * overflows in the IDCT math.  But we won't crash.
+-   */
+-  if (bad)
+-    ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
+-	     cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
+-  /* Update progression status, and verify that scan order is legal.
+-   * Note that inter-scan inconsistencies are treated as warnings
+-   * not fatal errors ... not clear if this is right way to behave.
+-   */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    int cindex = cinfo->cur_comp_info[ci]->component_index;
+-    coef_bit_ptr = & cinfo->coef_bits[cindex][0];
+-    if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
+-      WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
+-    for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
+-      int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
+-      if (cinfo->Ah != expected)
+-	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
+-      coef_bit_ptr[coefi] = cinfo->Al;
+-    }
+-  }
+-
+-  /* Select MCU decoding routine */
+-  if (cinfo->Ah == 0) {
+-    if (is_DC_band)
+-      entropy->pub.decode_mcu = decode_mcu_DC_first;
+-    else
+-      entropy->pub.decode_mcu = decode_mcu_AC_first;
+-  } else {
+-    if (is_DC_band)
+-      entropy->pub.decode_mcu = decode_mcu_DC_refine;
+-    else
+-      entropy->pub.decode_mcu = decode_mcu_AC_refine;
+-  }
+-
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+-    compptr = cinfo->cur_comp_info[ci];
+-    /* Make sure requested tables are present, and compute derived tables.
+-     * We may build same derived table more than once, but it's not expensive.
+-     */
+-    if (is_DC_band) {
+-      if (cinfo->Ah == 0) {	/* DC refinement needs no table */
+-	tbl = compptr->dc_tbl_no;
+-	jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+-				& entropy->derived_tbls[tbl]);
+-      }
+-    } else {
+-      tbl = compptr->ac_tbl_no;
+-      jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+-			      & entropy->derived_tbls[tbl]);
+-      /* remember the single active table */
+-      entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
+-    }
+-    /* Initialize DC predictions to 0 */
+-    entropy->saved.last_dc_val[ci] = 0;
+-  }
+-
+-  /* Initialize bitread state variables */
+-  entropy->bitstate.bits_left = 0;
+-  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+-  entropy->pub.insufficient_data = FALSE;
+-
+-  /* Initialize private state variables */
+-  entropy->saved.EOBRUN = 0;
+-
+-  /* Initialize restart counter */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-}
+-
+-
+-/*
+- * Figure F.12: extend sign bit.
+- * On some machines, a shift and add will be faster than a table lookup.
+- */
+-
+-#ifdef AVOID_TABLES
+-
+-#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
+-
+-#else
+-
+-#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
+-
+-static const int extend_test[16] =   /* entry n is 2**(n-1) */
+-  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+-    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
+-
+-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
+-  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
+-    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
+-    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
+-    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
+-
+-#endif /* AVOID_TABLES */
+-
+-
+-/*
+- * Check for a restart marker & resynchronize decoder.
+- * Returns FALSE if must suspend.
+- */
+-
+-LOCAL(boolean)
+-process_restart (j_decompress_ptr cinfo)
+-{
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  int ci;
+-
+-  /* Throw away any unused bits remaining in bit buffer; */
+-  /* include any full bytes in next_marker's count of discarded bytes */
+-  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+-  entropy->bitstate.bits_left = 0;
+-
+-  /* Advance past the RSTn marker */
+-  if (! (*cinfo->marker->read_restart_marker) (cinfo))
+-    return FALSE;
+-
+-  /* Re-initialize DC predictions to 0 */
+-  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+-    entropy->saved.last_dc_val[ci] = 0;
+-  /* Re-init EOB run count, too */
+-  entropy->saved.EOBRUN = 0;
+-
+-  /* Reset restart counter */
+-  entropy->restarts_to_go = cinfo->restart_interval;
+-
+-  /* Reset out-of-data flag, unless read_restart_marker left us smack up
+-   * against a marker.  In that case we will end up treating the next data
+-   * segment as empty, and we can avoid producing bogus output pixels by
+-   * leaving the flag set.
+-   */
+-  if (cinfo->unread_marker == 0)
+-    entropy->pub.insufficient_data = FALSE;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * Huffman MCU decoding.
+- * Each of these routines decodes and returns one MCU's worth of
+- * Huffman-compressed coefficients. 
+- * The coefficients are reordered from zigzag order into natural array order,
+- * but are not dequantized.
+- *
+- * The i'th block of the MCU is stored into the block pointed to by
+- * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
+- *
+- * We return FALSE if data source requested suspension.  In that case no
+- * changes have been made to permanent state.  (Exception: some output
+- * coefficients may already have been assigned.  This is harmless for
+- * spectral selection, since we'll just re-assign them on the next call.
+- * Successive approximation AC refinement has to be more careful, however.)
+- */
+-
+-/*
+- * MCU decoding for DC initial scan (either spectral selection,
+- * or first pass of successive approximation).
+- */
+-
+-METHODDEF(boolean)
+-decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+-{   
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  int Al = cinfo->Al;
+-  register int s, r;
+-  int blkn, ci;
+-  JBLOCKROW block;
+-  BITREAD_STATE_VARS;
+-  savable_state state;
+-  d_derived_tbl * tbl;
+-  jpeg_component_info * compptr;
+-
+-  /* Process restart marker if needed; may have to suspend */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! process_restart(cinfo))
+-	return FALSE;
+-  }
+-
+-  /* If we've run out of data, just leave the MCU set to zeroes.
+-   * This way, we return uniform gray for the remainder of the segment.
+-   */
+-  if (! entropy->pub.insufficient_data) {
+-
+-    /* Load up working state */
+-    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+-    ASSIGN_STATE(state, entropy->saved);
+-
+-    /* Outer loop handles each block in the MCU */
+-
+-    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-      block = MCU_data[blkn];
+-      ci = cinfo->MCU_membership[blkn];
+-      compptr = cinfo->cur_comp_info[ci];
+-      tbl = entropy->derived_tbls[compptr->dc_tbl_no];
+-
+-      /* Decode a single block's worth of coefficients */
+-
+-      /* Section F.2.2.1: decode the DC coefficient difference */
+-      HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
+-      if (s) {
+-	CHECK_BIT_BUFFER(br_state, s, return FALSE);
+-	r = GET_BITS(s);
+-	s = HUFF_EXTEND(r, s);
+-      }
+-
+-      /* Convert DC difference to actual value, update last_dc_val */
+-      s += state.last_dc_val[ci];
+-      state.last_dc_val[ci] = s;
+-      /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
+-      (*block)[0] = (JCOEF) (s << Al);
+-    }
+-
+-    /* Completed MCU, so update state */
+-    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+-    ASSIGN_STATE(entropy->saved, state);
+-  }
+-
+-  /* Account for restart interval (no-op if not using restarts) */
+-  entropy->restarts_to_go--;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU decoding for AC initial scan (either spectral selection,
+- * or first pass of successive approximation).
+- */
+-
+-METHODDEF(boolean)
+-decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+-{   
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  int Se = cinfo->Se;
+-  int Al = cinfo->Al;
+-  register int s, k, r;
+-  unsigned int EOBRUN;
+-  JBLOCKROW block;
+-  BITREAD_STATE_VARS;
+-  d_derived_tbl * tbl;
+-
+-  /* Process restart marker if needed; may have to suspend */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! process_restart(cinfo))
+-	return FALSE;
+-  }
+-
+-  /* If we've run out of data, just leave the MCU set to zeroes.
+-   * This way, we return uniform gray for the remainder of the segment.
+-   */
+-  if (! entropy->pub.insufficient_data) {
+-
+-    /* Load up working state.
+-     * We can avoid loading/saving bitread state if in an EOB run.
+-     */
+-    EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
+-
+-    /* There is always only one block per MCU */
+-
+-    if (EOBRUN > 0)		/* if it's a band of zeroes... */
+-      EOBRUN--;			/* ...process it now (we do nothing) */
+-    else {
+-      BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+-      block = MCU_data[0];
+-      tbl = entropy->ac_derived_tbl;
+-
+-      for (k = cinfo->Ss; k <= Se; k++) {
+-	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
+-	r = s >> 4;
+-	s &= 15;
+-	if (s) {
+-	  k += r;
+-	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
+-	  r = GET_BITS(s);
+-	  s = HUFF_EXTEND(r, s);
+-	  /* Scale and output coefficient in natural (dezigzagged) order */
+-	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
+-	} else {
+-	  if (r == 15) {	/* ZRL */
+-	    k += 15;		/* skip 15 zeroes in band */
+-	  } else {		/* EOBr, run length is 2^r + appended bits */
+-	    EOBRUN = 1 << r;
+-	    if (r) {		/* EOBr, r > 0 */
+-	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
+-	      r = GET_BITS(r);
+-	      EOBRUN += r;
+-	    }
+-	    EOBRUN--;		/* this band is processed at this moment */
+-	    break;		/* force end-of-band */
+-	  }
+-	}
+-      }
+-
+-      BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+-    }
+-
+-    /* Completed MCU, so update state */
+-    entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
+-  }
+-
+-  /* Account for restart interval (no-op if not using restarts) */
+-  entropy->restarts_to_go--;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU decoding for DC successive approximation refinement scan.
+- * Note: we assume such scans can be multi-component, although the spec
+- * is not very clear on the point.
+- */
+-
+-METHODDEF(boolean)
+-decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+-{   
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+-  int blkn;
+-  JBLOCKROW block;
+-  BITREAD_STATE_VARS;
+-
+-  /* Process restart marker if needed; may have to suspend */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! process_restart(cinfo))
+-	return FALSE;
+-  }
+-
+-  /* Not worth the cycles to check insufficient_data here,
+-   * since we will not change the data anyway if we read zeroes.
+-   */
+-
+-  /* Load up working state */
+-  BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+-
+-  /* Outer loop handles each block in the MCU */
+-
+-  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+-    block = MCU_data[blkn];
+-
+-    /* Encoded data is simply the next bit of the two's-complement DC value */
+-    CHECK_BIT_BUFFER(br_state, 1, return FALSE);
+-    if (GET_BITS(1))
+-      (*block)[0] |= p1;
+-    /* Note: since we use |=, repeating the assignment later is safe */
+-  }
+-
+-  /* Completed MCU, so update state */
+-  BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+-
+-  /* Account for restart interval (no-op if not using restarts) */
+-  entropy->restarts_to_go--;
+-
+-  return TRUE;
+-}
+-
+-
+-/*
+- * MCU decoding for AC successive approximation refinement scan.
+- */
+-
+-METHODDEF(boolean)
+-decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+-{   
+-  phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
+-  int Se = cinfo->Se;
+-  int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
+-  int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
+-  register int s, k, r;
+-  unsigned int EOBRUN;
+-  JBLOCKROW block;
+-  JCOEFPTR thiscoef;
+-  BITREAD_STATE_VARS;
+-  d_derived_tbl * tbl;
+-  int num_newnz;
+-  int newnz_pos[DCTSIZE2];
+-
+-  /* Process restart marker if needed; may have to suspend */
+-  if (cinfo->restart_interval) {
+-    if (entropy->restarts_to_go == 0)
+-      if (! process_restart(cinfo))
+-	return FALSE;
+-  }
+-
+-  /* If we've run out of data, don't modify the MCU.
+-   */
+-  if (! entropy->pub.insufficient_data) {
+-
+-    /* Load up working state */
+-    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+-    EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
+-
+-    /* There is always only one block per MCU */
+-    block = MCU_data[0];
+-    tbl = entropy->ac_derived_tbl;
+-
+-    /* If we are forced to suspend, we must undo the assignments to any newly
+-     * nonzero coefficients in the block, because otherwise we'd get confused
+-     * next time about which coefficients were already nonzero.
+-     * But we need not undo addition of bits to already-nonzero coefficients;
+-     * instead, we can test the current bit to see if we already did it.
+-     */
+-    num_newnz = 0;
+-
+-    /* initialize coefficient loop counter to start of band */
+-    k = cinfo->Ss;
+-
+-    if (EOBRUN == 0) {
+-      for (; k <= Se; k++) {
+-	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
+-	r = s >> 4;
+-	s &= 15;
+-	if (s) {
+-	  if (s != 1)		/* size of new coef should always be 1 */
+-	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
+-	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+-	  if (GET_BITS(1))
+-	    s = p1;		/* newly nonzero coef is positive */
+-	  else
+-	    s = m1;		/* newly nonzero coef is negative */
+-	} else {
+-	  if (r != 15) {
+-	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
+-	    if (r) {
+-	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
+-	      r = GET_BITS(r);
+-	      EOBRUN += r;
+-	    }
+-	    break;		/* rest of block is handled by EOB logic */
+-	  }
+-	  /* note s = 0 for processing ZRL */
+-	}
+-	/* Advance over already-nonzero coefs and r still-zero coefs,
+-	 * appending correction bits to the nonzeroes.  A correction bit is 1
+-	 * if the absolute value of the coefficient must be increased.
+-	 */
+-	do {
+-	  thiscoef = *block + jpeg_natural_order[k];
+-	  if (*thiscoef != 0) {
+-	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+-	    if (GET_BITS(1)) {
+-	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
+-		if (*thiscoef >= 0)
+-		  *thiscoef += p1;
+-		else
+-		  *thiscoef += m1;
+-	      }
+-	    }
+-	  } else {
+-	    if (--r < 0)
+-	      break;		/* reached target zero coefficient */
+-	  }
+-	  k++;
+-	} while (k <= Se);
+-	if (s) {
+-	  int pos = jpeg_natural_order[k];
+-	  /* Output newly nonzero coefficient */
+-	  (*block)[pos] = (JCOEF) s;
+-	  /* Remember its position in case we have to suspend */
+-	  newnz_pos[num_newnz++] = pos;
+-	}
+-      }
+-    }
+-
+-    if (EOBRUN > 0) {
+-      /* Scan any remaining coefficient positions after the end-of-band
+-       * (the last newly nonzero coefficient, if any).  Append a correction
+-       * bit to each already-nonzero coefficient.  A correction bit is 1
+-       * if the absolute value of the coefficient must be increased.
+-       */
+-      for (; k <= Se; k++) {
+-	thiscoef = *block + jpeg_natural_order[k];
+-	if (*thiscoef != 0) {
+-	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
+-	  if (GET_BITS(1)) {
+-	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
+-	      if (*thiscoef >= 0)
+-		*thiscoef += p1;
+-	      else
+-		*thiscoef += m1;
+-	    }
+-	  }
+-	}
+-      }
+-      /* Count one block completed in EOB run */
+-      EOBRUN--;
+-    }
+-
+-    /* Completed MCU, so update state */
+-    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+-    entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
+-  }
+-
+-  /* Account for restart interval (no-op if not using restarts) */
+-  entropy->restarts_to_go--;
+-
+-  return TRUE;
+-
+-undoit:
+-  /* Re-zero any output coefficients that we made newly nonzero */
+-  while (num_newnz > 0)
+-    (*block)[newnz_pos[--num_newnz]] = 0;
+-
+-  return FALSE;
+-}
+-
+-
+-/*
+- * Module initialization routine for progressive Huffman entropy decoding.
+- */
+-
+-GLOBAL(void)
+-jinit_phuff_decoder (j_decompress_ptr cinfo)
+-{
+-  phuff_entropy_ptr entropy;
+-  int *coef_bit_ptr;
+-  int ci, i;
+-
+-  entropy = (phuff_entropy_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(phuff_entropy_decoder));
+-  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+-  entropy->pub.start_pass = start_pass_phuff_decoder;
+-
+-  /* Mark derived tables unallocated */
+-  for (i = 0; i < NUM_HUFF_TBLS; i++) {
+-    entropy->derived_tbls[i] = NULL;
+-  }
+-
+-  /* Create progression status table */
+-  cinfo->coef_bits = (int (*)[DCTSIZE2])
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				cinfo->num_components*DCTSIZE2*SIZEOF(int));
+-  coef_bit_ptr = & cinfo->coef_bits[0][0];
+-  for (ci = 0; ci < cinfo->num_components; ci++) 
+-    for (i = 0; i < DCTSIZE2; i++)
+-      *coef_bit_ptr++ = -1;
+-}
+-
+-#endif /* D_PROGRESSIVE_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdpostct.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdpostct.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdpostct.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdpostct.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,294 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdpostct.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the decompression postprocessing controller.
+- * This controller manages the upsampling, color conversion, and color
+- * quantization/reduction steps; specifically, it controls the buffering
+- * between upsample/color conversion and color quantization/reduction.
+- *
+- * If no color quantization/reduction is required, then this module has no
+- * work to do, and it just hands off to the upsample/color conversion code.
+- * An integrated upsample/convert/quantize process would replace this module
+- * entirely.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Private buffer controller object */
+-
+-typedef struct {
+-  struct jpeg_d_post_controller pub; /* public fields */
+-
+-  /* Color quantization source buffer: this holds output data from
+-   * the upsample/color conversion step to be passed to the quantizer.
+-   * For two-pass color quantization, we need a full-image buffer;
+-   * for one-pass operation, a strip buffer is sufficient.
+-   */
+-  jvirt_sarray_ptr whole_image;	/* virtual array, or NULL if one-pass */
+-  JSAMPARRAY buffer;		/* strip buffer, or current strip of virtual */
+-  JDIMENSION strip_height;	/* buffer size in rows */
+-  /* for two-pass mode only: */
+-  JDIMENSION starting_row;	/* row # of first row in current strip */
+-  JDIMENSION next_row;		/* index of next row to fill/empty in strip */
+-} my_post_controller;
+-
+-typedef my_post_controller * my_post_ptr;
+-
+-
+-/* Forward declarations */
+-METHODDEF(void) post_process_1pass
+-	JPP((j_decompress_ptr cinfo,
+-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-	     JDIMENSION in_row_groups_avail,
+-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-	     JDIMENSION out_rows_avail));
+-#ifdef QUANT_2PASS_SUPPORTED
+-METHODDEF(void) post_process_prepass
+-	JPP((j_decompress_ptr cinfo,
+-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-	     JDIMENSION in_row_groups_avail,
+-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-	     JDIMENSION out_rows_avail));
+-METHODDEF(void) post_process_2pass
+-	JPP((j_decompress_ptr cinfo,
+-	     JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-	     JDIMENSION in_row_groups_avail,
+-	     JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-	     JDIMENSION out_rows_avail));
+-#endif
+-
+-
+-/*
+- * Initialize for a processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+-{
+-  my_post_ptr post = (my_post_ptr) cinfo->post;
+-
+-  switch (pass_mode) {
+-  case JBUF_PASS_THRU:
+-    if (cinfo->quantize_colors) {
+-      /* Single-pass processing with color quantization. */
+-      post->pub.post_process_data = post_process_1pass;
+-      /* We could be doing buffered-image output before starting a 2-pass
+-       * color quantization; in that case, jinit_d_post_controller did not
+-       * allocate a strip buffer.  Use the virtual-array buffer as workspace.
+-       */
+-      if (post->buffer == NULL) {
+-	post->buffer = (*cinfo->mem->access_virt_sarray)
+-	  ((j_common_ptr) cinfo, post->whole_image,
+-	   (JDIMENSION) 0, post->strip_height, TRUE);
+-      }
+-    } else {
+-      /* For single-pass processing without color quantization,
+-       * I have no work to do; just call the upsampler directly.
+-       */
+-      post->pub.post_process_data = cinfo->upsample->upsample;
+-    }
+-    break;
+-#ifdef QUANT_2PASS_SUPPORTED
+-  case JBUF_SAVE_AND_PASS:
+-    /* First pass of 2-pass quantization */
+-    if (post->whole_image == NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    post->pub.post_process_data = post_process_prepass;
+-    break;
+-  case JBUF_CRANK_DEST:
+-    /* Second pass of 2-pass quantization */
+-    if (post->whole_image == NULL)
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    post->pub.post_process_data = post_process_2pass;
+-    break;
+-#endif /* QUANT_2PASS_SUPPORTED */
+-  default:
+-    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-    break;
+-  }
+-  post->starting_row = post->next_row = 0;
+-}
+-
+-
+-/*
+- * Process some data in the one-pass (strip buffer) case.
+- * This is used for color precision reduction as well as one-pass quantization.
+- */
+-
+-METHODDEF(void)
+-post_process_1pass (j_decompress_ptr cinfo,
+-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-		    JDIMENSION in_row_groups_avail,
+-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-		    JDIMENSION out_rows_avail)
+-{
+-  my_post_ptr post = (my_post_ptr) cinfo->post;
+-  JDIMENSION num_rows, max_rows;
+-
+-  /* Fill the buffer, but not more than what we can dump out in one go. */
+-  /* Note we rely on the upsampler to detect bottom of image. */
+-  max_rows = out_rows_avail - *out_row_ctr;
+-  if (max_rows > post->strip_height)
+-    max_rows = post->strip_height;
+-  num_rows = 0;
+-  (*cinfo->upsample->upsample) (cinfo,
+-		input_buf, in_row_group_ctr, in_row_groups_avail,
+-		post->buffer, &num_rows, max_rows);
+-  /* Quantize and emit data. */
+-  (*cinfo->cquantize->color_quantize) (cinfo,
+-		post->buffer, output_buf + *out_row_ctr, (int) num_rows);
+-  *out_row_ctr += num_rows;
+-}
+-
+-
+-#ifdef QUANT_2PASS_SUPPORTED
+-
+-/*
+- * Process some data in the first pass of 2-pass quantization.
+- */
+-
+-METHODDEF(void)
+-post_process_prepass (j_decompress_ptr cinfo,
+-		      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-		      JDIMENSION in_row_groups_avail,
+-		      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-		      JDIMENSION out_rows_avail)
+-{
+-  my_post_ptr post = (my_post_ptr) cinfo->post;
+-  JDIMENSION old_next_row, num_rows;
+-
+-  /* Reposition virtual buffer if at start of strip. */
+-  if (post->next_row == 0) {
+-    post->buffer = (*cinfo->mem->access_virt_sarray)
+-	((j_common_ptr) cinfo, post->whole_image,
+-	 post->starting_row, post->strip_height, TRUE);
+-  }
+-
+-  /* Upsample some data (up to a strip height's worth). */
+-  old_next_row = post->next_row;
+-  (*cinfo->upsample->upsample) (cinfo,
+-		input_buf, in_row_group_ctr, in_row_groups_avail,
+-		post->buffer, &post->next_row, post->strip_height);
+-
+-  /* Allow quantizer to scan new data.  No data is emitted, */
+-  /* but we advance out_row_ctr so outer loop can tell when we're done. */
+-  if (post->next_row > old_next_row) {
+-    num_rows = post->next_row - old_next_row;
+-    (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
+-					 (JSAMPARRAY) NULL, (int) num_rows);
+-    *out_row_ctr += num_rows;
+-  }
+-
+-  /* Advance if we filled the strip. */
+-  if (post->next_row >= post->strip_height) {
+-    post->starting_row += post->strip_height;
+-    post->next_row = 0;
+-  }
+-}
+-
+-
+-/*
+- * Process some data in the second pass of 2-pass quantization.
+- */
+-
+-METHODDEF(void)
+-post_process_2pass (j_decompress_ptr cinfo,
+-		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-		    JDIMENSION in_row_groups_avail,
+-		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-		    JDIMENSION out_rows_avail)
+-{
+-  my_post_ptr post = (my_post_ptr) cinfo->post;
+-  JDIMENSION num_rows, max_rows;
+-
+-  /* Reposition virtual buffer if at start of strip. */
+-  if (post->next_row == 0) {
+-    post->buffer = (*cinfo->mem->access_virt_sarray)
+-	((j_common_ptr) cinfo, post->whole_image,
+-	 post->starting_row, post->strip_height, FALSE);
+-  }
+-
+-  /* Determine number of rows to emit. */
+-  num_rows = post->strip_height - post->next_row; /* available in strip */
+-  max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
+-  if (num_rows > max_rows)
+-    num_rows = max_rows;
+-  /* We have to check bottom of image here, can't depend on upsampler. */
+-  max_rows = cinfo->output_height - post->starting_row;
+-  if (num_rows > max_rows)
+-    num_rows = max_rows;
+-
+-  /* Quantize and emit data. */
+-  (*cinfo->cquantize->color_quantize) (cinfo,
+-		post->buffer + post->next_row, output_buf + *out_row_ctr,
+-		(int) num_rows);
+-  *out_row_ctr += num_rows;
+-
+-  /* Advance if we filled the strip. */
+-  post->next_row += num_rows;
+-  if (post->next_row >= post->strip_height) {
+-    post->starting_row += post->strip_height;
+-    post->next_row = 0;
+-  }
+-}
+-
+-#endif /* QUANT_2PASS_SUPPORTED */
+-
+-
+-/*
+- * Initialize postprocessing controller.
+- */
+-
+-GLOBAL(void)
+-jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+-{
+-  my_post_ptr post;
+-
+-  post = (my_post_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_post_controller));
+-  cinfo->post = (struct jpeg_d_post_controller *) post;
+-  post->pub.start_pass = start_pass_dpost;
+-  post->whole_image = NULL;	/* flag for no virtual arrays */
+-  post->buffer = NULL;		/* flag for no strip buffer */
+-
+-  /* Create the quantization buffer, if needed */
+-  if (cinfo->quantize_colors) {
+-    /* The buffer strip height is max_v_samp_factor, which is typically
+-     * an efficient number of rows for upsampling to return.
+-     * (In the presence of output rescaling, we might want to be smarter?)
+-     */
+-    post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
+-    if (need_full_buffer) {
+-      /* Two-pass color quantization: need full-image storage. */
+-      /* We round up the number of rows to a multiple of the strip height. */
+-#ifdef QUANT_2PASS_SUPPORTED
+-      post->whole_image = (*cinfo->mem->request_virt_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+-	 cinfo->output_width * cinfo->out_color_components,
+-	 (JDIMENSION) jround_up((long) cinfo->output_height,
+-				(long) post->strip_height),
+-	 post->strip_height);
+-#else
+-      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+-#endif /* QUANT_2PASS_SUPPORTED */
+-    } else {
+-      /* One-pass color quantization: just make a strip buffer. */
+-      post->buffer = (*cinfo->mem->alloc_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE,
+-	 cinfo->output_width * cinfo->out_color_components,
+-	 post->strip_height);
+-    }
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdsample.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdsample.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdsample.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdsample.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,482 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdsample.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains upsampling routines.
+- *
+- * Upsampling input data is counted in "row groups".  A row group
+- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+- * sample rows of each component.  Upsampling will normally produce
+- * max_v_samp_factor pixel rows from each row group (but this could vary
+- * if the upsampler is applying a scale factor of its own).
+- *
+- * An excellent reference for image resampling is
+- *   Digital Image Warping, George Wolberg, 1990.
+- *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Pointer to routine to upsample a single component */
+-typedef JMETHOD(void, upsample1_ptr,
+-		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		 JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_upsampler pub;	/* public fields */
+-
+-  /* Color conversion buffer.  When using separate upsampling and color
+-   * conversion steps, this buffer holds one upsampled row group until it
+-   * has been color converted and output.
+-   * Note: we do not allocate any storage for component(s) which are full-size,
+-   * ie do not need rescaling.  The corresponding entry of color_buf[] is
+-   * simply set to point to the input data array, thereby avoiding copying.
+-   */
+-  JSAMPARRAY color_buf[MAX_COMPONENTS];
+-
+-  /* Per-component upsampling method pointers */
+-  upsample1_ptr methods[MAX_COMPONENTS];
+-
+-  int next_row_out;		/* counts rows emitted from color_buf */
+-  JDIMENSION rows_to_go;	/* counts rows remaining in image */
+-
+-  /* Height of an input row group for each component. */
+-  int rowgroup_height[MAX_COMPONENTS];
+-
+-  /* These arrays save pixel expansion factors so that int_expand need not
+-   * recompute them each time.  They are unused for other upsampling methods.
+-   */
+-  UINT8 h_expand[MAX_COMPONENTS];
+-  UINT8 v_expand[MAX_COMPONENTS];
+-} my_upsampler;
+-
+-typedef my_upsampler * my_upsample_ptr;
+-
+-
+-/*
+- * Initialize for an upsampling pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_upsample (j_decompress_ptr cinfo)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-
+-  /* Mark the conversion buffer empty */
+-  upsample->next_row_out = cinfo->max_v_samp_factor;
+-  /* Initialize total-height counter for detecting bottom of image */
+-  upsample->rows_to_go = cinfo->output_height;
+-}
+-
+-
+-/*
+- * Control routine to do upsampling (and color conversion).
+- *
+- * In this version we upsample each component independently.
+- * We upsample one row group into the conversion buffer, then apply
+- * color conversion a row at a time.
+- */
+-
+-METHODDEF(void)
+-sep_upsample (j_decompress_ptr cinfo,
+-	      JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+-	      JDIMENSION in_row_groups_avail,
+-	      JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-	      JDIMENSION out_rows_avail)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  int ci;
+-  jpeg_component_info * compptr;
+-  JDIMENSION num_rows;
+-
+-  /* Fill the conversion buffer, if it's empty */
+-  if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
+-    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-	 ci++, compptr++) {
+-      /* Invoke per-component upsample method.  Notice we pass a POINTER
+-       * to color_buf[ci], so that fullsize_upsample can change it.
+-       */
+-      (*upsample->methods[ci]) (cinfo, compptr,
+-	input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
+-	upsample->color_buf + ci);
+-    }
+-    upsample->next_row_out = 0;
+-  }
+-
+-  /* Color-convert and emit rows */
+-
+-  /* How many we have in the buffer: */
+-  num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
+-  /* Not more than the distance to the end of the image.  Need this test
+-   * in case the image height is not a multiple of max_v_samp_factor:
+-   */
+-  if (num_rows > upsample->rows_to_go) 
+-    num_rows = upsample->rows_to_go;
+-  /* And not more than what the client can accept: */
+-  out_rows_avail -= *out_row_ctr;
+-  if (num_rows > out_rows_avail)
+-    num_rows = out_rows_avail;
+-
+-  (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
+-				     (JDIMENSION) upsample->next_row_out,
+-				     output_buf + *out_row_ctr,
+-				     (int) num_rows);
+-
+-  /* Adjust counts */
+-  *out_row_ctr += num_rows;
+-  upsample->rows_to_go -= num_rows;
+-  upsample->next_row_out += num_rows;
+-  /* When the buffer is emptied, declare this input row group consumed */
+-  if (upsample->next_row_out >= cinfo->max_v_samp_factor)
+-    (*in_row_group_ctr)++;
+-}
+-
+-
+-/*
+- * These are the routines invoked by sep_upsample to upsample pixel values
+- * of a single component.  One row group is processed per call.
+- */
+-
+-
+-/*
+- * For full-size components, we just make color_buf[ci] point at the
+- * input buffer, and thus avoid copying any data.  Note that this is
+- * safe only because sep_upsample doesn't declare the input row group
+- * "consumed" until we are done color converting and emitting it.
+- */
+-
+-METHODDEF(void)
+-fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		   JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  *output_data_ptr = input_data;
+-}
+-
+-
+-/*
+- * This is a no-op version used for "uninteresting" components.
+- * These components will not be referenced by color conversion.
+- */
+-
+-METHODDEF(void)
+-noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  *output_data_ptr = NULL;	/* safety check */
+-}
+-
+-
+-/*
+- * This version handles any integral sampling ratios.
+- * This is not used for typical JPEG files, so it need not be fast.
+- * Nor, for that matter, is it particularly accurate: the algorithm is
+- * simple replication of the input pixel onto the corresponding output
+- * pixels.  The hi-falutin sampling literature refers to this as a
+- * "box filter".  A box filter tends to introduce visible artifacts,
+- * so if you are actually going to use 3:1 or 4:1 sampling ratios
+- * you would be well advised to improve this code.
+- */
+-
+-METHODDEF(void)
+-int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	      JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+-  JSAMPARRAY output_data = *output_data_ptr;
+-  register JSAMPROW inptr, outptr;
+-  register JSAMPLE invalue;
+-  register int h;
+-  JSAMPROW outend;
+-  int h_expand, v_expand;
+-  int inrow, outrow;
+-
+-  h_expand = upsample->h_expand[compptr->component_index];
+-  v_expand = upsample->v_expand[compptr->component_index];
+-
+-  inrow = outrow = 0;
+-  while (outrow < cinfo->max_v_samp_factor) {
+-    /* Generate one output row with proper horizontal expansion */
+-    inptr = input_data[inrow];
+-    outptr = output_data[outrow];
+-    outend = outptr + cinfo->output_width;
+-    while (outptr < outend) {
+-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+-      for (h = h_expand; h > 0; h--) {
+-	*outptr++ = invalue;
+-      }
+-    }
+-    /* Generate any additional output rows by duplicating the first one */
+-    if (v_expand > 1) {
+-      jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+-			v_expand-1, cinfo->output_width);
+-    }
+-    inrow++;
+-    outrow += v_expand;
+-  }
+-}
+-
+-
+-/*
+- * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
+- * It's still a box filter.
+- */
+-
+-METHODDEF(void)
+-h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  JSAMPARRAY output_data = *output_data_ptr;
+-  register JSAMPROW inptr, outptr;
+-  register JSAMPLE invalue;
+-  JSAMPROW outend;
+-  int inrow;
+-
+-  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+-    inptr = input_data[inrow];
+-    outptr = output_data[inrow];
+-    outend = outptr + cinfo->output_width;
+-    while (outptr < outend) {
+-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+-      *outptr++ = invalue;
+-      *outptr++ = invalue;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
+- * It's still a box filter.
+- */
+-
+-METHODDEF(void)
+-h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  JSAMPARRAY output_data = *output_data_ptr;
+-  register JSAMPROW inptr, outptr;
+-  register JSAMPLE invalue;
+-  JSAMPROW outend;
+-  int inrow, outrow;
+-
+-  inrow = outrow = 0;
+-  while (outrow < cinfo->max_v_samp_factor) {
+-    inptr = input_data[inrow];
+-    outptr = output_data[outrow];
+-    outend = outptr + cinfo->output_width;
+-    while (outptr < outend) {
+-      invalue = *inptr++;	/* don't need GETJSAMPLE() here */
+-      *outptr++ = invalue;
+-      *outptr++ = invalue;
+-    }
+-    jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+-		      1, cinfo->output_width);
+-    inrow++;
+-    outrow += 2;
+-  }
+-}
+-
+-
+-/*
+- * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
+- *
+- * The upsampling algorithm is linear interpolation between pixel centers,
+- * also known as a "triangle filter".  This is a good compromise between
+- * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4
+- * of the way between input pixel centers.
+- *
+- * A note about the "bias" calculations: when rounding fractional values to
+- * integer, we do not want to always round 0.5 up to the next integer.
+- * If we did that, we'd introduce a noticeable bias towards larger values.
+- * Instead, this code is arranged so that 0.5 will be rounded up or down at
+- * alternate pixel locations (a simple ordered dither pattern).
+- */
+-
+-METHODDEF(void)
+-h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  JSAMPARRAY output_data = *output_data_ptr;
+-  register JSAMPROW inptr, outptr;
+-  register int invalue;
+-  register JDIMENSION colctr;
+-  int inrow;
+-
+-  for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+-    inptr = input_data[inrow];
+-    outptr = output_data[inrow];
+-    /* Special case for first column */
+-    invalue = GETJSAMPLE(*inptr++);
+-    *outptr++ = (JSAMPLE) invalue;
+-    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
+-
+-    for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+-      /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
+-      invalue = GETJSAMPLE(*inptr++) * 3;
+-      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
+-      *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
+-    }
+-
+-    /* Special case for last column */
+-    invalue = GETJSAMPLE(*inptr);
+-    *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
+-    *outptr++ = (JSAMPLE) invalue;
+-  }
+-}
+-
+-
+-/*
+- * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
+- * Again a triangle filter; see comments for h2v1 case, above.
+- *
+- * It is OK for us to reference the adjacent input rows because we demanded
+- * context from the main buffer controller (see initialization code).
+- */
+-
+-METHODDEF(void)
+-h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		     JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+-{
+-  JSAMPARRAY output_data = *output_data_ptr;
+-  register JSAMPROW inptr0, inptr1, outptr;
+-#if BITS_IN_JSAMPLE == 8
+-  register int thiscolsum, lastcolsum, nextcolsum;
+-#else
+-  register INT32 thiscolsum, lastcolsum, nextcolsum;
+-#endif
+-  register JDIMENSION colctr;
+-  int inrow, outrow, v;
+-
+-  inrow = outrow = 0;
+-  while (outrow < cinfo->max_v_samp_factor) {
+-    for (v = 0; v < 2; v++) {
+-      /* inptr0 points to nearest input row, inptr1 points to next nearest */
+-      inptr0 = input_data[inrow];
+-      if (v == 0)		/* next nearest is row above */
+-	inptr1 = input_data[inrow-1];
+-      else			/* next nearest is row below */
+-	inptr1 = input_data[inrow+1];
+-      outptr = output_data[outrow++];
+-
+-      /* Special case for first column */
+-      thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+-      nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+-      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
+-      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+-      lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+-
+-      for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+-	/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
+-	/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
+-	nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+-	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+-	*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+-	lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+-      }
+-
+-      /* Special case for last column */
+-      *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+-      *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
+-    }
+-    inrow++;
+-  }
+-}
+-
+-
+-/*
+- * Module initialization routine for upsampling.
+- */
+-
+-GLOBAL(void)
+-jinit_upsampler (j_decompress_ptr cinfo)
+-{
+-  my_upsample_ptr upsample;
+-  int ci;
+-  jpeg_component_info * compptr;
+-  boolean need_buffer, do_fancy;
+-  int h_in_group, v_in_group, h_out_group, v_out_group;
+-
+-  upsample = (my_upsample_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_upsampler));
+-  cinfo->upsample = (struct jpeg_upsampler *) upsample;
+-  upsample->pub.start_pass = start_pass_upsample;
+-  upsample->pub.upsample = sep_upsample;
+-  upsample->pub.need_context_rows = FALSE; /* until we find out differently */
+-
+-  if (cinfo->CCIR601_sampling)	/* this isn't supported */
+-    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+-
+-  /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
+-   * so don't ask for it.
+-   */
+-  do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
+-
+-  /* Verify we can handle the sampling factors, select per-component methods,
+-   * and create storage as needed.
+-   */
+-  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+-       ci++, compptr++) {
+-    /* Compute size of an "input group" after IDCT scaling.  This many samples
+-     * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
+-     */
+-    h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
+-		 cinfo->min_DCT_scaled_size;
+-    v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+-		 cinfo->min_DCT_scaled_size;
+-    h_out_group = cinfo->max_h_samp_factor;
+-    v_out_group = cinfo->max_v_samp_factor;
+-    upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
+-    need_buffer = TRUE;
+-    if (! compptr->component_needed) {
+-      /* Don't bother to upsample an uninteresting component. */
+-      upsample->methods[ci] = noop_upsample;
+-      need_buffer = FALSE;
+-    } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
+-      /* Fullsize components can be processed without any work. */
+-      upsample->methods[ci] = fullsize_upsample;
+-      need_buffer = FALSE;
+-    } else if (h_in_group * 2 == h_out_group &&
+-	       v_in_group == v_out_group) {
+-      /* Special cases for 2h1v upsampling */
+-      if (do_fancy && compptr->downsampled_width > 2)
+-	upsample->methods[ci] = h2v1_fancy_upsample;
+-      else
+-	upsample->methods[ci] = h2v1_upsample;
+-    } else if (h_in_group * 2 == h_out_group &&
+-	       v_in_group * 2 == v_out_group) {
+-      /* Special cases for 2h2v upsampling */
+-      if (do_fancy && compptr->downsampled_width > 2) {
+-	upsample->methods[ci] = h2v2_fancy_upsample;
+-	upsample->pub.need_context_rows = TRUE;
+-      } else
+-	upsample->methods[ci] = h2v2_upsample;
+-    } else if ((h_out_group % h_in_group) == 0 &&
+-	       (v_out_group % v_in_group) == 0) {
+-      /* Generic integral-factors upsampling method */
+-      upsample->methods[ci] = int_upsample;
+-      upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
+-      upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
+-    } else
+-      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+-    if (need_buffer) {
+-      upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+-	((j_common_ptr) cinfo, JPOOL_IMAGE,
+-	 (JDIMENSION) jround_up((long) cinfo->output_width,
+-				(long) cinfo->max_h_samp_factor),
+-	 (JDIMENSION) cinfo->max_v_samp_factor);
+-    }
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdtrans.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdtrans.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jdtrans.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jdtrans.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,147 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jdtrans.c
+- *
+- * Copyright (C) 1995-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains library routines for transcoding decompression,
+- * that is, reading raw DCT coefficient arrays from an input JPEG file.
+- * The routines in jdapimin.c will also be needed by a transcoder.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/* Forward declarations */
+-LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
+-
+-
+-/*
+- * Read the coefficient arrays from a JPEG file.
+- * jpeg_read_header must be completed before calling this.
+- *
+- * The entire image is read into a set of virtual coefficient-block arrays,
+- * one per component.  The return value is a pointer to the array of
+- * virtual-array descriptors.  These can be manipulated directly via the
+- * JPEG memory manager, or handed off to jpeg_write_coefficients().
+- * To release the memory occupied by the virtual arrays, call
+- * jpeg_finish_decompress() when done with the data.
+- *
+- * An alternative usage is to simply obtain access to the coefficient arrays
+- * during a buffered-image-mode decompression operation.  This is allowed
+- * after any jpeg_finish_output() call.  The arrays can be accessed until
+- * jpeg_finish_decompress() is called.  (Note that any call to the library
+- * may reposition the arrays, so don't rely on access_virt_barray() results
+- * to stay valid across library calls.)
+- *
+- * Returns NULL if suspended.  This case need be checked only if
+- * a suspending data source is used.
+- */
+-
+-GLOBAL(jvirt_barray_ptr *)
+-jpeg_read_coefficients (j_decompress_ptr cinfo)
+-{
+-  if (cinfo->global_state == DSTATE_READY) {
+-    /* First call: initialize active modules */
+-    transdecode_master_selection(cinfo);
+-    cinfo->global_state = DSTATE_RDCOEFS;
+-  }
+-  if (cinfo->global_state == DSTATE_RDCOEFS) {
+-    /* Absorb whole file into the coef buffer */
+-    for (;;) {
+-      int retcode;
+-      /* Call progress monitor hook if present */
+-      if (cinfo->progress != NULL)
+-	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+-      /* Absorb some more input */
+-      retcode = (*cinfo->inputctl->consume_input) (cinfo);
+-      if (retcode == JPEG_SUSPENDED)
+-	return NULL;
+-      if (retcode == JPEG_REACHED_EOI)
+-	break;
+-      /* Advance progress counter if appropriate */
+-      if (cinfo->progress != NULL &&
+-	  (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+-	if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+-	  /* startup underestimated number of scans; ratchet up one scan */
+-	  cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+-	}
+-      }
+-    }
+-    /* Set state so that jpeg_finish_decompress does the right thing */
+-    cinfo->global_state = DSTATE_STOPPING;
+-  }
+-  /* At this point we should be in state DSTATE_STOPPING if being used
+-   * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
+-   * to the coefficients during a full buffered-image-mode decompression.
+-   */
+-  if ((cinfo->global_state == DSTATE_STOPPING ||
+-       cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
+-    return cinfo->coef->coef_arrays;
+-  }
+-  /* Oops, improper usage */
+-  ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+-  return NULL;			/* keep compiler happy */
+-}
+-
+-
+-/*
+- * Master selection of decompression modules for transcoding.
+- * This substitutes for jdmaster.c's initialization of the full decompressor.
+- */
+-
+-LOCAL(void)
+-transdecode_master_selection (j_decompress_ptr cinfo)
+-{
+-  /* This is effectively a buffered-image operation. */
+-  cinfo->buffered_image = TRUE;
+-
+-  /* Entropy decoding: either Huffman or arithmetic coding. */
+-  if (cinfo->arith_code) {
+-    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+-  } else {
+-    if (cinfo->progressive_mode) {
+-#ifdef D_PROGRESSIVE_SUPPORTED
+-      jinit_phuff_decoder(cinfo);
+-#else
+-      ERREXIT(cinfo, JERR_NOT_COMPILED);
+-#endif
+-    } else
+-      jinit_huff_decoder(cinfo);
+-  }
+-
+-  /* Always get a full-image coefficient buffer. */
+-  jinit_d_coef_controller(cinfo, TRUE);
+-
+-  /* We can now tell the memory manager to allocate virtual arrays. */
+-  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+-
+-  /* Initialize input side of decompressor to consume first scan. */
+-  (*cinfo->inputctl->start_input_pass) (cinfo);
+-
+-  /* Initialize progress monitoring. */
+-  if (cinfo->progress != NULL) {
+-    int nscans;
+-    /* Estimate number of scans to set pass_limit. */
+-    if (cinfo->progressive_mode) {
+-      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+-      nscans = 2 + 3 * cinfo->num_components;
+-    } else if (cinfo->inputctl->has_multiple_scans) {
+-      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+-      nscans = cinfo->num_components;
+-    } else {
+-      nscans = 1;
+-    }
+-    cinfo->progress->pass_counter = 0L;
+-    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+-    cinfo->progress->completed_passes = 0;
+-    cinfo->progress->total_passes = 1;
+-  }
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jerror.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jerror.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jerror.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jerror.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,272 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jerror.c
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains simple error-reporting and trace-message routines.
+- * These are suitable for Unix-like systems and others where writing to
+- * stderr is the right thing to do.  Many applications will want to replace
+- * some or all of these routines.
+- *
+- * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
+- * you get a Windows-specific hack to display error messages in a dialog box.
+- * It ain't much, but it beats dropping error messages into the bit bucket,
+- * which is what happens to output to stderr under most Windows C compilers.
+- *
+- * These routines are used by both the compression and decompression code.
+- */
+-
+-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jversion.h"
+-#include "jerror.h"
+-
+-#ifdef USE_WINDOWS_MESSAGEBOX
+-#include <windows.h>
+-#endif
+-
+-#ifndef EXIT_FAILURE		/* define exit() codes if not provided */
+-#define EXIT_FAILURE  1
+-#endif
+-
+-
+-/*
+- * Create the message string table.
+- * We do this from the master message list in jerror.h by re-reading
+- * jerror.h with a suitable definition for macro JMESSAGE.
+- * The message table is made an external symbol just in case any applications
+- * want to refer to it directly.
+- */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_std_message_table	jMsgTable
+-#endif
+-
+-#define JMESSAGE(code,string)	string ,
+-
+-const char * const jpeg_std_message_table[] = {
+-#include "jerror.h"
+-  NULL
+-};
+-
+-
+-/*
+- * Error exit handler: must not return to caller.
+- *
+- * Applications may override this if they want to get control back after
+- * an error.  Typically one would longjmp somewhere instead of exiting.
+- * The setjmp buffer can be made a private field within an expanded error
+- * handler object.  Note that the info needed to generate an error message
+- * is stored in the error object, so you can generate the message now or
+- * later, at your convenience.
+- * You should make sure that the JPEG object is cleaned up (with jpeg_abort
+- * or jpeg_destroy) at some point.
+- */
+-
+-METHODDEF(void)
+-error_exit (j_common_ptr cinfo)
+-{
+-  /* Always display the message */
+-  (*cinfo->err->output_message) (cinfo);
+-
+-  /* Let the memory manager delete any temp files before we die */
+-  jpeg_destroy(cinfo);
+-
+-  /*
+-   * This should never happen since the Java library replaces the
+-   * error_exit pointer in the error handler structs it uses.
+-   *
+-   * exit(EXIT_FAILURE);
+-   */
+-}
+-
+-
+-/*
+- * Actual output of an error or trace message.
+- * Applications may override this method to send JPEG messages somewhere
+- * other than stderr.
+- *
+- * On Windows, printing to stderr is generally completely useless,
+- * so we provide optional code to produce an error-dialog popup.
+- * Most Windows applications will still prefer to override this routine,
+- * but if they don't, it'll do something at least marginally useful.
+- *
+- * NOTE: to use the library in an environment that doesn't support the
+- * C stdio library, you may have to delete the call to fprintf() entirely,
+- * not just not use this routine.
+- */
+-
+-METHODDEF(void)
+-output_message (j_common_ptr cinfo)
+-{
+-  char buffer[JMSG_LENGTH_MAX];
+-
+-  /* Create the message */
+-  (*cinfo->err->format_message) (cinfo, buffer);
+-
+-#ifdef USE_WINDOWS_MESSAGEBOX
+-  /* Display it in a message dialog box */
+-  MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
+-	     MB_OK | MB_ICONERROR);
+-#else
+-  /* Send it to stderr, adding a newline */
+-  fprintf(stderr, "%s\n", buffer);
+-#endif
+-}
+-
+-
+-/*
+- * Decide whether to emit a trace or warning message.
+- * msg_level is one of:
+- *   -1: recoverable corrupt-data warning, may want to abort.
+- *    0: important advisory messages (always display to user).
+- *    1: first level of tracing detail.
+- *    2,3,...: successively more detailed tracing messages.
+- * An application might override this method if it wanted to abort on warnings
+- * or change the policy about which messages to display.
+- */
+-
+-METHODDEF(void)
+-emit_message (j_common_ptr cinfo, int msg_level)
+-{
+-  struct jpeg_error_mgr * err = cinfo->err;
+-
+-  if (msg_level < 0) {
+-    /* It's a warning message.  Since corrupt files may generate many warnings,
+-     * the policy implemented here is to show only the first warning,
+-     * unless trace_level >= 3.
+-     */
+-    if (err->num_warnings == 0 || err->trace_level >= 3)
+-      (*err->output_message) (cinfo);
+-    /* Always count warnings in num_warnings. */
+-    err->num_warnings++;
+-  } else {
+-    /* It's a trace message.  Show it if trace_level >= msg_level. */
+-    if (err->trace_level >= msg_level)
+-      (*err->output_message) (cinfo);
+-  }
+-}
+-
+-
+-/*
+- * Format a message string for the most recent JPEG error or message.
+- * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
+- * characters.  Note that no '\n' character is added to the string.
+- * Few applications should need to override this method.
+- */
+-
+-METHODDEF(void)
+-format_message (j_common_ptr cinfo, char * buffer)
+-{
+-
+-/* Had to kill this function altogether
+-   to avoid linking to VM when building the splash screen with static libjpeg */
+-
+-#ifndef SPLASHSCREEN
+-  int jio_snprintf(char *str, size_t count, const char *fmt, ...);
+-  struct jpeg_error_mgr * err = cinfo->err;
+-  int msg_code = err->msg_code;
+-  const char * msgtext = NULL;
+-  const char * msgptr;
+-  char ch;
+-  boolean isstring;
+-
+-  /* Look up message string in proper table */
+-  if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
+-    msgtext = err->jpeg_message_table[msg_code];
+-  } else if (err->addon_message_table != NULL &&
+-	     msg_code >= err->first_addon_message &&
+-	     msg_code <= err->last_addon_message) {
+-    msgtext = err->addon_message_table[msg_code - err->first_addon_message];
+-  }
+-
+-  /* Defend against bogus message number */
+-  if (msgtext == NULL) {
+-    err->msg_parm.i[0] = msg_code;
+-    msgtext = err->jpeg_message_table[0];
+-  }
+-
+-  /* Check for string parameter, as indicated by %s in the message text */
+-  isstring = FALSE;
+-  msgptr = msgtext;
+-  while ((ch = *msgptr++) != '\0') {
+-    if (ch == '%') {
+-      if (*msgptr == 's') isstring = TRUE;
+-      break;
+-    }
+-  }
+-
+-  /* Format the message into the passed buffer */
+-  if (isstring)
+-    /* Buffer size is JMSG_LENGTH_MAX, quietly truncate on overflow */
+-    (void) jio_snprintf(buffer, JMSG_LENGTH_MAX, msgtext, err->msg_parm.s);
+-  else
+-    /* Buffer size is JMSG_LENGTH_MAX, quietly truncate on overflow */
+-    (void) jio_snprintf(buffer, JMSG_LENGTH_MAX, msgtext,
+-			err->msg_parm.i[0], err->msg_parm.i[1],
+-			err->msg_parm.i[2], err->msg_parm.i[3],
+-			err->msg_parm.i[4], err->msg_parm.i[5],
+-			err->msg_parm.i[6], err->msg_parm.i[7]);
+-#else /* SPLASHSCREEN */
+-	*buffer = '\0';
+-#endif /* SPLASHSCREEN */
+-}
+-
+-
+-/*
+- * Reset error state variables at start of a new image.
+- * This is called during compression startup to reset trace/error
+- * processing to default state, without losing any application-specific
+- * method pointers.  An application might possibly want to override
+- * this method if it has additional error processing state.
+- */
+-
+-METHODDEF(void)
+-reset_error_mgr (j_common_ptr cinfo)
+-{
+-  cinfo->err->num_warnings = 0;
+-  /* trace_level is not reset since it is an application-supplied parameter */
+-  cinfo->err->msg_code = 0;	/* may be useful as a flag for "no error" */
+-}
+-
+-
+-/*
+- * Fill in the standard error-handling methods in a jpeg_error_mgr object.
+- * Typical call is:
+- *	struct jpeg_compress_struct cinfo;
+- *	struct jpeg_error_mgr err;
+- *
+- *	cinfo.err = jpeg_std_error(&err);
+- * after which the application may override some of the methods.
+- */
+-
+-GLOBAL(struct jpeg_error_mgr *)
+-jpeg_std_error (struct jpeg_error_mgr * err)
+-{
+-  err->error_exit = error_exit;
+-  err->emit_message = emit_message;
+-  err->output_message = output_message;
+-  err->format_message = format_message;
+-  err->reset_error_mgr = reset_error_mgr;
+-
+-  err->trace_level = 0;		/* default = no tracing */
+-  err->num_warnings = 0;	/* no warnings emitted yet */
+-  err->msg_code = 0;		/* may be useful as a flag for "no error" */
+-
+-  /* Initialize message table pointers */
+-  err->jpeg_message_table = jpeg_std_message_table;
+-  err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
+-
+-  err->addon_message_table = NULL;
+-  err->first_addon_message = 0;	/* for safety */
+-  err->last_addon_message = 0;
+-
+-  return err;
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jerror.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jerror.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jerror.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jerror.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,295 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jerror.h
+- *
+- * Copyright (C) 1994-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file defines the error and message codes for the JPEG library.
+- * Edit this file to add new codes, or to translate the message strings to
+- * some other language.
+- * A set of error-reporting macros are defined too.  Some applications using
+- * the JPEG library may wish to include this file to get the error codes
+- * and/or the macros.
+- */
+-
+-/*
+- * To define the enum list of message codes, include this file without
+- * defining macro JMESSAGE.  To create a message string table, include it
+- * again with a suitable JMESSAGE definition (see jerror.c for an example).
+- */
+-#ifndef JMESSAGE
+-#ifndef JERROR_H
+-/* First time through, define the enum list */
+-#define JMAKE_ENUM_LIST
+-#else
+-/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+-#define JMESSAGE(code,string)
+-#endif /* JERROR_H */
+-#endif /* JMESSAGE */
+-
+-#ifdef JMAKE_ENUM_LIST
+-
+-typedef enum {
+-
+-#define JMESSAGE(code,string)	code ,
+-
+-#endif /* JMAKE_ENUM_LIST */
+-
+-JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
+-
+-/* For maintenance convenience, list is alphabetical by message code name */
+-JMESSAGE(JERR_ARITH_NOTIMPL,
+-	 "Sorry, there are legal restrictions on arithmetic coding")
+-JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
+-JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
+-JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
+-JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
+-JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
+-JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
+-JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
+-JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
+-JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
+-JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
+-JMESSAGE(JERR_BAD_LIB_VERSION,
+-	 "Wrong JPEG library version: library is %d, caller expects %d")
+-JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
+-JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
+-JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
+-JMESSAGE(JERR_BAD_PROGRESSION,
+-	 "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
+-JMESSAGE(JERR_BAD_PROG_SCRIPT,
+-	 "Invalid progressive parameters at scan script entry %d")
+-JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
+-JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
+-JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
+-JMESSAGE(JERR_BAD_STRUCT_SIZE,
+-	 "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
+-JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
+-JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
+-JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
+-JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
+-JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
+-JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
+-JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
+-JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
+-JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
+-JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
+-JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
+-JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
+-JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
+-JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
+-JMESSAGE(JERR_FILE_READ, "Input file read error")
+-JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
+-JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
+-JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
+-JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
+-JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
+-JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
+-JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
+-JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
+-	 "Cannot transcode due to multiple use of quantization table %d")
+-JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
+-JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
+-JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
+-JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
+-JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
+-JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
+-JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
+-JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
+-JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
+-JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
+-JMESSAGE(JERR_QUANT_COMPONENTS,
+-	 "Cannot quantize more than %d color components")
+-JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
+-JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
+-JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
+-JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
+-JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
+-JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
+-JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
+-JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
+-JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
+-JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
+-JMESSAGE(JERR_TFILE_WRITE,
+-	 "Write failed on temporary file --- out of disk space?")
+-JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
+-JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
+-JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
+-JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
+-JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
+-JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
+-JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
+-JMESSAGE(JMSG_VERSION, JVERSION)
+-JMESSAGE(JTRC_16BIT_TABLES,
+-	 "Caution: quantization tables are too coarse for baseline JPEG")
+-JMESSAGE(JTRC_ADOBE,
+-	 "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
+-JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
+-JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
+-JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
+-JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
+-JMESSAGE(JTRC_DQT, "Define Quantization Table %d  precision %d")
+-JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
+-JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
+-JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
+-JMESSAGE(JTRC_EOI, "End Of Image")
+-JMESSAGE(JTRC_HUFFBITS, "        %3d %3d %3d %3d %3d %3d %3d %3d")
+-JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d  %d")
+-JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
+-	 "Warning: thumbnail image size does not match data length %u")
+-JMESSAGE(JTRC_JFIF_EXTENSION,
+-	 "JFIF extension marker: type 0x%02x, length %u")
+-JMESSAGE(JTRC_JFIF_THUMBNAIL, "    with %d x %d thumbnail image")
+-JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
+-JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
+-JMESSAGE(JTRC_QUANTVALS, "        %4u %4u %4u %4u %4u %4u %4u %4u")
+-JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
+-JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
+-JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
+-JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
+-JMESSAGE(JTRC_RST, "RST%d")
+-JMESSAGE(JTRC_SMOOTH_NOTIMPL,
+-	 "Smoothing not supported with nonstandard sampling ratios")
+-JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
+-JMESSAGE(JTRC_SOF_COMPONENT, "    Component %d: %dhx%dv q=%d")
+-JMESSAGE(JTRC_SOI, "Start of Image")
+-JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
+-JMESSAGE(JTRC_SOS_COMPONENT, "    Component %d: dc=%d ac=%d")
+-JMESSAGE(JTRC_SOS_PARAMS, "  Ss=%d, Se=%d, Ah=%d, Al=%d")
+-JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
+-JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
+-JMESSAGE(JTRC_THUMB_JPEG,
+-	 "JFIF extension marker: JPEG-compressed thumbnail image, length %u")
+-JMESSAGE(JTRC_THUMB_PALETTE,
+-	 "JFIF extension marker: palette thumbnail image, length %u")
+-JMESSAGE(JTRC_THUMB_RGB,
+-	 "JFIF extension marker: RGB thumbnail image, length %u")
+-JMESSAGE(JTRC_UNKNOWN_IDS,
+-	 "Unrecognized component IDs %d %d %d, assuming YCbCr")
+-JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
+-JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
+-JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
+-JMESSAGE(JWRN_BOGUS_PROGRESSION,
+-	 "Inconsistent progression sequence for component %d coefficient %d")
+-JMESSAGE(JWRN_EXTRANEOUS_DATA,
+-	 "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
+-JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
+-JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
+-JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
+-JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
+-JMESSAGE(JWRN_MUST_RESYNC,
+-	 "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
+-JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
+-JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
+-
+-#ifdef JMAKE_ENUM_LIST
+-
+-  JMSG_LASTMSGCODE
+-} J_MESSAGE_CODE;
+-
+-#undef JMAKE_ENUM_LIST
+-#endif /* JMAKE_ENUM_LIST */
+-
+-/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+-#undef JMESSAGE
+-
+-
+-#ifndef JERROR_H
+-#define JERROR_H
+-
+-/* Macros to simplify using the error and trace message stuff */
+-/* The first parameter is either type of cinfo pointer */
+-
+-/* Fatal errors (print message and exit) */
+-#define ERREXIT(cinfo,code)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-#define ERREXIT1(cinfo,code,p1)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-#define ERREXIT2(cinfo,code,p1,p2)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (cinfo)->err->msg_parm.i[1] = (p2), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-#define ERREXIT3(cinfo,code,p1,p2,p3)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (cinfo)->err->msg_parm.i[1] = (p2), \
+-   (cinfo)->err->msg_parm.i[2] = (p3), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-#define ERREXIT4(cinfo,code,p1,p2,p3,p4)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (cinfo)->err->msg_parm.i[1] = (p2), \
+-   (cinfo)->err->msg_parm.i[2] = (p3), \
+-   (cinfo)->err->msg_parm.i[3] = (p4), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-#define ERREXITS(cinfo,code,str)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+-   (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+-
+-#define MAKESTMT(stuff)		do { stuff } while (0)
+-
+-/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
+-#define WARNMS(cinfo,code)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+-#define WARNMS1(cinfo,code,p1)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+-#define WARNMS2(cinfo,code,p1,p2)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (cinfo)->err->msg_parm.i[1] = (p2), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+-
+-/* Informational/debugging messages */
+-#define TRACEMS(cinfo,lvl,code)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+-#define TRACEMS1(cinfo,lvl,code,p1)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+-#define TRACEMS2(cinfo,lvl,code,p1,p2)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   (cinfo)->err->msg_parm.i[0] = (p1), \
+-   (cinfo)->err->msg_parm.i[1] = (p2), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+-#define TRACEMS3(cinfo,lvl,code,p1,p2,p3)  \
+-  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+-	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
+-	   (cinfo)->err->msg_code = (code); \
+-	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+-#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4)  \
+-  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+-	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+-	   (cinfo)->err->msg_code = (code); \
+-	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+-#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5)  \
+-  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+-	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+-	   _mp[4] = (p5); \
+-	   (cinfo)->err->msg_code = (code); \
+-	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+-#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8)  \
+-  MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+-	   _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+-	   _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
+-	   (cinfo)->err->msg_code = (code); \
+-	   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+-#define TRACEMSS(cinfo,lvl,code,str)  \
+-  ((cinfo)->err->msg_code = (code), \
+-   strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+-   (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+-
+-#endif /* JERROR_H */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctflt.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctflt.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctflt.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctflt.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,172 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jfdctflt.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a floating-point implementation of the
+- * forward DCT (Discrete Cosine Transform).
+- *
+- * This implementation should be more accurate than either of the integer
+- * DCT implementations.  However, it may not give the same results on all
+- * machines because of differences in roundoff behavior.  Speed will depend
+- * on the hardware's floating point capacity.
+- *
+- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+- * on each column.  Direct algorithms are also available, but they are
+- * much more complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+- * JPEG textbook (see REFERENCES section in file README).  The following code
+- * is based directly on figure 4-8 in P&M.
+- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+- * possible to arrange the computation so that many of the multiplies are
+- * simple scalings of the final outputs.  These multiplies can then be
+- * folded into the multiplications or divisions by the JPEG quantization
+- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+- * to be done in the DCT itself.
+- * The primary disadvantage of this method is that with a fixed-point
+- * implementation, accuracy is lost due to imprecise representation of the
+- * scaled quantization values.  However, that problem does not arise if
+- * we use floating point arithmetic.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_FLOAT_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/*
+- * Perform the forward DCT on one block of samples.
+- */
+-
+-GLOBAL(void)
+-jpeg_fdct_float (FAST_FLOAT * data)
+-{
+-  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+-  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+-  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+-  FAST_FLOAT *dataptr;
+-  int ctr;
+-
+-  /* Pass 1: process rows. */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[0] + dataptr[7];
+-    tmp7 = dataptr[0] - dataptr[7];
+-    tmp1 = dataptr[1] + dataptr[6];
+-    tmp6 = dataptr[1] - dataptr[6];
+-    tmp2 = dataptr[2] + dataptr[5];
+-    tmp5 = dataptr[2] - dataptr[5];
+-    tmp3 = dataptr[3] + dataptr[4];
+-    tmp4 = dataptr[3] - dataptr[4];
+-    
+-    /* Even part */
+-    
+-    tmp10 = tmp0 + tmp3;	/* phase 2 */
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[0] = tmp10 + tmp11; /* phase 3 */
+-    dataptr[4] = tmp10 - tmp11;
+-    
+-    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+-    dataptr[2] = tmp13 + z1;	/* phase 5 */
+-    dataptr[6] = tmp13 - z1;
+-    
+-    /* Odd part */
+-
+-    tmp10 = tmp4 + tmp5;	/* phase 2 */
+-    tmp11 = tmp5 + tmp6;
+-    tmp12 = tmp6 + tmp7;
+-
+-    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+-    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+-    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+-    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+-    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+-
+-    z11 = tmp7 + z3;		/* phase 5 */
+-    z13 = tmp7 - z3;
+-
+-    dataptr[5] = z13 + z2;	/* phase 6 */
+-    dataptr[3] = z13 - z2;
+-    dataptr[1] = z11 + z4;
+-    dataptr[7] = z11 - z4;
+-
+-    dataptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-
+-  /* Pass 2: process columns. */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+-    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+-    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+-    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+-    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+-    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+-    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+-    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+-    
+-    /* Even part */
+-    
+-    tmp10 = tmp0 + tmp3;	/* phase 2 */
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+-    dataptr[DCTSIZE*4] = tmp10 - tmp11;
+-    
+-    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+-    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+-    dataptr[DCTSIZE*6] = tmp13 - z1;
+-    
+-    /* Odd part */
+-
+-    tmp10 = tmp4 + tmp5;	/* phase 2 */
+-    tmp11 = tmp5 + tmp6;
+-    tmp12 = tmp6 + tmp7;
+-
+-    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+-    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+-    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+-    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+-    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+-
+-    z11 = tmp7 + z3;		/* phase 5 */
+-    z13 = tmp7 - z3;
+-
+-    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+-    dataptr[DCTSIZE*3] = z13 - z2;
+-    dataptr[DCTSIZE*1] = z11 + z4;
+-    dataptr[DCTSIZE*7] = z11 - z4;
+-
+-    dataptr++;			/* advance pointer to next column */
+-  }
+-}
+-
+-#endif /* DCT_FLOAT_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctfst.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctfst.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctfst.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctfst.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,228 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jfdctfst.c
+- *
+- * Copyright (C) 1994-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a fast, not so accurate integer implementation of the
+- * forward DCT (Discrete Cosine Transform).
+- *
+- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+- * on each column.  Direct algorithms are also available, but they are
+- * much more complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+- * JPEG textbook (see REFERENCES section in file README).  The following code
+- * is based directly on figure 4-8 in P&M.
+- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+- * possible to arrange the computation so that many of the multiplies are
+- * simple scalings of the final outputs.  These multiplies can then be
+- * folded into the multiplications or divisions by the JPEG quantization
+- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+- * to be done in the DCT itself.
+- * The primary disadvantage of this method is that with fixed-point math,
+- * accuracy is lost due to imprecise representation of the scaled
+- * quantization values.  The smaller the quantization table entry, the less
+- * precise the scaled value, so this implementation does worse with high-
+- * quality-setting files than with low-quality ones.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_IFAST_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/* Scaling decisions are generally the same as in the LL&M algorithm;
+- * see jfdctint.c for more details.  However, we choose to descale
+- * (right shift) multiplication products as soon as they are formed,
+- * rather than carrying additional fractional bits into subsequent additions.
+- * This compromises accuracy slightly, but it lets us save a few shifts.
+- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+- * everywhere except in the multiplications proper; this saves a good deal
+- * of work on 16-bit-int machines.
+- *
+- * Again to save a few shifts, the intermediate results between pass 1 and
+- * pass 2 are not upscaled, but are represented only to integral precision.
+- *
+- * A final compromise is to represent the multiplicative constants to only
+- * 8 fractional bits, rather than 13.  This saves some shifting work on some
+- * machines, and may also reduce the cost of multiplication (since there
+- * are fewer one-bits in the constants).
+- */
+-
+-#define CONST_BITS  8
+-
+-
+-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+- * causing a lot of useless floating-point operations at run time.
+- * To get around this we use the following pre-calculated constants.
+- * If you change CONST_BITS you may want to add appropriate values.
+- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+- */
+-
+-#if CONST_BITS == 8
+-#define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
+-#define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
+-#define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
+-#define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
+-#else
+-#define FIX_0_382683433  FIX(0.382683433)
+-#define FIX_0_541196100  FIX(0.541196100)
+-#define FIX_0_707106781  FIX(0.707106781)
+-#define FIX_1_306562965  FIX(1.306562965)
+-#endif
+-
+-
+-/* We can gain a little more speed, with a further compromise in accuracy,
+- * by omitting the addition in a descaling shift.  This yields an incorrectly
+- * rounded result half the time...
+- */
+-
+-#ifndef USE_ACCURATE_ROUNDING
+-#undef DESCALE
+-#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
+-#endif
+-
+-
+-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+- * descale to yield a DCTELEM result.
+- */
+-
+-#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+-
+-
+-/*
+- * Perform the forward DCT on one block of samples.
+- */
+-
+-GLOBAL(void)
+-jpeg_fdct_ifast (DCTELEM * data)
+-{
+-  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+-  DCTELEM tmp10, tmp11, tmp12, tmp13;
+-  DCTELEM z1, z2, z3, z4, z5, z11, z13;
+-  DCTELEM *dataptr;
+-  int ctr;
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process rows. */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[0] + dataptr[7];
+-    tmp7 = dataptr[0] - dataptr[7];
+-    tmp1 = dataptr[1] + dataptr[6];
+-    tmp6 = dataptr[1] - dataptr[6];
+-    tmp2 = dataptr[2] + dataptr[5];
+-    tmp5 = dataptr[2] - dataptr[5];
+-    tmp3 = dataptr[3] + dataptr[4];
+-    tmp4 = dataptr[3] - dataptr[4];
+-    
+-    /* Even part */
+-    
+-    tmp10 = tmp0 + tmp3;	/* phase 2 */
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[0] = tmp10 + tmp11; /* phase 3 */
+-    dataptr[4] = tmp10 - tmp11;
+-    
+-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+-    dataptr[2] = tmp13 + z1;	/* phase 5 */
+-    dataptr[6] = tmp13 - z1;
+-    
+-    /* Odd part */
+-
+-    tmp10 = tmp4 + tmp5;	/* phase 2 */
+-    tmp11 = tmp5 + tmp6;
+-    tmp12 = tmp6 + tmp7;
+-
+-    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+-    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+-    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+-    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+-    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+-
+-    z11 = tmp7 + z3;		/* phase 5 */
+-    z13 = tmp7 - z3;
+-
+-    dataptr[5] = z13 + z2;	/* phase 6 */
+-    dataptr[3] = z13 - z2;
+-    dataptr[1] = z11 + z4;
+-    dataptr[7] = z11 - z4;
+-
+-    dataptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-
+-  /* Pass 2: process columns. */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+-    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+-    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+-    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+-    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+-    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+-    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+-    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+-    
+-    /* Even part */
+-    
+-    tmp10 = tmp0 + tmp3;	/* phase 2 */
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+-    dataptr[DCTSIZE*4] = tmp10 - tmp11;
+-    
+-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
+-    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+-    dataptr[DCTSIZE*6] = tmp13 - z1;
+-    
+-    /* Odd part */
+-
+-    tmp10 = tmp4 + tmp5;	/* phase 2 */
+-    tmp11 = tmp5 + tmp6;
+-    tmp12 = tmp6 + tmp7;
+-
+-    /* The rotator is modified from fig 4-8 to avoid extra negations. */
+-    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
+-    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
+-    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
+-    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
+-
+-    z11 = tmp7 + z3;		/* phase 5 */
+-    z13 = tmp7 - z3;
+-
+-    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+-    dataptr[DCTSIZE*3] = z13 - z2;
+-    dataptr[DCTSIZE*1] = z11 + z4;
+-    dataptr[DCTSIZE*7] = z11 - z4;
+-
+-    dataptr++;			/* advance pointer to next column */
+-  }
+-}
+-
+-#endif /* DCT_IFAST_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctint.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctint.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jfdctint.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jfdctint.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,287 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jfdctint.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a slow-but-accurate integer implementation of the
+- * forward DCT (Discrete Cosine Transform).
+- *
+- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+- * on each column.  Direct algorithms are also available, but they are
+- * much more complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on an algorithm described in
+- *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+- *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+- *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+- * The primary algorithm described there uses 11 multiplies and 29 adds.
+- * We use their alternate method with 12 multiplies and 32 adds.
+- * The advantage of this method is that no data path contains more than one
+- * multiplication; this allows a very simple and accurate implementation in
+- * scaled fixed-point arithmetic, with a minimal number of shifts.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_ISLOW_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/*
+- * The poop on this scaling stuff is as follows:
+- *
+- * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
+- * larger than the true DCT outputs.  The final outputs are therefore
+- * a factor of N larger than desired; since N=8 this can be cured by
+- * a simple right shift at the end of the algorithm.  The advantage of
+- * this arrangement is that we save two multiplications per 1-D DCT,
+- * because the y0 and y4 outputs need not be divided by sqrt(N).
+- * In the IJG code, this factor of 8 is removed by the quantization step
+- * (in jcdctmgr.c), NOT in this module.
+- *
+- * We have to do addition and subtraction of the integer inputs, which
+- * is no problem, and multiplication by fractional constants, which is
+- * a problem to do in integer arithmetic.  We multiply all the constants
+- * by CONST_SCALE and convert them to integer constants (thus retaining
+- * CONST_BITS bits of precision in the constants).  After doing a
+- * multiplication we have to divide the product by CONST_SCALE, with proper
+- * rounding, to produce the correct output.  This division can be done
+- * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
+- * as long as possible so that partial sums can be added together with
+- * full fractional precision.
+- *
+- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+- * they are represented to better-than-integral precision.  These outputs
+- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+- * with the recommended scaling.  (For 12-bit sample data, the intermediate
+- * array is INT32 anyway.)
+- *
+- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
+- * shows that the values given below are the most effective.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define CONST_BITS  13
+-#define PASS1_BITS  2
+-#else
+-#define CONST_BITS  13
+-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+-#endif
+-
+-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+- * causing a lot of useless floating-point operations at run time.
+- * To get around this we use the following pre-calculated constants.
+- * If you change CONST_BITS you may want to add appropriate values.
+- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+- */
+-
+-#if CONST_BITS == 13
+-#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
+-#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
+-#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
+-#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+-#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+-#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
+-#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
+-#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+-#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
+-#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
+-#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+-#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
+-#else
+-#define FIX_0_298631336  FIX(0.298631336)
+-#define FIX_0_390180644  FIX(0.390180644)
+-#define FIX_0_541196100  FIX(0.541196100)
+-#define FIX_0_765366865  FIX(0.765366865)
+-#define FIX_0_899976223  FIX(0.899976223)
+-#define FIX_1_175875602  FIX(1.175875602)
+-#define FIX_1_501321110  FIX(1.501321110)
+-#define FIX_1_847759065  FIX(1.847759065)
+-#define FIX_1_961570560  FIX(1.961570560)
+-#define FIX_2_053119869  FIX(2.053119869)
+-#define FIX_2_562915447  FIX(2.562915447)
+-#define FIX_3_072711026  FIX(3.072711026)
+-#endif
+-
+-
+-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+- * For 8-bit samples with the recommended scaling, all the variable
+- * and constant values involved are no more than 16 bits wide, so a
+- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+- * For 12-bit samples, a full 32-bit multiplication will be needed.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+-#else
+-#define MULTIPLY(var,const)  ((var) * (const))
+-#endif
+-
+-
+-/*
+- * Perform the forward DCT on one block of samples.
+- */
+-
+-GLOBAL(void)
+-jpeg_fdct_islow (DCTELEM * data)
+-{
+-  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+-  INT32 tmp10, tmp11, tmp12, tmp13;
+-  INT32 z1, z2, z3, z4, z5;
+-  DCTELEM *dataptr;
+-  int ctr;
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process rows. */
+-  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
+-  /* furthermore, we scale the results by 2**PASS1_BITS. */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[0] + dataptr[7];
+-    tmp7 = dataptr[0] - dataptr[7];
+-    tmp1 = dataptr[1] + dataptr[6];
+-    tmp6 = dataptr[1] - dataptr[6];
+-    tmp2 = dataptr[2] + dataptr[5];
+-    tmp5 = dataptr[2] - dataptr[5];
+-    tmp3 = dataptr[3] + dataptr[4];
+-    tmp4 = dataptr[3] - dataptr[4];
+-    
+-    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+-     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+-     */
+-    
+-    tmp10 = tmp0 + tmp3;
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
+-    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
+-    
+-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+-    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+-				   CONST_BITS-PASS1_BITS);
+-    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+-				   CONST_BITS-PASS1_BITS);
+-    
+-    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+-     * cK represents cos(K*pi/16).
+-     * i0..i3 in the paper are tmp4..tmp7 here.
+-     */
+-    
+-    z1 = tmp4 + tmp7;
+-    z2 = tmp5 + tmp6;
+-    z3 = tmp4 + tmp6;
+-    z4 = tmp5 + tmp7;
+-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+-    
+-    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+-    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+-    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+-    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+-    
+-    z3 += z5;
+-    z4 += z5;
+-    
+-    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
+-    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
+-    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
+-    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
+-    
+-    dataptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-
+-  /* Pass 2: process columns.
+-   * We remove the PASS1_BITS scaling, but leave the results scaled up
+-   * by an overall factor of 8.
+-   */
+-
+-  dataptr = data;
+-  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+-    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+-    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+-    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+-    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+-    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+-    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+-    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+-    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+-    
+-    /* Even part per LL&M figure 1 --- note that published figure is faulty;
+-     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
+-     */
+-    
+-    tmp10 = tmp0 + tmp3;
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
+-    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
+-    
+-    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
+-    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
+-					   CONST_BITS+PASS1_BITS);
+-    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
+-					   CONST_BITS+PASS1_BITS);
+-    
+-    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
+-     * cK represents cos(K*pi/16).
+-     * i0..i3 in the paper are tmp4..tmp7 here.
+-     */
+-    
+-    z1 = tmp4 + tmp7;
+-    z2 = tmp5 + tmp6;
+-    z3 = tmp4 + tmp6;
+-    z4 = tmp5 + tmp7;
+-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+-    
+-    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+-    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+-    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+-    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+-    
+-    z3 += z5;
+-    z4 += z5;
+-    
+-    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
+-					   CONST_BITS+PASS1_BITS);
+-    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
+-					   CONST_BITS+PASS1_BITS);
+-    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
+-					   CONST_BITS+PASS1_BITS);
+-    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
+-					   CONST_BITS+PASS1_BITS);
+-    
+-    dataptr++;			/* advance pointer to next column */
+-  }
+-}
+-
+-#endif /* DCT_ISLOW_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctflt.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctflt.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctflt.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctflt.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,246 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jidctflt.c
+- *
+- * Copyright (C) 1994-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a floating-point implementation of the
+- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+- * must also perform dequantization of the input coefficients.
+- *
+- * This implementation should be more accurate than either of the integer
+- * IDCT implementations.  However, it may not give the same results on all
+- * machines because of differences in roundoff behavior.  Speed will depend
+- * on the hardware's floating point capacity.
+- *
+- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+- * on each row (or vice versa, but it's more convenient to emit a row at
+- * a time).  Direct algorithms are also available, but they are much more
+- * complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+- * JPEG textbook (see REFERENCES section in file README).  The following code
+- * is based directly on figure 4-8 in P&M.
+- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+- * possible to arrange the computation so that many of the multiplies are
+- * simple scalings of the final outputs.  These multiplies can then be
+- * folded into the multiplications or divisions by the JPEG quantization
+- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+- * to be done in the DCT itself.
+- * The primary disadvantage of this method is that with a fixed-point
+- * implementation, accuracy is lost due to imprecise representation of the
+- * scaled quantization values.  However, that problem does not arise if
+- * we use floating point arithmetic.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_FLOAT_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/* Dequantize a coefficient by multiplying it by the multiplier-table
+- * entry; produce a float result.
+- */
+-
+-#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		 JCOEFPTR coef_block,
+-		 JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+-  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+-  FAST_FLOAT z5, z10, z11, z12, z13;
+-  JCOEFPTR inptr;
+-  FLOAT_MULT_TYPE * quantptr;
+-  FAST_FLOAT * wsptr;
+-  JSAMPROW outptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  int ctr;
+-  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process columns from input, store into work array. */
+-
+-  inptr = coef_block;
+-  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+-  wsptr = workspace;
+-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+-    /* Due to quantization, we will usually find that many of the input
+-     * coefficients are zero, especially the AC terms.  We can exploit this
+-     * by short-circuiting the IDCT calculation for any column in which all
+-     * the AC terms are zero.  In that case each output is equal to the
+-     * DC coefficient (with scale factor as needed).
+-     * With typical images and quantization tables, half or more of the
+-     * column DCT calculations can be simplified this way.
+-     */
+-    
+-    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+-	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+-	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+-	inptr[DCTSIZE*7] == 0) {
+-      /* AC terms all zero */
+-      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-      
+-      wsptr[DCTSIZE*0] = dcval;
+-      wsptr[DCTSIZE*1] = dcval;
+-      wsptr[DCTSIZE*2] = dcval;
+-      wsptr[DCTSIZE*3] = dcval;
+-      wsptr[DCTSIZE*4] = dcval;
+-      wsptr[DCTSIZE*5] = dcval;
+-      wsptr[DCTSIZE*6] = dcval;
+-      wsptr[DCTSIZE*7] = dcval;
+-      
+-      inptr++;			/* advance pointers to next column */
+-      quantptr++;
+-      wsptr++;
+-      continue;
+-    }
+-    
+-    /* Even part */
+-
+-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+-
+-    tmp10 = tmp0 + tmp2;	/* phase 3 */
+-    tmp11 = tmp0 - tmp2;
+-
+-    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
+-    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+-
+-    tmp0 = tmp10 + tmp13;	/* phase 2 */
+-    tmp3 = tmp10 - tmp13;
+-    tmp1 = tmp11 + tmp12;
+-    tmp2 = tmp11 - tmp12;
+-    
+-    /* Odd part */
+-
+-    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+-    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+-    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+-    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+-
+-    z13 = tmp6 + tmp5;		/* phase 6 */
+-    z10 = tmp6 - tmp5;
+-    z11 = tmp4 + tmp7;
+-    z12 = tmp4 - tmp7;
+-
+-    tmp7 = z11 + z13;		/* phase 5 */
+-    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+-
+-    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+-    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+-    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+-
+-    tmp6 = tmp12 - tmp7;	/* phase 2 */
+-    tmp5 = tmp11 - tmp6;
+-    tmp4 = tmp10 + tmp5;
+-
+-    wsptr[DCTSIZE*0] = tmp0 + tmp7;
+-    wsptr[DCTSIZE*7] = tmp0 - tmp7;
+-    wsptr[DCTSIZE*1] = tmp1 + tmp6;
+-    wsptr[DCTSIZE*6] = tmp1 - tmp6;
+-    wsptr[DCTSIZE*2] = tmp2 + tmp5;
+-    wsptr[DCTSIZE*5] = tmp2 - tmp5;
+-    wsptr[DCTSIZE*4] = tmp3 + tmp4;
+-    wsptr[DCTSIZE*3] = tmp3 - tmp4;
+-
+-    inptr++;			/* advance pointers to next column */
+-    quantptr++;
+-    wsptr++;
+-  }
+-  
+-  /* Pass 2: process rows from work array, store into output array. */
+-  /* Note that we must descale the results by a factor of 8 == 2**3. */
+-
+-  wsptr = workspace;
+-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+-    outptr = output_buf[ctr] + output_col;
+-    /* Rows of zeroes can be exploited in the same way as we did with columns.
+-     * However, the column calculation has created many nonzero AC terms, so
+-     * the simplification applies less often (typically 5% to 10% of the time).
+-     * And testing floats for zero is relatively expensive, so we don't bother.
+-     */
+-    
+-    /* Even part */
+-
+-    tmp10 = wsptr[0] + wsptr[4];
+-    tmp11 = wsptr[0] - wsptr[4];
+-
+-    tmp13 = wsptr[2] + wsptr[6];
+-    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
+-
+-    tmp0 = tmp10 + tmp13;
+-    tmp3 = tmp10 - tmp13;
+-    tmp1 = tmp11 + tmp12;
+-    tmp2 = tmp11 - tmp12;
+-
+-    /* Odd part */
+-
+-    z13 = wsptr[5] + wsptr[3];
+-    z10 = wsptr[5] - wsptr[3];
+-    z11 = wsptr[1] + wsptr[7];
+-    z12 = wsptr[1] - wsptr[7];
+-
+-    tmp7 = z11 + z13;
+-    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
+-
+-    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+-    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+-    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+-
+-    tmp6 = tmp12 - tmp7;
+-    tmp5 = tmp11 - tmp6;
+-    tmp4 = tmp10 + tmp5;
+-
+-    /* Final output stage: scale down by a factor of 8 and range-limit */
+-
+-    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
+-			    & RANGE_MASK];
+-    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
+-			    & RANGE_MASK];
+-    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
+-			    & RANGE_MASK];
+-    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
+-			    & RANGE_MASK];
+-    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
+-			    & RANGE_MASK];
+-    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
+-			    & RANGE_MASK];
+-    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
+-			    & RANGE_MASK];
+-    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
+-			    & RANGE_MASK];
+-    
+-    wsptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-}
+-
+-#endif /* DCT_FLOAT_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctfst.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctfst.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctfst.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctfst.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,372 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jidctfst.c
+- *
+- * Copyright (C) 1994-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a fast, not so accurate integer implementation of the
+- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+- * must also perform dequantization of the input coefficients.
+- *
+- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+- * on each row (or vice versa, but it's more convenient to emit a row at
+- * a time).  Direct algorithms are also available, but they are much more
+- * complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+- * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
+- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+- * JPEG textbook (see REFERENCES section in file README).  The following code
+- * is based directly on figure 4-8 in P&M.
+- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+- * possible to arrange the computation so that many of the multiplies are
+- * simple scalings of the final outputs.  These multiplies can then be
+- * folded into the multiplications or divisions by the JPEG quantization
+- * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
+- * to be done in the DCT itself.
+- * The primary disadvantage of this method is that with fixed-point math,
+- * accuracy is lost due to imprecise representation of the scaled
+- * quantization values.  The smaller the quantization table entry, the less
+- * precise the scaled value, so this implementation does worse with high-
+- * quality-setting files than with low-quality ones.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_IFAST_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/* Scaling decisions are generally the same as in the LL&M algorithm;
+- * see jidctint.c for more details.  However, we choose to descale
+- * (right shift) multiplication products as soon as they are formed,
+- * rather than carrying additional fractional bits into subsequent additions.
+- * This compromises accuracy slightly, but it lets us save a few shifts.
+- * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
+- * everywhere except in the multiplications proper; this saves a good deal
+- * of work on 16-bit-int machines.
+- *
+- * The dequantized coefficients are not integers because the AA&N scaling
+- * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
+- * so that the first and second IDCT rounds have the same input scaling.
+- * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
+- * avoid a descaling shift; this compromises accuracy rather drastically
+- * for small quantization table entries, but it saves a lot of shifts.
+- * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
+- * so we use a much larger scaling factor to preserve accuracy.
+- *
+- * A final compromise is to represent the multiplicative constants to only
+- * 8 fractional bits, rather than 13.  This saves some shifting work on some
+- * machines, and may also reduce the cost of multiplication (since there
+- * are fewer one-bits in the constants).
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define CONST_BITS  8
+-#define PASS1_BITS  2
+-#else
+-#define CONST_BITS  8
+-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+-#endif
+-
+-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+- * causing a lot of useless floating-point operations at run time.
+- * To get around this we use the following pre-calculated constants.
+- * If you change CONST_BITS you may want to add appropriate values.
+- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+- */
+-
+-#if CONST_BITS == 8
+-#define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
+-#define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
+-#define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
+-#define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
+-#else
+-#define FIX_1_082392200  FIX(1.082392200)
+-#define FIX_1_414213562  FIX(1.414213562)
+-#define FIX_1_847759065  FIX(1.847759065)
+-#define FIX_2_613125930  FIX(2.613125930)
+-#endif
+-
+-
+-/* We can gain a little more speed, with a further compromise in accuracy,
+- * by omitting the addition in a descaling shift.  This yields an incorrectly
+- * rounded result half the time...
+- */
+-
+-#ifndef USE_ACCURATE_ROUNDING
+-#undef DESCALE
+-#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
+-#endif
+-
+-
+-/* Multiply a DCTELEM variable by an INT32 constant, and immediately
+- * descale to yield a DCTELEM result.
+- */
+-
+-#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
+-
+-
+-/* Dequantize a coefficient by multiplying it by the multiplier-table
+- * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
+- * multiplication will do.  For 12-bit data, the multiplier table is
+- * declared INT32, so a 32-bit multiply will be used.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
+-#else
+-#define DEQUANTIZE(coef,quantval)  \
+-	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
+-#endif
+-
+-
+-/* Like DESCALE, but applies to a DCTELEM and produces an int.
+- * We assume that int right shift is unsigned if INT32 right shift is.
+- */
+-
+-#ifdef RIGHT_SHIFT_IS_UNSIGNED
+-#define ISHIFT_TEMPS	DCTELEM ishift_temp;
+-#if BITS_IN_JSAMPLE == 8
+-#define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
+-#else
+-#define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
+-#endif
+-#define IRIGHT_SHIFT(x,shft)  \
+-    ((ishift_temp = (x)) < 0 ? \
+-     (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
+-     (ishift_temp >> (shft)))
+-#else
+-#define ISHIFT_TEMPS
+-#define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
+-#endif
+-
+-#ifdef USE_ACCURATE_ROUNDING
+-#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
+-#else
+-#define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
+-#endif
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		 JCOEFPTR coef_block,
+-		 JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+-  DCTELEM tmp10, tmp11, tmp12, tmp13;
+-  DCTELEM z5, z10, z11, z12, z13;
+-  JCOEFPTR inptr;
+-  IFAST_MULT_TYPE * quantptr;
+-  int * wsptr;
+-  JSAMPROW outptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  int ctr;
+-  int workspace[DCTSIZE2];	/* buffers data between passes */
+-  SHIFT_TEMPS			/* for DESCALE */
+-  ISHIFT_TEMPS			/* for IDESCALE */
+-
+-  /* Pass 1: process columns from input, store into work array. */
+-
+-  inptr = coef_block;
+-  quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
+-  wsptr = workspace;
+-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+-    /* Due to quantization, we will usually find that many of the input
+-     * coefficients are zero, especially the AC terms.  We can exploit this
+-     * by short-circuiting the IDCT calculation for any column in which all
+-     * the AC terms are zero.  In that case each output is equal to the
+-     * DC coefficient (with scale factor as needed).
+-     * With typical images and quantization tables, half or more of the
+-     * column DCT calculations can be simplified this way.
+-     */
+-    
+-    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+-	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+-	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+-	inptr[DCTSIZE*7] == 0) {
+-      /* AC terms all zero */
+-      int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-
+-      wsptr[DCTSIZE*0] = dcval;
+-      wsptr[DCTSIZE*1] = dcval;
+-      wsptr[DCTSIZE*2] = dcval;
+-      wsptr[DCTSIZE*3] = dcval;
+-      wsptr[DCTSIZE*4] = dcval;
+-      wsptr[DCTSIZE*5] = dcval;
+-      wsptr[DCTSIZE*6] = dcval;
+-      wsptr[DCTSIZE*7] = dcval;
+-      
+-      inptr++;			/* advance pointers to next column */
+-      quantptr++;
+-      wsptr++;
+-      continue;
+-    }
+-    
+-    /* Even part */
+-
+-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+-
+-    tmp10 = tmp0 + tmp2;	/* phase 3 */
+-    tmp11 = tmp0 - tmp2;
+-
+-    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
+-    tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
+-
+-    tmp0 = tmp10 + tmp13;	/* phase 2 */
+-    tmp3 = tmp10 - tmp13;
+-    tmp1 = tmp11 + tmp12;
+-    tmp2 = tmp11 - tmp12;
+-    
+-    /* Odd part */
+-
+-    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+-    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+-    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+-    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+-
+-    z13 = tmp6 + tmp5;		/* phase 6 */
+-    z10 = tmp6 - tmp5;
+-    z11 = tmp4 + tmp7;
+-    z12 = tmp4 - tmp7;
+-
+-    tmp7 = z11 + z13;		/* phase 5 */
+-    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+-
+-    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+-    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+-    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+-
+-    tmp6 = tmp12 - tmp7;	/* phase 2 */
+-    tmp5 = tmp11 - tmp6;
+-    tmp4 = tmp10 + tmp5;
+-
+-    wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
+-    wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
+-    wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
+-    wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
+-    wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
+-    wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
+-    wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
+-    wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
+-
+-    inptr++;			/* advance pointers to next column */
+-    quantptr++;
+-    wsptr++;
+-  }
+-  
+-  /* Pass 2: process rows from work array, store into output array. */
+-  /* Note that we must descale the results by a factor of 8 == 2**3, */
+-  /* and also undo the PASS1_BITS scaling. */
+-
+-  wsptr = workspace;
+-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+-    outptr = output_buf[ctr] + output_col;
+-    /* Rows of zeroes can be exploited in the same way as we did with columns.
+-     * However, the column calculation has created many nonzero AC terms, so
+-     * the simplification applies less often (typically 5% to 10% of the time).
+-     * On machines with very fast multiplication, it's possible that the
+-     * test takes more time than it's worth.  In that case this section
+-     * may be commented out.
+-     */
+-    
+-#ifndef NO_ZERO_ROW_TEST
+-    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+-	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+-      /* AC terms all zero */
+-      JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
+-				  & RANGE_MASK];
+-      
+-      outptr[0] = dcval;
+-      outptr[1] = dcval;
+-      outptr[2] = dcval;
+-      outptr[3] = dcval;
+-      outptr[4] = dcval;
+-      outptr[5] = dcval;
+-      outptr[6] = dcval;
+-      outptr[7] = dcval;
+-
+-      wsptr += DCTSIZE;		/* advance pointer to next row */
+-      continue;
+-    }
+-#endif
+-    
+-    /* Even part */
+-
+-    tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
+-    tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
+-
+-    tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
+-    tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
+-	    - tmp13;
+-
+-    tmp0 = tmp10 + tmp13;
+-    tmp3 = tmp10 - tmp13;
+-    tmp1 = tmp11 + tmp12;
+-    tmp2 = tmp11 - tmp12;
+-
+-    /* Odd part */
+-
+-    z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
+-    z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
+-    z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
+-    z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
+-
+-    tmp7 = z11 + z13;		/* phase 5 */
+-    tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
+-
+-    z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
+-    tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
+-    tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
+-
+-    tmp6 = tmp12 - tmp7;	/* phase 2 */
+-    tmp5 = tmp11 - tmp6;
+-    tmp4 = tmp10 + tmp5;
+-
+-    /* Final output stage: scale down by a factor of 8 and range-limit */
+-
+-    outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
+-			    & RANGE_MASK];
+-
+-    wsptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-}
+-
+-#endif /* DCT_IFAST_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctint.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctint.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctint.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctint.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,393 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jidctint.c
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains a slow-but-accurate integer implementation of the
+- * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
+- * must also perform dequantization of the input coefficients.
+- *
+- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+- * on each row (or vice versa, but it's more convenient to emit a row at
+- * a time).  Direct algorithms are also available, but they are much more
+- * complex and seem not to be any faster when reduced to code.
+- *
+- * This implementation is based on an algorithm described in
+- *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
+- *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
+- *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
+- * The primary algorithm described there uses 11 multiplies and 29 adds.
+- * We use their alternate method with 12 multiplies and 32 adds.
+- * The advantage of this method is that no data path contains more than one
+- * multiplication; this allows a very simple and accurate implementation in
+- * scaled fixed-point arithmetic, with a minimal number of shifts.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef DCT_ISLOW_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/*
+- * The poop on this scaling stuff is as follows:
+- *
+- * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
+- * larger than the true IDCT outputs.  The final outputs are therefore
+- * a factor of N larger than desired; since N=8 this can be cured by
+- * a simple right shift at the end of the algorithm.  The advantage of
+- * this arrangement is that we save two multiplications per 1-D IDCT,
+- * because the y0 and y4 inputs need not be divided by sqrt(N).
+- *
+- * We have to do addition and subtraction of the integer inputs, which
+- * is no problem, and multiplication by fractional constants, which is
+- * a problem to do in integer arithmetic.  We multiply all the constants
+- * by CONST_SCALE and convert them to integer constants (thus retaining
+- * CONST_BITS bits of precision in the constants).  After doing a
+- * multiplication we have to divide the product by CONST_SCALE, with proper
+- * rounding, to produce the correct output.  This division can be done
+- * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
+- * as long as possible so that partial sums can be added together with
+- * full fractional precision.
+- *
+- * The outputs of the first pass are scaled up by PASS1_BITS bits so that
+- * they are represented to better-than-integral precision.  These outputs
+- * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
+- * with the recommended scaling.  (To scale up 12-bit sample data further, an
+- * intermediate INT32 array would be needed.)
+- *
+- * To avoid overflow of the 32-bit intermediate results in pass 2, we must
+- * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
+- * shows that the values given below are the most effective.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define CONST_BITS  13
+-#define PASS1_BITS  2
+-#else
+-#define CONST_BITS  13
+-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+-#endif
+-
+-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+- * causing a lot of useless floating-point operations at run time.
+- * To get around this we use the following pre-calculated constants.
+- * If you change CONST_BITS you may want to add appropriate values.
+- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+- */
+-
+-#if CONST_BITS == 13
+-#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
+-#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
+-#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
+-#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+-#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+-#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
+-#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
+-#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+-#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
+-#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
+-#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+-#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
+-#else
+-#define FIX_0_298631336  FIX(0.298631336)
+-#define FIX_0_390180644  FIX(0.390180644)
+-#define FIX_0_541196100  FIX(0.541196100)
+-#define FIX_0_765366865  FIX(0.765366865)
+-#define FIX_0_899976223  FIX(0.899976223)
+-#define FIX_1_175875602  FIX(1.175875602)
+-#define FIX_1_501321110  FIX(1.501321110)
+-#define FIX_1_847759065  FIX(1.847759065)
+-#define FIX_1_961570560  FIX(1.961570560)
+-#define FIX_2_053119869  FIX(2.053119869)
+-#define FIX_2_562915447  FIX(2.562915447)
+-#define FIX_3_072711026  FIX(3.072711026)
+-#endif
+-
+-
+-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+- * For 8-bit samples with the recommended scaling, all the variable
+- * and constant values involved are no more than 16 bits wide, so a
+- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+- * For 12-bit samples, a full 32-bit multiplication will be needed.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+-#else
+-#define MULTIPLY(var,const)  ((var) * (const))
+-#endif
+-
+-
+-/* Dequantize a coefficient by multiplying it by the multiplier-table
+- * entry; produce an int result.  In this module, both inputs and result
+- * are 16 bits or less, so either int or short multiply will work.
+- */
+-
+-#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		 JCOEFPTR coef_block,
+-		 JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  INT32 tmp0, tmp1, tmp2, tmp3;
+-  INT32 tmp10, tmp11, tmp12, tmp13;
+-  INT32 z1, z2, z3, z4, z5;
+-  JCOEFPTR inptr;
+-  ISLOW_MULT_TYPE * quantptr;
+-  int * wsptr;
+-  JSAMPROW outptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  int ctr;
+-  int workspace[DCTSIZE2];	/* buffers data between passes */
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process columns from input, store into work array. */
+-  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
+-  /* furthermore, we scale the results by 2**PASS1_BITS. */
+-
+-  inptr = coef_block;
+-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+-  wsptr = workspace;
+-  for (ctr = DCTSIZE; ctr > 0; ctr--) {
+-    /* Due to quantization, we will usually find that many of the input
+-     * coefficients are zero, especially the AC terms.  We can exploit this
+-     * by short-circuiting the IDCT calculation for any column in which all
+-     * the AC terms are zero.  In that case each output is equal to the
+-     * DC coefficient (with scale factor as needed).
+-     * With typical images and quantization tables, half or more of the
+-     * column DCT calculations can be simplified this way.
+-     */
+-    
+-    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+-	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
+-	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
+-	inptr[DCTSIZE*7] == 0) {
+-      /* AC terms all zero */
+-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+-      
+-      wsptr[DCTSIZE*0] = dcval;
+-      wsptr[DCTSIZE*1] = dcval;
+-      wsptr[DCTSIZE*2] = dcval;
+-      wsptr[DCTSIZE*3] = dcval;
+-      wsptr[DCTSIZE*4] = dcval;
+-      wsptr[DCTSIZE*5] = dcval;
+-      wsptr[DCTSIZE*6] = dcval;
+-      wsptr[DCTSIZE*7] = dcval;
+-      
+-      inptr++;			/* advance pointers to next column */
+-      quantptr++;
+-      wsptr++;
+-      continue;
+-    }
+-    
+-    /* Even part: reverse the even part of the forward DCT. */
+-    /* The rotator is sqrt(2)*c(-6). */
+-    
+-    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+-    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+-    
+-    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+-    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
+-    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
+-    
+-    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+-
+-    tmp0 = (z2 + z3) << CONST_BITS;
+-    tmp1 = (z2 - z3) << CONST_BITS;
+-    
+-    tmp10 = tmp0 + tmp3;
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    /* Odd part per figure 8; the matrix is unitary and hence its
+-     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
+-     */
+-    
+-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+-    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+-    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+-    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+-    
+-    z1 = tmp0 + tmp3;
+-    z2 = tmp1 + tmp2;
+-    z3 = tmp0 + tmp2;
+-    z4 = tmp1 + tmp3;
+-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+-    
+-    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+-    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+-    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+-    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+-    
+-    z3 += z5;
+-    z4 += z5;
+-    
+-    tmp0 += z1 + z3;
+-    tmp1 += z2 + z4;
+-    tmp2 += z2 + z3;
+-    tmp3 += z1 + z4;
+-    
+-    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+-    
+-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
+-    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
+-    
+-    inptr++;			/* advance pointers to next column */
+-    quantptr++;
+-    wsptr++;
+-  }
+-  
+-  /* Pass 2: process rows from work array, store into output array. */
+-  /* Note that we must descale the results by a factor of 8 == 2**3, */
+-  /* and also undo the PASS1_BITS scaling. */
+-
+-  wsptr = workspace;
+-  for (ctr = 0; ctr < DCTSIZE; ctr++) {
+-    outptr = output_buf[ctr] + output_col;
+-    /* Rows of zeroes can be exploited in the same way as we did with columns.
+-     * However, the column calculation has created many nonzero AC terms, so
+-     * the simplification applies less often (typically 5% to 10% of the time).
+-     * On machines with very fast multiplication, it's possible that the
+-     * test takes more time than it's worth.  In that case this section
+-     * may be commented out.
+-     */
+-    
+-#ifndef NO_ZERO_ROW_TEST
+-    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
+-	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+-      /* AC terms all zero */
+-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+-				  & RANGE_MASK];
+-      
+-      outptr[0] = dcval;
+-      outptr[1] = dcval;
+-      outptr[2] = dcval;
+-      outptr[3] = dcval;
+-      outptr[4] = dcval;
+-      outptr[5] = dcval;
+-      outptr[6] = dcval;
+-      outptr[7] = dcval;
+-
+-      wsptr += DCTSIZE;		/* advance pointer to next row */
+-      continue;
+-    }
+-#endif
+-    
+-    /* Even part: reverse the even part of the forward DCT. */
+-    /* The rotator is sqrt(2)*c(-6). */
+-    
+-    z2 = (INT32) wsptr[2];
+-    z3 = (INT32) wsptr[6];
+-    
+-    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
+-    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
+-    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
+-    
+-    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
+-    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
+-    
+-    tmp10 = tmp0 + tmp3;
+-    tmp13 = tmp0 - tmp3;
+-    tmp11 = tmp1 + tmp2;
+-    tmp12 = tmp1 - tmp2;
+-    
+-    /* Odd part per figure 8; the matrix is unitary and hence its
+-     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
+-     */
+-    
+-    tmp0 = (INT32) wsptr[7];
+-    tmp1 = (INT32) wsptr[5];
+-    tmp2 = (INT32) wsptr[3];
+-    tmp3 = (INT32) wsptr[1];
+-    
+-    z1 = tmp0 + tmp3;
+-    z2 = tmp1 + tmp2;
+-    z3 = tmp0 + tmp2;
+-    z4 = tmp1 + tmp3;
+-    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
+-    
+-    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
+-    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
+-    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
+-    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
+-    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
+-    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
+-    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
+-    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
+-    
+-    z3 += z5;
+-    z4 += z5;
+-    
+-    tmp0 += z1 + z3;
+-    tmp1 += z2 + z4;
+-    tmp2 += z2 + z3;
+-    tmp3 += z1 + z4;
+-    
+-    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
+-    
+-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
+-					  CONST_BITS+PASS1_BITS+3)
+-			    & RANGE_MASK];
+-    
+-    wsptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-}
+-
+-#endif /* DCT_ISLOW_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctred.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctred.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jidctred.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jidctred.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,402 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jidctred.c
+- *
+- * Copyright (C) 1994-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains inverse-DCT routines that produce reduced-size output:
+- * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
+- *
+- * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
+- * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
+- * with an 8-to-4 step that produces the four averages of two adjacent outputs
+- * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
+- * These steps were derived by computing the corresponding values at the end
+- * of the normal LL&M code, then simplifying as much as possible.
+- *
+- * 1x1 is trivial: just take the DC coefficient divided by 8.
+- *
+- * See jidctint.c for additional comments.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jdct.h"		/* Private declarations for DCT subsystem */
+-
+-#ifdef IDCT_SCALING_SUPPORTED
+-
+-
+-/*
+- * This module is specialized to the case DCTSIZE = 8.
+- */
+-
+-#if DCTSIZE != 8
+-  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+-#endif
+-
+-
+-/* Scaling is the same as in jidctint.c. */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define CONST_BITS  13
+-#define PASS1_BITS  2
+-#else
+-#define CONST_BITS  13
+-#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
+-#endif
+-
+-/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
+- * causing a lot of useless floating-point operations at run time.
+- * To get around this we use the following pre-calculated constants.
+- * If you change CONST_BITS you may want to add appropriate values.
+- * (With a reasonable C compiler, you can just rely on the FIX() macro...)
+- */
+-
+-#if CONST_BITS == 13
+-#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
+-#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
+-#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
+-#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
+-#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
+-#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
+-#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
+-#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
+-#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
+-#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
+-#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
+-#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
+-#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
+-#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
+-#else
+-#define FIX_0_211164243  FIX(0.211164243)
+-#define FIX_0_509795579  FIX(0.509795579)
+-#define FIX_0_601344887  FIX(0.601344887)
+-#define FIX_0_720959822  FIX(0.720959822)
+-#define FIX_0_765366865  FIX(0.765366865)
+-#define FIX_0_850430095  FIX(0.850430095)
+-#define FIX_0_899976223  FIX(0.899976223)
+-#define FIX_1_061594337  FIX(1.061594337)
+-#define FIX_1_272758580  FIX(1.272758580)
+-#define FIX_1_451774981  FIX(1.451774981)
+-#define FIX_1_847759065  FIX(1.847759065)
+-#define FIX_2_172734803  FIX(2.172734803)
+-#define FIX_2_562915447  FIX(2.562915447)
+-#define FIX_3_624509785  FIX(3.624509785)
+-#endif
+-
+-
+-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+- * For 8-bit samples with the recommended scaling, all the variable
+- * and constant values involved are no more than 16 bits wide, so a
+- * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
+- * For 12-bit samples, a full 32-bit multiplication will be needed.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
+-#else
+-#define MULTIPLY(var,const)  ((var) * (const))
+-#endif
+-
+-
+-/* Dequantize a coefficient by multiplying it by the multiplier-table
+- * entry; produce an int result.  In this module, both inputs and result
+- * are 16 bits or less, so either int or short multiply will work.
+- */
+-
+-#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients,
+- * producing a reduced-size 4x4 output block.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JCOEFPTR coef_block,
+-	       JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  INT32 tmp0, tmp2, tmp10, tmp12;
+-  INT32 z1, z2, z3, z4;
+-  JCOEFPTR inptr;
+-  ISLOW_MULT_TYPE * quantptr;
+-  int * wsptr;
+-  JSAMPROW outptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  int ctr;
+-  int workspace[DCTSIZE*4];	/* buffers data between passes */
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process columns from input, store into work array. */
+-
+-  inptr = coef_block;
+-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+-  wsptr = workspace;
+-  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+-    /* Don't bother to process column 4, because second pass won't use it */
+-    if (ctr == DCTSIZE-4)
+-      continue;
+-    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
+-	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
+-	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
+-      /* AC terms all zero; we need not examine term 4 for 4x4 output */
+-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+-      
+-      wsptr[DCTSIZE*0] = dcval;
+-      wsptr[DCTSIZE*1] = dcval;
+-      wsptr[DCTSIZE*2] = dcval;
+-      wsptr[DCTSIZE*3] = dcval;
+-      
+-      continue;
+-    }
+-    
+-    /* Even part */
+-    
+-    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-    tmp0 <<= (CONST_BITS+1);
+-    
+-    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+-    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+-
+-    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
+-    
+-    tmp10 = tmp0 + tmp2;
+-    tmp12 = tmp0 - tmp2;
+-    
+-    /* Odd part */
+-    
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+-    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+-    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+-    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+-    
+-    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+-	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+-	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+-	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+-    
+-    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+-	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+-	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+-	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+-
+-    /* Final output stage */
+-    
+-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
+-    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
+-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
+-    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
+-  }
+-  
+-  /* Pass 2: process 4 rows from work array, store into output array. */
+-
+-  wsptr = workspace;
+-  for (ctr = 0; ctr < 4; ctr++) {
+-    outptr = output_buf[ctr] + output_col;
+-    /* It's not clear whether a zero row test is worthwhile here ... */
+-
+-#ifndef NO_ZERO_ROW_TEST
+-    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
+-	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
+-      /* AC terms all zero */
+-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+-				  & RANGE_MASK];
+-      
+-      outptr[0] = dcval;
+-      outptr[1] = dcval;
+-      outptr[2] = dcval;
+-      outptr[3] = dcval;
+-      
+-      wsptr += DCTSIZE;		/* advance pointer to next row */
+-      continue;
+-    }
+-#endif
+-    
+-    /* Even part */
+-    
+-    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
+-    
+-    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+-	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
+-    
+-    tmp10 = tmp0 + tmp2;
+-    tmp12 = tmp0 - tmp2;
+-    
+-    /* Odd part */
+-    
+-    z1 = (INT32) wsptr[7];
+-    z2 = (INT32) wsptr[5];
+-    z3 = (INT32) wsptr[3];
+-    z4 = (INT32) wsptr[1];
+-    
+-    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+-	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+-	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+-	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
+-    
+-    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+-	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+-	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+-	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
+-
+-    /* Final output stage */
+-    
+-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
+-					  CONST_BITS+PASS1_BITS+3+1)
+-			    & RANGE_MASK];
+-    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
+-					  CONST_BITS+PASS1_BITS+3+1)
+-			    & RANGE_MASK];
+-    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
+-					  CONST_BITS+PASS1_BITS+3+1)
+-			    & RANGE_MASK];
+-    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
+-					  CONST_BITS+PASS1_BITS+3+1)
+-			    & RANGE_MASK];
+-    
+-    wsptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-}
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients,
+- * producing a reduced-size 2x2 output block.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JCOEFPTR coef_block,
+-	       JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  INT32 tmp0, tmp10, z1;
+-  JCOEFPTR inptr;
+-  ISLOW_MULT_TYPE * quantptr;
+-  int * wsptr;
+-  JSAMPROW outptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  int ctr;
+-  int workspace[DCTSIZE*2];	/* buffers data between passes */
+-  SHIFT_TEMPS
+-
+-  /* Pass 1: process columns from input, store into work array. */
+-
+-  inptr = coef_block;
+-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+-  wsptr = workspace;
+-  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
+-    /* Don't bother to process columns 2,4,6 */
+-    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
+-      continue;
+-    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
+-	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
+-      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
+-      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
+-      
+-      wsptr[DCTSIZE*0] = dcval;
+-      wsptr[DCTSIZE*1] = dcval;
+-      
+-      continue;
+-    }
+-    
+-    /* Even part */
+-    
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+-    tmp10 = z1 << (CONST_BITS+2);
+-    
+-    /* Odd part */
+-
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+-    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+-    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+-    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
+-    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+-    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+-
+-    /* Final output stage */
+-    
+-    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
+-    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
+-  }
+-  
+-  /* Pass 2: process 2 rows from work array, store into output array. */
+-
+-  wsptr = workspace;
+-  for (ctr = 0; ctr < 2; ctr++) {
+-    outptr = output_buf[ctr] + output_col;
+-    /* It's not clear whether a zero row test is worthwhile here ... */
+-
+-#ifndef NO_ZERO_ROW_TEST
+-    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
+-      /* AC terms all zero */
+-      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
+-				  & RANGE_MASK];
+-      
+-      outptr[0] = dcval;
+-      outptr[1] = dcval;
+-      
+-      wsptr += DCTSIZE;		/* advance pointer to next row */
+-      continue;
+-    }
+-#endif
+-    
+-    /* Even part */
+-    
+-    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
+-    
+-    /* Odd part */
+-
+-    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+-	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+-	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+-	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
+-
+-    /* Final output stage */
+-    
+-    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
+-					  CONST_BITS+PASS1_BITS+3+2)
+-			    & RANGE_MASK];
+-    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
+-					  CONST_BITS+PASS1_BITS+3+2)
+-			    & RANGE_MASK];
+-    
+-    wsptr += DCTSIZE;		/* advance pointer to next row */
+-  }
+-}
+-
+-
+-/*
+- * Perform dequantization and inverse DCT on one block of coefficients,
+- * producing a reduced-size 1x1 output block.
+- */
+-
+-GLOBAL(void)
+-jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-	       JCOEFPTR coef_block,
+-	       JSAMPARRAY output_buf, JDIMENSION output_col)
+-{
+-  int dcval;
+-  ISLOW_MULT_TYPE * quantptr;
+-  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+-  SHIFT_TEMPS
+-
+-  /* We hardly need an inverse DCT routine for this: just take the
+-   * average pixel value, which is one-eighth of the DC coefficient.
+-   */
+-  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
+-  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
+-  dcval = (int) DESCALE((INT32) dcval, 3);
+-
+-  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
+-}
+-
+-#endif /* IDCT_SCALING_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jinclude.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jinclude.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jinclude.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jinclude.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,95 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jinclude.h
+- *
+- * Copyright (C) 1991-1994, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file exists to provide a single place to fix any problems with
+- * including the wrong system include files.  (Common problems are taken
+- * care of by the standard jconfig symbols, but on really weird systems
+- * you may have to edit this file.)
+- *
+- * NOTE: this file is NOT intended to be included by applications using the
+- * JPEG library.  Most applications need only include jpeglib.h.
+- */
+-
+-
+-/* Include auto-config file to find out which system include files we need. */
+-
+-#include "jconfig.h"		/* auto configuration options */
+-#define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */
+-
+-/*
+- * We need the NULL macro and size_t typedef.
+- * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+- * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+- * pull in <sys/types.h> as well.
+- * Note that the core JPEG library does not require <stdio.h>;
+- * only the default error handler and data source/destination modules do.
+- * But we must pull it in because of the references to FILE in jpeglib.h.
+- * You can remove those references if you want to compile without <stdio.h>.
+- */
+-
+-#ifdef HAVE_STDDEF_H
+-#include <stddef.h>
+-#endif
+-
+-#ifdef HAVE_STDLIB_H
+-#include <stdlib.h>
+-#endif
+-
+-#ifdef NEED_SYS_TYPES_H
+-#include <sys/types.h>
+-#endif
+-
+-#include <stdio.h>
+-
+-/*
+- * We need memory copying and zeroing functions, plus strncpy().
+- * ANSI and System V implementations declare these in <string.h>.
+- * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+- * Some systems may declare memset and memcpy in <memory.h>.
+- *
+- * NOTE: we assume the size parameters to these functions are of type size_t.
+- * Change the casts in these macros if not!
+- */
+-
+-#ifdef NEED_BSD_STRINGS
+-
+-#include <strings.h>
+-#define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size))
+-#define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+-
+-#else /* not BSD, assume ANSI/SysV string lib */
+-
+-#include <string.h>
+-#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
+-#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+-
+-#endif
+-
+-/*
+- * In ANSI C, and indeed any rational implementation, size_t is also the
+- * type returned by sizeof().  However, it seems there are some irrational
+- * implementations out there, in which sizeof() returns an int even though
+- * size_t is defined as long or unsigned long.  To ensure consistent results
+- * we always use this SIZEOF() macro in place of using sizeof() directly.
+- */
+-
+-#define SIZEOF(object)	((size_t) sizeof(object))
+-
+-/*
+- * The modules that use fread() and fwrite() always invoke them through
+- * these macros.  On some systems you may need to twiddle the argument casts.
+- * CAUTION: argument order is different from underlying functions!
+- */
+-
+-#define JFREAD(file,buf,sizeofbuf)  \
+-  ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+-#define JFWRITE(file,buf,sizeofbuf)  \
+-  ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemmgr.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemmgr.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemmgr.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemmgr.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,1122 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jmemmgr.c
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains the JPEG system-independent memory management
+- * routines.  This code is usable across a wide variety of machines; most
+- * of the system dependencies have been isolated in a separate file.
+- * The major functions provided here are:
+- *   * pool-based allocation and freeing of memory;
+- *   * policy decisions about how to divide available memory among the
+- *     virtual arrays;
+- *   * control logic for swapping virtual arrays between main memory and
+- *     backing storage.
+- * The separate system-dependent file provides the actual backing-storage
+- * access code, and it contains the policy decision about how much total
+- * main memory to use.
+- * This file is system-dependent in the sense that some of its functions
+- * are unnecessary in some systems.  For example, if there is enough virtual
+- * memory so that backing storage will never be used, much of the virtual
+- * array control logic could be removed.  (Of course, if you have that much
+- * memory then you shouldn't care about a little bit of unused code...)
+- */
+-
+-#define JPEG_INTERNALS
+-#define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jmemsys.h"		/* import the system-dependent declarations */
+-
+-#ifndef NO_GETENV
+-#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
+-extern char * getenv JPP((const char * name));
+-#endif
+-#endif
+-
+-
+-/*
+- * Some important notes:
+- *   The allocation routines provided here must never return NULL.
+- *   They should exit to error_exit if unsuccessful.
+- *
+- *   It's not a good idea to try to merge the sarray and barray routines,
+- *   even though they are textually almost the same, because samples are
+- *   usually stored as bytes while coefficients are shorts or ints.  Thus,
+- *   in machines where byte pointers have a different representation from
+- *   word pointers, the resulting machine code could not be the same.
+- */
+-
+-
+-/*
+- * Many machines require storage alignment: longs must start on 4-byte
+- * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
+- * always returns pointers that are multiples of the worst-case alignment
+- * requirement, and we had better do so too.
+- * There isn't any really portable way to determine the worst-case alignment
+- * requirement.  This module assumes that the alignment requirement is
+- * multiples of sizeof(ALIGN_TYPE).
+- * By default, we define ALIGN_TYPE as double.  This is necessary on some
+- * workstations (where doubles really do need 8-byte alignment) and will work
+- * fine on nearly everything.  If your machine has lesser alignment needs,
+- * you can save a few bytes by making ALIGN_TYPE smaller.
+- * The only place I know of where this will NOT work is certain Macintosh
+- * 680x0 compilers that define double as a 10-byte IEEE extended float.
+- * Doing 10-byte alignment is counterproductive because longwords won't be
+- * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
+- * such a compiler.
+- */
+-
+-#ifndef ALIGN_TYPE		/* so can override from jconfig.h */
+-#define ALIGN_TYPE  double
+-#endif
+-
+-
+-/*
+- * We allocate objects from "pools", where each pool is gotten with a single
+- * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
+- * overhead within a pool, except for alignment padding.  Each pool has a
+- * header with a link to the next pool of the same class.
+- * Small and large pool headers are identical except that the latter's
+- * link pointer must be FAR on 80x86 machines.
+- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
+- * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
+- * of the alignment requirement of ALIGN_TYPE.
+- */
+-
+-typedef union small_pool_struct * small_pool_ptr;
+-
+-typedef union small_pool_struct {
+-  struct {
+-    small_pool_ptr next;	/* next in list of pools */
+-    size_t bytes_used;		/* how many bytes already used within pool */
+-    size_t bytes_left;		/* bytes still available in this pool */
+-  } hdr;
+-  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
+-} small_pool_hdr;
+-
+-typedef union large_pool_struct FAR * large_pool_ptr;
+-
+-typedef union large_pool_struct {
+-  struct {
+-    large_pool_ptr next;	/* next in list of pools */
+-    size_t bytes_used;		/* how many bytes already used within pool */
+-    size_t bytes_left;		/* bytes still available in this pool */
+-  } hdr;
+-  ALIGN_TYPE dummy;		/* included in union to ensure alignment */
+-} large_pool_hdr;
+-
+-
+-/*
+- * Here is the full definition of a memory manager object.
+- */
+-
+-typedef struct {
+-  struct jpeg_memory_mgr pub;	/* public fields */
+-
+-  /* Each pool identifier (lifetime class) names a linked list of pools. */
+-  small_pool_ptr small_list[JPOOL_NUMPOOLS];
+-  large_pool_ptr large_list[JPOOL_NUMPOOLS];
+-
+-  /* Since we only have one lifetime class of virtual arrays, only one
+-   * linked list is necessary (for each datatype).  Note that the virtual
+-   * array control blocks being linked together are actually stored somewhere
+-   * in the small-pool list.
+-   */
+-  jvirt_sarray_ptr virt_sarray_list;
+-  jvirt_barray_ptr virt_barray_list;
+-
+-  /* This counts total space obtained from jpeg_get_small/large */
+-  long total_space_allocated;
+-
+-  /* alloc_sarray and alloc_barray set this value for use by virtual
+-   * array routines.
+-   */
+-  JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
+-} my_memory_mgr;
+-
+-typedef my_memory_mgr * my_mem_ptr;
+-
+-
+-/*
+- * The control blocks for virtual arrays.
+- * Note that these blocks are allocated in the "small" pool area.
+- * System-dependent info for the associated backing store (if any) is hidden
+- * inside the backing_store_info struct.
+- */
+-
+-struct jvirt_sarray_control {
+-  JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
+-  JDIMENSION rows_in_array;	/* total virtual array height */
+-  JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
+-  JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
+-  JDIMENSION rows_in_mem;	/* height of memory buffer */
+-  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
+-  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
+-  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
+-  boolean pre_zero;		/* pre-zero mode requested? */
+-  boolean dirty;		/* do current buffer contents need written? */
+-  boolean b_s_open;		/* is backing-store data valid? */
+-  jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
+-  backing_store_info b_s_info;	/* System-dependent control info */
+-};
+-
+-struct jvirt_barray_control {
+-  JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
+-  JDIMENSION rows_in_array;	/* total virtual array height */
+-  JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
+-  JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
+-  JDIMENSION rows_in_mem;	/* height of memory buffer */
+-  JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
+-  JDIMENSION cur_start_row;	/* first logical row # in the buffer */
+-  JDIMENSION first_undef_row;	/* row # of first uninitialized row */
+-  boolean pre_zero;		/* pre-zero mode requested? */
+-  boolean dirty;		/* do current buffer contents need written? */
+-  boolean b_s_open;		/* is backing-store data valid? */
+-  jvirt_barray_ptr next;	/* link to next virtual barray control block */
+-  backing_store_info b_s_info;	/* System-dependent control info */
+-};
+-
+-
+-#ifdef MEM_STATS		/* optional extra stuff for statistics */
+-
+-LOCAL(void)
+-print_mem_stats (j_common_ptr cinfo, int pool_id)
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  small_pool_ptr shdr_ptr;
+-  large_pool_ptr lhdr_ptr;
+-
+-  /* Since this is only a debugging stub, we can cheat a little by using
+-   * fprintf directly rather than going through the trace message code.
+-   * This is helpful because message parm array can't handle longs.
+-   */
+-  fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+-	  pool_id, mem->total_space_allocated);
+-
+-  for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+-       lhdr_ptr = lhdr_ptr->hdr.next) {
+-    fprintf(stderr, "  Large chunk used %ld\n",
+-	    (long) lhdr_ptr->hdr.bytes_used);
+-  }
+-
+-  for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+-       shdr_ptr = shdr_ptr->hdr.next) {
+-    fprintf(stderr, "  Small chunk used %ld free %ld\n",
+-	    (long) shdr_ptr->hdr.bytes_used,
+-	    (long) shdr_ptr->hdr.bytes_left);
+-  }
+-}
+-
+-#endif /* MEM_STATS */
+-
+-
+-LOCAL(void)
+-out_of_memory (j_common_ptr cinfo, int which)
+-/* Report an out-of-memory error and stop execution */
+-/* If we compiled MEM_STATS support, report alloc requests before dying */
+-{
+-#ifdef MEM_STATS
+-  cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
+-#endif
+-  ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+-}
+-
+-
+-/*
+- * Allocation of "small" objects.
+- *
+- * For these, we use pooled storage.  When a new pool must be created,
+- * we try to get enough space for the current request plus a "slop" factor,
+- * where the slop will be the amount of leftover space in the new pool.
+- * The speed vs. space tradeoff is largely determined by the slop values.
+- * A different slop value is provided for each pool class (lifetime),
+- * and we also distinguish the first pool of a class from later ones.
+- * NOTE: the values given work fairly well on both 16- and 32-bit-int
+- * machines, but may be too small if longs are 64 bits or more.
+- */
+-
+-static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
+-{
+-	1600,			/* first PERMANENT pool */
+-	16000			/* first IMAGE pool */
+-};
+-
+-static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
+-{
+-	0,			/* additional PERMANENT pools */
+-	5000			/* additional IMAGE pools */
+-};
+-
+-#define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
+-
+-
+-METHODDEF(void *)
+-alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+-/* Allocate a "small" object */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  small_pool_ptr hdr_ptr, prev_hdr_ptr;
+-  char * data_ptr;
+-  size_t odd_bytes, min_request, slop;
+-
+-  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+-  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
+-    out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
+-
+-  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+-  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+-  if (odd_bytes > 0)
+-    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+-
+-  /* See if space is available in any existing pool */
+-  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+-    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+-  prev_hdr_ptr = NULL;
+-  hdr_ptr = mem->small_list[pool_id];
+-  while (hdr_ptr != NULL) {
+-    if (hdr_ptr->hdr.bytes_left >= sizeofobject)
+-      break;			/* found pool with enough space */
+-    prev_hdr_ptr = hdr_ptr;
+-    hdr_ptr = hdr_ptr->hdr.next;
+-  }
+-
+-  /* Time to make a new pool? */
+-  if (hdr_ptr == NULL) {
+-    /* min_request is what we need now, slop is what will be leftover */
+-    min_request = sizeofobject + SIZEOF(small_pool_hdr);
+-    if (prev_hdr_ptr == NULL)	/* first pool in class? */
+-      slop = first_pool_slop[pool_id];
+-    else
+-      slop = extra_pool_slop[pool_id];
+-    /* Don't ask for more than MAX_ALLOC_CHUNK */
+-    if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+-      slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+-    /* Try to get space, if fail reduce slop and try again */
+-    for (;;) {
+-      hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+-      if (hdr_ptr != NULL)
+-	break;
+-      slop /= 2;
+-      if (slop < MIN_SLOP)	/* give up when it gets real small */
+-	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+-    }
+-    mem->total_space_allocated += min_request + slop;
+-    /* Success, initialize the new pool header and add to end of list */
+-    hdr_ptr->hdr.next = NULL;
+-    hdr_ptr->hdr.bytes_used = 0;
+-    hdr_ptr->hdr.bytes_left = sizeofobject + slop;
+-    if (prev_hdr_ptr == NULL)	/* first pool in class? */
+-      mem->small_list[pool_id] = hdr_ptr;
+-    else
+-      prev_hdr_ptr->hdr.next = hdr_ptr;
+-  }
+-
+-  /* OK, allocate the object from the current pool */
+-  data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
+-  data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
+-  hdr_ptr->hdr.bytes_used += sizeofobject;
+-  hdr_ptr->hdr.bytes_left -= sizeofobject;
+-
+-  return (void *) data_ptr;
+-}
+-
+-
+-/*
+- * Allocation of "large" objects.
+- *
+- * The external semantics of these are the same as "small" objects,
+- * except that FAR pointers are used on 80x86.  However the pool
+- * management heuristics are quite different.  We assume that each
+- * request is large enough that it may as well be passed directly to
+- * jpeg_get_large; the pool management just links everything together
+- * so that we can free it all on demand.
+- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+- * structures.  The routines that create these structures (see below)
+- * deliberately bunch rows together to ensure a large request size.
+- */
+-
+-METHODDEF(void FAR *)
+-alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+-/* Allocate a "large" object */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  large_pool_ptr hdr_ptr;
+-  size_t odd_bytes;
+-
+-  /* Check for unsatisfiable request (do now to ensure no overflow below) */
+-  if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
+-    out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
+-
+-  /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+-  odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+-  if (odd_bytes > 0)
+-    sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+-
+-  /* Always make a new pool */
+-  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+-    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+-
+-  hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+-					    SIZEOF(large_pool_hdr));
+-  if (hdr_ptr == NULL)
+-    out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
+-  mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
+-
+-  /* Success, initialize the new pool header and add to list */
+-  hdr_ptr->hdr.next = mem->large_list[pool_id];
+-  /* We maintain space counts in each pool header for statistical purposes,
+-   * even though they are not needed for allocation.
+-   */
+-  hdr_ptr->hdr.bytes_used = sizeofobject;
+-  hdr_ptr->hdr.bytes_left = 0;
+-  mem->large_list[pool_id] = hdr_ptr;
+-
+-  return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
+-}
+-
+-
+-/*
+- * Creation of 2-D sample arrays.
+- * The pointers are in near heap, the samples themselves in FAR heap.
+- *
+- * To minimize allocation overhead and to allow I/O of large contiguous
+- * blocks, we allocate the sample rows in groups of as many rows as possible
+- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+- * NB: the virtual array control routines, later in this file, know about
+- * this chunking of rows.  The rowsperchunk value is left in the mem manager
+- * object so that it can be saved away if this sarray is the workspace for
+- * a virtual array.
+- */
+-
+-METHODDEF(JSAMPARRAY)
+-alloc_sarray (j_common_ptr cinfo, int pool_id,
+-	      JDIMENSION samplesperrow, JDIMENSION numrows)
+-/* Allocate a 2-D sample array */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  JSAMPARRAY result;
+-  JSAMPROW workspace;
+-  JDIMENSION rowsperchunk, currow, i;
+-  long ltemp;
+-
+-  /* Calculate max # of rows allowed in one allocation chunk */
+-  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+-	  ((long) samplesperrow * SIZEOF(JSAMPLE));
+-  if (ltemp <= 0)
+-    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+-  if (ltemp < (long) numrows)
+-    rowsperchunk = (JDIMENSION) ltemp;
+-  else
+-    rowsperchunk = numrows;
+-  mem->last_rowsperchunk = rowsperchunk;
+-
+-  /* Get space for row pointers (small object) */
+-  result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+-				    (size_t) (numrows * SIZEOF(JSAMPROW)));
+-
+-  /* Get the rows themselves (large objects) */
+-  currow = 0;
+-  while (currow < numrows) {
+-    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+-    workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+-	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+-		  * SIZEOF(JSAMPLE)));
+-    for (i = rowsperchunk; i > 0; i--) {
+-      result[currow++] = workspace;
+-      workspace += samplesperrow;
+-    }
+-  }
+-
+-  return result;
+-}
+-
+-
+-/*
+- * Creation of 2-D coefficient-block arrays.
+- * This is essentially the same as the code for sample arrays, above.
+- */
+-
+-METHODDEF(JBLOCKARRAY)
+-alloc_barray (j_common_ptr cinfo, int pool_id,
+-	      JDIMENSION blocksperrow, JDIMENSION numrows)
+-/* Allocate a 2-D coefficient-block array */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  JBLOCKARRAY result;
+-  JBLOCKROW workspace;
+-  JDIMENSION rowsperchunk, currow, i;
+-  long ltemp;
+-
+-  /* Calculate max # of rows allowed in one allocation chunk */
+-  ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+-	  ((long) blocksperrow * SIZEOF(JBLOCK));
+-  if (ltemp <= 0)
+-    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+-  if (ltemp < (long) numrows)
+-    rowsperchunk = (JDIMENSION) ltemp;
+-  else
+-    rowsperchunk = numrows;
+-  mem->last_rowsperchunk = rowsperchunk;
+-
+-  /* Get space for row pointers (small object) */
+-  result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+-				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
+-
+-  /* Get the rows themselves (large objects) */
+-  currow = 0;
+-  while (currow < numrows) {
+-    rowsperchunk = MIN(rowsperchunk, numrows - currow);
+-    workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+-	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+-		  * SIZEOF(JBLOCK)));
+-    for (i = rowsperchunk; i > 0; i--) {
+-      result[currow++] = workspace;
+-      workspace += blocksperrow;
+-    }
+-  }
+-
+-  return result;
+-}
+-
+-
+-/*
+- * About virtual array management:
+- *
+- * The above "normal" array routines are only used to allocate strip buffers
+- * (as wide as the image, but just a few rows high).  Full-image-sized buffers
+- * are handled as "virtual" arrays.  The array is still accessed a strip at a
+- * time, but the memory manager must save the whole array for repeated
+- * accesses.  The intended implementation is that there is a strip buffer in
+- * memory (as high as is possible given the desired memory limit), plus a
+- * backing file that holds the rest of the array.
+- *
+- * The request_virt_array routines are told the total size of the image and
+- * the maximum number of rows that will be accessed at once.  The in-memory
+- * buffer must be at least as large as the maxaccess value.
+- *
+- * The request routines create control blocks but not the in-memory buffers.
+- * That is postponed until realize_virt_arrays is called.  At that time the
+- * total amount of space needed is known (approximately, anyway), so free
+- * memory can be divided up fairly.
+- *
+- * The access_virt_array routines are responsible for making a specific strip
+- * area accessible (after reading or writing the backing file, if necessary).
+- * Note that the access routines are told whether the caller intends to modify
+- * the accessed strip; during a read-only pass this saves having to rewrite
+- * data to disk.  The access routines are also responsible for pre-zeroing
+- * any newly accessed rows, if pre-zeroing was requested.
+- *
+- * In current usage, the access requests are usually for nonoverlapping
+- * strips; that is, successive access start_row numbers differ by exactly
+- * num_rows = maxaccess.  This means we can get good performance with simple
+- * buffer dump/reload logic, by making the in-memory buffer be a multiple
+- * of the access height; then there will never be accesses across bufferload
+- * boundaries.  The code will still work with overlapping access requests,
+- * but it doesn't handle bufferload overlaps very efficiently.
+- */
+-
+-
+-METHODDEF(jvirt_sarray_ptr)
+-request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+-		     JDIMENSION samplesperrow, JDIMENSION numrows,
+-		     JDIMENSION maxaccess)
+-/* Request a virtual 2-D sample array */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  jvirt_sarray_ptr result;
+-
+-  /* Only IMAGE-lifetime virtual arrays are currently supported */
+-  if (pool_id != JPOOL_IMAGE)
+-    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+-
+-  /* get control block */
+-  result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+-					  SIZEOF(struct jvirt_sarray_control));
+-
+-  result->mem_buffer = NULL;	/* marks array not yet realized */
+-  result->rows_in_array = numrows;
+-  result->samplesperrow = samplesperrow;
+-  result->maxaccess = maxaccess;
+-  result->pre_zero = pre_zero;
+-  result->b_s_open = FALSE;	/* no associated backing-store object */
+-  result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+-  mem->virt_sarray_list = result;
+-
+-  return result;
+-}
+-
+-
+-METHODDEF(jvirt_barray_ptr)
+-request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+-		     JDIMENSION blocksperrow, JDIMENSION numrows,
+-		     JDIMENSION maxaccess)
+-/* Request a virtual 2-D coefficient-block array */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  jvirt_barray_ptr result;
+-
+-  /* Only IMAGE-lifetime virtual arrays are currently supported */
+-  if (pool_id != JPOOL_IMAGE)
+-    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+-
+-  /* get control block */
+-  result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+-					  SIZEOF(struct jvirt_barray_control));
+-
+-  result->mem_buffer = NULL;	/* marks array not yet realized */
+-  result->rows_in_array = numrows;
+-  result->blocksperrow = blocksperrow;
+-  result->maxaccess = maxaccess;
+-  result->pre_zero = pre_zero;
+-  result->b_s_open = FALSE;	/* no associated backing-store object */
+-  result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+-  mem->virt_barray_list = result;
+-
+-  return result;
+-}
+-
+-
+-METHODDEF(void)
+-realize_virt_arrays (j_common_ptr cinfo)
+-/* Allocate the in-memory buffers for any unrealized virtual arrays */
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  long space_per_minheight, maximum_space, avail_mem;
+-  long minheights, max_minheights;
+-  jvirt_sarray_ptr sptr;
+-  jvirt_barray_ptr bptr;
+-
+-  /* Compute the minimum space needed (maxaccess rows in each buffer)
+-   * and the maximum space needed (full image height in each buffer).
+-   * These may be of use to the system-dependent jpeg_mem_available routine.
+-   */
+-  space_per_minheight = 0;
+-  maximum_space = 0;
+-  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+-    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+-      space_per_minheight += (long) sptr->maxaccess *
+-			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+-      maximum_space += (long) sptr->rows_in_array *
+-		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+-    }
+-  }
+-  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+-    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+-      space_per_minheight += (long) bptr->maxaccess *
+-			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+-      maximum_space += (long) bptr->rows_in_array *
+-		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+-    }
+-  }
+-
+-  if (space_per_minheight <= 0)
+-    return;			/* no unrealized arrays, no work */
+-
+-  /* Determine amount of memory to actually use; this is system-dependent. */
+-  avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+-				 mem->total_space_allocated);
+-
+-  /* If the maximum space needed is available, make all the buffers full
+-   * height; otherwise parcel it out with the same number of minheights
+-   * in each buffer.
+-   */
+-  if (avail_mem >= maximum_space)
+-    max_minheights = 1000000000L;
+-  else {
+-    max_minheights = avail_mem / space_per_minheight;
+-    /* If there doesn't seem to be enough space, try to get the minimum
+-     * anyway.  This allows a "stub" implementation of jpeg_mem_available().
+-     */
+-    if (max_minheights <= 0)
+-      max_minheights = 1;
+-  }
+-
+-  /* Allocate the in-memory buffers and initialize backing store as needed. */
+-
+-  for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+-    if (sptr->mem_buffer == NULL) { /* if not realized yet */
+-      minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+-      if (minheights <= max_minheights) {
+-	/* This buffer fits in memory */
+-	sptr->rows_in_mem = sptr->rows_in_array;
+-      } else {
+-	/* It doesn't fit in memory, create backing store. */
+-	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+-	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+-				(long) sptr->rows_in_array *
+-				(long) sptr->samplesperrow *
+-				(long) SIZEOF(JSAMPLE));
+-	sptr->b_s_open = TRUE;
+-      }
+-      sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+-				      sptr->samplesperrow, sptr->rows_in_mem);
+-      sptr->rowsperchunk = mem->last_rowsperchunk;
+-      sptr->cur_start_row = 0;
+-      sptr->first_undef_row = 0;
+-      sptr->dirty = FALSE;
+-    }
+-  }
+-
+-  for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+-    if (bptr->mem_buffer == NULL) { /* if not realized yet */
+-      minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+-      if (minheights <= max_minheights) {
+-	/* This buffer fits in memory */
+-	bptr->rows_in_mem = bptr->rows_in_array;
+-      } else {
+-	/* It doesn't fit in memory, create backing store. */
+-	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+-	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+-				(long) bptr->rows_in_array *
+-				(long) bptr->blocksperrow *
+-				(long) SIZEOF(JBLOCK));
+-	bptr->b_s_open = TRUE;
+-      }
+-      bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+-				      bptr->blocksperrow, bptr->rows_in_mem);
+-      bptr->rowsperchunk = mem->last_rowsperchunk;
+-      bptr->cur_start_row = 0;
+-      bptr->first_undef_row = 0;
+-      bptr->dirty = FALSE;
+-    }
+-  }
+-}
+-
+-
+-LOCAL(void)
+-do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+-/* Do backing store read or write of a virtual sample array */
+-{
+-  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+-
+-  bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+-  file_offset = ptr->cur_start_row * bytesperrow;
+-  /* Loop to read or write each allocation chunk in mem_buffer */
+-  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+-    /* One chunk, but check for short chunk at end of buffer */
+-    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+-    /* Transfer no more than is currently defined */
+-    thisrow = (long) ptr->cur_start_row + i;
+-    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+-    /* Transfer no more than fits in file */
+-    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+-    if (rows <= 0)		/* this chunk might be past end of file! */
+-      break;
+-    byte_count = rows * bytesperrow;
+-    if (writing)
+-      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+-					    (void FAR *) ptr->mem_buffer[i],
+-					    file_offset, byte_count);
+-    else
+-      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+-					   (void FAR *) ptr->mem_buffer[i],
+-					   file_offset, byte_count);
+-    file_offset += byte_count;
+-  }
+-}
+-
+-
+-LOCAL(void)
+-do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+-/* Do backing store read or write of a virtual coefficient-block array */
+-{
+-  long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+-
+-  bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+-  file_offset = ptr->cur_start_row * bytesperrow;
+-  /* Loop to read or write each allocation chunk in mem_buffer */
+-  for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+-    /* One chunk, but check for short chunk at end of buffer */
+-    rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+-    /* Transfer no more than is currently defined */
+-    thisrow = (long) ptr->cur_start_row + i;
+-    rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+-    /* Transfer no more than fits in file */
+-    rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+-    if (rows <= 0)		/* this chunk might be past end of file! */
+-      break;
+-    byte_count = rows * bytesperrow;
+-    if (writing)
+-      (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+-					    (void FAR *) ptr->mem_buffer[i],
+-					    file_offset, byte_count);
+-    else
+-      (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+-					   (void FAR *) ptr->mem_buffer[i],
+-					   file_offset, byte_count);
+-    file_offset += byte_count;
+-  }
+-}
+-
+-
+-METHODDEF(JSAMPARRAY)
+-access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+-		    JDIMENSION start_row, JDIMENSION num_rows,
+-		    boolean writable)
+-/* Access the part of a virtual sample array starting at start_row */
+-/* and extending for num_rows rows.  writable is true if  */
+-/* caller intends to modify the accessed area. */
+-{
+-  JDIMENSION end_row = start_row + num_rows;
+-  JDIMENSION undef_row;
+-
+-  /* debugging check */
+-  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+-      ptr->mem_buffer == NULL)
+-    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-
+-  /* Make the desired part of the virtual array accessible */
+-  if (start_row < ptr->cur_start_row ||
+-      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+-    if (! ptr->b_s_open)
+-      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+-    /* Flush old buffer contents if necessary */
+-    if (ptr->dirty) {
+-      do_sarray_io(cinfo, ptr, TRUE);
+-      ptr->dirty = FALSE;
+-    }
+-    /* Decide what part of virtual array to access.
+-     * Algorithm: if target address > current window, assume forward scan,
+-     * load starting at target address.  If target address < current window,
+-     * assume backward scan, load so that target area is top of window.
+-     * Note that when switching from forward write to forward read, will have
+-     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+-     */
+-    if (start_row > ptr->cur_start_row) {
+-      ptr->cur_start_row = start_row;
+-    } else {
+-      /* use long arithmetic here to avoid overflow & unsigned problems */
+-      long ltemp;
+-
+-      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+-      if (ltemp < 0)
+-	ltemp = 0;		/* don't fall off front end of file */
+-      ptr->cur_start_row = (JDIMENSION) ltemp;
+-    }
+-    /* Read in the selected part of the array.
+-     * During the initial write pass, we will do no actual read
+-     * because the selected part is all undefined.
+-     */
+-    do_sarray_io(cinfo, ptr, FALSE);
+-  }
+-  /* Ensure the accessed part of the array is defined; prezero if needed.
+-   * To improve locality of access, we only prezero the part of the array
+-   * that the caller is about to access, not the entire in-memory array.
+-   */
+-  if (ptr->first_undef_row < end_row) {
+-    if (ptr->first_undef_row < start_row) {
+-      if (writable)		/* writer skipped over a section of array */
+-	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-      undef_row = start_row;	/* but reader is allowed to read ahead */
+-    } else {
+-      undef_row = ptr->first_undef_row;
+-    }
+-    if (writable)
+-      ptr->first_undef_row = end_row;
+-    if (ptr->pre_zero) {
+-      size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+-      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+-      end_row -= ptr->cur_start_row;
+-      while (undef_row < end_row) {
+-	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+-	undef_row++;
+-      }
+-    } else {
+-      if (! writable)		/* reader looking at undefined data */
+-	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-    }
+-  }
+-  /* Flag the buffer dirty if caller will write in it */
+-  if (writable)
+-    ptr->dirty = TRUE;
+-  /* Return address of proper part of the buffer */
+-  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+-}
+-
+-
+-METHODDEF(JBLOCKARRAY)
+-access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+-		    JDIMENSION start_row, JDIMENSION num_rows,
+-		    boolean writable)
+-/* Access the part of a virtual block array starting at start_row */
+-/* and extending for num_rows rows.  writable is true if  */
+-/* caller intends to modify the accessed area. */
+-{
+-  JDIMENSION end_row = start_row + num_rows;
+-  JDIMENSION undef_row;
+-
+-  /* debugging check */
+-  if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+-      ptr->mem_buffer == NULL)
+-    ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-
+-  /* Make the desired part of the virtual array accessible */
+-  if (start_row < ptr->cur_start_row ||
+-      end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+-    if (! ptr->b_s_open)
+-      ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+-    /* Flush old buffer contents if necessary */
+-    if (ptr->dirty) {
+-      do_barray_io(cinfo, ptr, TRUE);
+-      ptr->dirty = FALSE;
+-    }
+-    /* Decide what part of virtual array to access.
+-     * Algorithm: if target address > current window, assume forward scan,
+-     * load starting at target address.  If target address < current window,
+-     * assume backward scan, load so that target area is top of window.
+-     * Note that when switching from forward write to forward read, will have
+-     * start_row = 0, so the limiting case applies and we load from 0 anyway.
+-     */
+-    if (start_row > ptr->cur_start_row) {
+-      ptr->cur_start_row = start_row;
+-    } else {
+-      /* use long arithmetic here to avoid overflow & unsigned problems */
+-      long ltemp;
+-
+-      ltemp = (long) end_row - (long) ptr->rows_in_mem;
+-      if (ltemp < 0)
+-	ltemp = 0;		/* don't fall off front end of file */
+-      ptr->cur_start_row = (JDIMENSION) ltemp;
+-    }
+-    /* Read in the selected part of the array.
+-     * During the initial write pass, we will do no actual read
+-     * because the selected part is all undefined.
+-     */
+-    do_barray_io(cinfo, ptr, FALSE);
+-  }
+-  /* Ensure the accessed part of the array is defined; prezero if needed.
+-   * To improve locality of access, we only prezero the part of the array
+-   * that the caller is about to access, not the entire in-memory array.
+-   */
+-  if (ptr->first_undef_row < end_row) {
+-    if (ptr->first_undef_row < start_row) {
+-      if (writable)		/* writer skipped over a section of array */
+-	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-      undef_row = start_row;	/* but reader is allowed to read ahead */
+-    } else {
+-      undef_row = ptr->first_undef_row;
+-    }
+-    if (writable)
+-      ptr->first_undef_row = end_row;
+-    if (ptr->pre_zero) {
+-      size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+-      undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+-      end_row -= ptr->cur_start_row;
+-      while (undef_row < end_row) {
+-	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+-	undef_row++;
+-      }
+-    } else {
+-      if (! writable)		/* reader looking at undefined data */
+-	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+-    }
+-  }
+-  /* Flag the buffer dirty if caller will write in it */
+-  if (writable)
+-    ptr->dirty = TRUE;
+-  /* Return address of proper part of the buffer */
+-  return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+-}
+-
+-
+-/*
+- * Release all objects belonging to a specified pool.
+- */
+-
+-METHODDEF(void)
+-free_pool (j_common_ptr cinfo, int pool_id)
+-{
+-  my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+-  small_pool_ptr shdr_ptr;
+-  large_pool_ptr lhdr_ptr;
+-  size_t space_freed;
+-
+-  if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+-    ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
+-
+-#ifdef MEM_STATS
+-  if (cinfo->err->trace_level > 1)
+-    print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+-#endif
+-
+-  /* If freeing IMAGE pool, close any virtual arrays first */
+-  if (pool_id == JPOOL_IMAGE) {
+-    jvirt_sarray_ptr sptr;
+-    jvirt_barray_ptr bptr;
+-
+-    for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+-      if (sptr->b_s_open) {	/* there may be no backing store */
+-	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
+-	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+-      }
+-    }
+-    mem->virt_sarray_list = NULL;
+-    for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+-      if (bptr->b_s_open) {	/* there may be no backing store */
+-	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
+-	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+-      }
+-    }
+-    mem->virt_barray_list = NULL;
+-  }
+-
+-  /* Release large objects */
+-  lhdr_ptr = mem->large_list[pool_id];
+-  mem->large_list[pool_id] = NULL;
+-
+-  while (lhdr_ptr != NULL) {
+-    large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
+-    space_freed = lhdr_ptr->hdr.bytes_used +
+-		  lhdr_ptr->hdr.bytes_left +
+-		  SIZEOF(large_pool_hdr);
+-    jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+-    mem->total_space_allocated -= space_freed;
+-    lhdr_ptr = next_lhdr_ptr;
+-  }
+-
+-  /* Release small objects */
+-  shdr_ptr = mem->small_list[pool_id];
+-  mem->small_list[pool_id] = NULL;
+-
+-  while (shdr_ptr != NULL) {
+-    small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
+-    space_freed = shdr_ptr->hdr.bytes_used +
+-		  shdr_ptr->hdr.bytes_left +
+-		  SIZEOF(small_pool_hdr);
+-    jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+-    mem->total_space_allocated -= space_freed;
+-    shdr_ptr = next_shdr_ptr;
+-  }
+-}
+-
+-
+-/*
+- * Close up shop entirely.
+- * Note that this cannot be called unless cinfo->mem is non-NULL.
+- */
+-
+-METHODDEF(void)
+-self_destruct (j_common_ptr cinfo)
+-{
+-  int pool;
+-
+-  /* Close all backing store, release all memory.
+-   * Releasing pools in reverse order might help avoid fragmentation
+-   * with some (brain-damaged) malloc libraries.
+-   */
+-  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+-    free_pool(cinfo, pool);
+-  }
+-
+-  /* Release the memory manager control block too. */
+-  jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+-  cinfo->mem = NULL;		/* ensures I will be called only once */
+-
+-  jpeg_mem_term(cinfo);		/* system-dependent cleanup */
+-}
+-
+-
+-/*
+- * Memory manager initialization.
+- * When this is called, only the error manager pointer is valid in cinfo!
+- */
+-
+-GLOBAL(void)
+-jinit_memory_mgr (j_common_ptr cinfo)
+-{
+-  my_mem_ptr mem;
+-  long max_to_use;
+-  int pool;
+-  size_t test_mac;
+-
+-  cinfo->mem = NULL;		/* for safety if init fails */
+-
+-  /* Check for configuration errors.
+-   * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+-   * doesn't reflect any real hardware alignment requirement.
+-   * The test is a little tricky: for X>0, X and X-1 have no one-bits
+-   * in common if and only if X is a power of 2, ie has only one one-bit.
+-   * Some compilers may give an "unreachable code" warning here; ignore it.
+-   */
+-  if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
+-    ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+-  /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+-   * a multiple of SIZEOF(ALIGN_TYPE).
+-   * Again, an "unreachable code" warning may be ignored here.
+-   * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+-   */
+-  test_mac = (size_t) MAX_ALLOC_CHUNK;
+-  if ((long) test_mac != MAX_ALLOC_CHUNK ||
+-      (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
+-    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+-
+-  max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+-
+-  /* Attempt to allocate memory manager's control block */
+-  mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+-
+-  if (mem == NULL) {
+-    jpeg_mem_term(cinfo);	/* system-dependent cleanup */
+-    ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+-  }
+-
+-  /* OK, fill in the method pointers */
+-  mem->pub.alloc_small = alloc_small;
+-  mem->pub.alloc_large = alloc_large;
+-  mem->pub.alloc_sarray = alloc_sarray;
+-  mem->pub.alloc_barray = alloc_barray;
+-  mem->pub.request_virt_sarray = request_virt_sarray;
+-  mem->pub.request_virt_barray = request_virt_barray;
+-  mem->pub.realize_virt_arrays = realize_virt_arrays;
+-  mem->pub.access_virt_sarray = access_virt_sarray;
+-  mem->pub.access_virt_barray = access_virt_barray;
+-  mem->pub.free_pool = free_pool;
+-  mem->pub.self_destruct = self_destruct;
+-
+-  /* Make MAX_ALLOC_CHUNK accessible to other modules */
+-  mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
+-
+-  /* Initialize working state */
+-  mem->pub.max_memory_to_use = max_to_use;
+-
+-  for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+-    mem->small_list[pool] = NULL;
+-    mem->large_list[pool] = NULL;
+-  }
+-  mem->virt_sarray_list = NULL;
+-  mem->virt_barray_list = NULL;
+-
+-  mem->total_space_allocated = SIZEOF(my_memory_mgr);
+-
+-  /* Declare ourselves open for business */
+-  cinfo->mem = & mem->pub;
+-
+-  /* Check for an environment variable JPEGMEM; if found, override the
+-   * default max_memory setting from jpeg_mem_init.  Note that the
+-   * surrounding application may again override this value.
+-   * If your system doesn't support getenv(), define NO_GETENV to disable
+-   * this feature.
+-   */
+-#ifndef NO_GETENV
+-  { char * memenv;
+-
+-    if ((memenv = getenv("JPEGMEM")) != NULL) {
+-      char ch = 'x';
+-
+-      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+-	if (ch == 'm' || ch == 'M')
+-	  max_to_use *= 1000L;
+-	mem->pub.max_memory_to_use = max_to_use * 1000L;
+-      }
+-    }
+-  }
+-#endif
+-
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemnobs.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemnobs.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemnobs.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemnobs.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,113 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jmemnobs.c
+- *
+- * Copyright (C) 1992-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file provides a really simple implementation of the system-
+- * dependent portion of the JPEG memory manager.  This implementation
+- * assumes that no backing-store files are needed: all required space
+- * can be obtained from malloc().
+- * This is very portable in the sense that it'll compile on almost anything,
+- * but you'd better have lots of main memory (or virtual memory) if you want
+- * to process big images.
+- * Note that the max_memory_to_use option is ignored by this implementation.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-#include "jmemsys.h"		/* import the system-dependent declarations */
+-
+-#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */
+-extern void * malloc JPP((size_t size));
+-extern void free JPP((void *ptr));
+-#endif
+-
+-
+-/*
+- * Memory allocation and freeing are controlled by the regular library
+- * routines malloc() and free().
+- */
+-
+-GLOBAL(void *)
+-jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+-{
+-  return (void *) malloc(sizeofobject);
+-}
+-
+-GLOBAL(void)
+-jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+-{
+-  free(object);
+-}
+-
+-
+-/*
+- * "Large" objects are treated the same as "small" ones.
+- * NB: although we include FAR keywords in the routine declarations,
+- * this file won't actually work in 80x86 small/medium model; at least,
+- * you probably won't be able to process useful-size images in only 64KB.
+- */
+-
+-GLOBAL(void FAR *)
+-jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+-{
+-  return (void FAR *) malloc(sizeofobject);
+-}
+-
+-GLOBAL(void)
+-jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+-{
+-  free(object);
+-}
+-
+-
+-/*
+- * This routine computes the total memory space available for allocation.
+- * Here we always say, "we got all you want bud!"
+- */
+-
+-GLOBAL(long)
+-jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+-		    long max_bytes_needed, long already_allocated)
+-{
+-  return max_bytes_needed;
+-}
+-
+-
+-/*
+- * Backing store (temporary file) management.
+- * Since jpeg_mem_available always promised the moon,
+- * this should never be called and we can just error out.
+- */
+-
+-GLOBAL(void)
+-jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+-			 long total_bytes_needed)
+-{
+-  ERREXIT(cinfo, JERR_NO_BACKING_STORE);
+-}
+-
+-
+-/*
+- * These routines take care of any system-dependent initialization and
+- * cleanup required.  Here, there isn't any.
+- */
+-
+-GLOBAL(long)
+-jpeg_mem_init (j_common_ptr cinfo)
+-{
+-  return 0;			/* just set max_memory_to_use to 0 */
+-}
+-
+-GLOBAL(void)
+-jpeg_mem_term (j_common_ptr cinfo)
+-{
+-  /* no work */
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemsys.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemsys.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmemsys.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmemsys.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,202 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jmemsys.h
+- *
+- * Copyright (C) 1992-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This include file defines the interface between the system-independent
+- * and system-dependent portions of the JPEG memory manager.  No other
+- * modules need include it.  (The system-independent portion is jmemmgr.c;
+- * there are several different versions of the system-dependent portion.)
+- *
+- * This file works as-is for the system-dependent memory managers supplied
+- * in the IJG distribution.  You may need to modify it if you write a
+- * custom memory manager.  If system-dependent changes are needed in
+- * this file, the best method is to #ifdef them based on a configuration
+- * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
+- * and USE_MAC_MEMMGR.
+- */
+-
+-
+-/* Short forms of external names for systems with brain-damaged linkers. */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_get_small		jGetSmall
+-#define jpeg_free_small		jFreeSmall
+-#define jpeg_get_large		jGetLarge
+-#define jpeg_free_large		jFreeLarge
+-#define jpeg_mem_available	jMemAvail
+-#define jpeg_open_backing_store	jOpenBackStore
+-#define jpeg_mem_init		jMemInit
+-#define jpeg_mem_term		jMemTerm
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-
+-/*
+- * These two functions are used to allocate and release small chunks of
+- * memory.  (Typically the total amount requested through jpeg_get_small is
+- * no more than 20K or so; this will be requested in chunks of a few K each.)
+- * Behavior should be the same as for the standard library functions malloc
+- * and free; in particular, jpeg_get_small must return NULL on failure.
+- * On most systems, these ARE malloc and free.  jpeg_free_small is passed the
+- * size of the object being freed, just in case it's needed.
+- * On an 80x86 machine using small-data memory model, these manage near heap.
+- */
+-
+-EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
+-EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
+-				  size_t sizeofobject));
+-
+-/*
+- * These two functions are used to allocate and release large chunks of
+- * memory (up to the total free space designated by jpeg_mem_available).
+- * The interface is the same as above, except that on an 80x86 machine,
+- * far pointers are used.  On most other machines these are identical to
+- * the jpeg_get/free_small routines; but we keep them separate anyway,
+- * in case a different allocation strategy is desirable for large chunks.
+- */
+-
+-EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
+-				       size_t sizeofobject));
+-EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
+-				  size_t sizeofobject));
+-
+-/*
+- * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
+- * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
+- * matter, but that case should never come into play).  This macro is needed
+- * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
+- * On those machines, we expect that jconfig.h will provide a proper value.
+- * On machines with 32-bit flat address spaces, any large constant may be used.
+- *
+- * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
+- * size_t and will be a multiple of sizeof(align_type).
+- */
+-
+-#ifndef MAX_ALLOC_CHUNK		/* may be overridden in jconfig.h */
+-#define MAX_ALLOC_CHUNK  1000000000L
+-#endif
+-
+-/*
+- * This routine computes the total space still available for allocation by
+- * jpeg_get_large.  If more space than this is needed, backing store will be
+- * used.  NOTE: any memory already allocated must not be counted.
+- *
+- * There is a minimum space requirement, corresponding to the minimum
+- * feasible buffer sizes; jmemmgr.c will request that much space even if
+- * jpeg_mem_available returns zero.  The maximum space needed, enough to hold
+- * all working storage in memory, is also passed in case it is useful.
+- * Finally, the total space already allocated is passed.  If no better
+- * method is available, cinfo->mem->max_memory_to_use - already_allocated
+- * is often a suitable calculation.
+- *
+- * It is OK for jpeg_mem_available to underestimate the space available
+- * (that'll just lead to more backing-store access than is really necessary).
+- * However, an overestimate will lead to failure.  Hence it's wise to subtract
+- * a slop factor from the true available space.  5% should be enough.
+- *
+- * On machines with lots of virtual memory, any large constant may be returned.
+- * Conversely, zero may be returned to always use the minimum amount of memory.
+- */
+-
+-EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
+-				     long min_bytes_needed,
+-				     long max_bytes_needed,
+-				     long already_allocated));
+-
+-
+-/*
+- * This structure holds whatever state is needed to access a single
+- * backing-store object.  The read/write/close method pointers are called
+- * by jmemmgr.c to manipulate the backing-store object; all other fields
+- * are private to the system-dependent backing store routines.
+- */
+-
+-#define TEMP_NAME_LENGTH   64	/* max length of a temporary file's name */
+-
+-
+-#ifdef USE_MSDOS_MEMMGR		/* DOS-specific junk */
+-
+-typedef unsigned short XMSH;	/* type of extended-memory handles */
+-typedef unsigned short EMSH;	/* type of expanded-memory handles */
+-
+-typedef union {
+-  short file_handle;		/* DOS file handle if it's a temp file */
+-  XMSH xms_handle;		/* handle if it's a chunk of XMS */
+-  EMSH ems_handle;		/* handle if it's a chunk of EMS */
+-} handle_union;
+-
+-#endif /* USE_MSDOS_MEMMGR */
+-
+-#ifdef USE_MAC_MEMMGR		/* Mac-specific junk */
+-#include <Files.h>
+-#endif /* USE_MAC_MEMMGR */
+-
+-
+-typedef struct backing_store_struct * backing_store_ptr;
+-
+-typedef struct backing_store_struct {
+-  /* Methods for reading/writing/closing this backing-store object */
+-  JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
+-				     backing_store_ptr info,
+-				     void FAR * buffer_address,
+-				     long file_offset, long byte_count));
+-  JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
+-				      backing_store_ptr info,
+-				      void FAR * buffer_address,
+-				      long file_offset, long byte_count));
+-  JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
+-				      backing_store_ptr info));
+-
+-  /* Private fields for system-dependent backing-store management */
+-#ifdef USE_MSDOS_MEMMGR
+-  /* For the MS-DOS manager (jmemdos.c), we need: */
+-  handle_union handle;		/* reference to backing-store storage object */
+-  char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+-#else
+-#ifdef USE_MAC_MEMMGR
+-  /* For the Mac manager (jmemmac.c), we need: */
+-  short temp_file;		/* file reference number to temp file */
+-  FSSpec tempSpec;		/* the FSSpec for the temp file */
+-  char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+-#else
+-  /* For a typical implementation with temp files, we need: */
+-  FILE * temp_file;		/* stdio reference to temp file */
+-  char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
+-#endif
+-#endif
+-} backing_store_info;
+-
+-
+-/*
+- * Initial opening of a backing-store object.  This must fill in the
+- * read/write/close pointers in the object.  The read/write routines
+- * may take an error exit if the specified maximum file size is exceeded.
+- * (If jpeg_mem_available always returns a large value, this routine can
+- * just take an error exit.)
+- */
+-
+-EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
+-					  backing_store_ptr info,
+-					  long total_bytes_needed));
+-
+-
+-/*
+- * These routines take care of any system-dependent initialization and
+- * cleanup required.  jpeg_mem_init will be called before anything is
+- * allocated (and, therefore, nothing in cinfo is of use except the error
+- * manager pointer).  It should return a suitable default value for
+- * max_memory_to_use; this may subsequently be overridden by the surrounding
+- * application.  (Note that max_memory_to_use is only important if
+- * jpeg_mem_available chooses to consult it ... no one else will.)
+- * jpeg_mem_term may assume that all requested memory has been freed and that
+- * all opened backing-store objects have been closed.
+- */
+-
+-EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
+-EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmorecfg.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmorecfg.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jmorecfg.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jmorecfg.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,375 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jmorecfg.h
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains additional configuration options that customize the
+- * JPEG software for special applications or support machine-dependent
+- * optimizations.  Most users will not need to touch this file.
+- */
+-
+-
+-/*
+- * Define BITS_IN_JSAMPLE as either
+- *   8   for 8-bit sample values (the usual setting)
+- *   12  for 12-bit sample values
+- * Only 8 and 12 are legal data precisions for lossy JPEG according to the
+- * JPEG standard, and the IJG code does not support anything else!
+- * We do not support run-time selection of data precision, sorry.
+- */
+-
+-#define BITS_IN_JSAMPLE  8	/* use 8 or 12 */
+-
+-
+-/*
+- * Maximum number of components (color channels) allowed in JPEG image.
+- * To meet the letter of the JPEG spec, set this to 255.  However, darn
+- * few applications need more than 4 channels (maybe 5 for CMYK + alpha
+- * mask).  We recommend 10 as a reasonable compromise; use 4 if you are
+- * really short on memory.  (Each allowed component costs a hundred or so
+- * bytes of storage, whether actually used in an image or not.)
+- */
+-
+-#define MAX_COMPONENTS  10	/* maximum number of image components */
+-
+-
+-/*
+- * Basic data types.
+- * You may need to change these if you have a machine with unusual data
+- * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
+- * or "long" not 32 bits.  We don't care whether "int" is 16 or 32 bits,
+- * but it had better be at least 16.
+- */
+-
+-/* Representation of a single sample (pixel element value).
+- * We frequently allocate large arrays of these, so it's important to keep
+- * them small.  But if you have memory to burn and access to char or short
+- * arrays is very slow on your hardware, you might want to change these.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-/* JSAMPLE should be the smallest type that will hold the values 0..255.
+- * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
+- */
+-
+-#ifdef HAVE_UNSIGNED_CHAR
+-
+-typedef unsigned char JSAMPLE;
+-#define GETJSAMPLE(value)  ((int) (value))
+-
+-#else /* not HAVE_UNSIGNED_CHAR */
+-
+-typedef char JSAMPLE;
+-#ifdef CHAR_IS_UNSIGNED
+-#define GETJSAMPLE(value)  ((int) (value))
+-#else
+-#define GETJSAMPLE(value)  ((int) (value) & 0xFF)
+-#endif /* CHAR_IS_UNSIGNED */
+-
+-#endif /* HAVE_UNSIGNED_CHAR */
+-
+-#define MAXJSAMPLE	255
+-#define CENTERJSAMPLE	128
+-
+-#endif /* BITS_IN_JSAMPLE == 8 */
+-
+-
+-#if BITS_IN_JSAMPLE == 12
+-/* JSAMPLE should be the smallest type that will hold the values 0..4095.
+- * On nearly all machines "short" will do nicely.
+- */
+-
+-typedef short JSAMPLE;
+-#define GETJSAMPLE(value)  ((int) (value))
+-
+-#define MAXJSAMPLE	4095
+-#define CENTERJSAMPLE	2048
+-
+-#endif /* BITS_IN_JSAMPLE == 12 */
+-
+-
+-/* Representation of a DCT frequency coefficient.
+- * This should be a signed value of at least 16 bits; "short" is usually OK.
+- * Again, we allocate large arrays of these, but you can change to int
+- * if you have memory to burn and "short" is really slow.
+- */
+-
+-typedef short JCOEF;
+-
+-
+-/* Compressed datastreams are represented as arrays of JOCTET.
+- * These must be EXACTLY 8 bits wide, at least once they are written to
+- * external storage.  Note that when using the stdio data source/destination
+- * managers, this is also the data type passed to fread/fwrite.
+- */
+-
+-#ifdef HAVE_UNSIGNED_CHAR
+-
+-typedef unsigned char JOCTET;
+-#define GETJOCTET(value)  (value)
+-
+-#else /* not HAVE_UNSIGNED_CHAR */
+-
+-typedef char JOCTET;
+-#ifdef CHAR_IS_UNSIGNED
+-#define GETJOCTET(value)  (value)
+-#else
+-#define GETJOCTET(value)  ((value) & 0xFF)
+-#endif /* CHAR_IS_UNSIGNED */
+-
+-#endif /* HAVE_UNSIGNED_CHAR */
+-
+-
+-/* These typedefs are used for various table entries and so forth.
+- * They must be at least as wide as specified; but making them too big
+- * won't cost a huge amount of memory, so we don't provide special
+- * extraction code like we did for JSAMPLE.  (In other words, these
+- * typedefs live at a different point on the speed/space tradeoff curve.)
+- */
+-
+-/* UINT8 must hold at least the values 0..255. */
+-
+-#ifdef HAVE_UNSIGNED_CHAR
+-typedef unsigned char UINT8;
+-#else /* not HAVE_UNSIGNED_CHAR */
+-#ifdef CHAR_IS_UNSIGNED
+-typedef char UINT8;
+-#else /* not CHAR_IS_UNSIGNED */
+-typedef short UINT8;
+-#endif /* CHAR_IS_UNSIGNED */
+-#endif /* HAVE_UNSIGNED_CHAR */
+-
+-/* UINT16 must hold at least the values 0..65535. */
+-
+-#ifdef HAVE_UNSIGNED_SHORT
+-typedef unsigned short UINT16;
+-#else /* not HAVE_UNSIGNED_SHORT */
+-typedef unsigned int UINT16;
+-#endif /* HAVE_UNSIGNED_SHORT */
+-
+-/* INT16 must hold at least the values -32768..32767. */
+-
+-#ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */
+-typedef short INT16;
+-#endif
+-
+-/* INT32 must hold at least signed 32-bit values. */
+-
+-#ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */
+-#ifndef _LP64
+-typedef long INT32;
+-#else
+-typedef int INT32;
+-#endif
+-#endif
+-
+-/* Datatype used for image dimensions.  The JPEG standard only supports
+- * images up to 64K*64K due to 16-bit fields in SOF markers.  Therefore
+- * "unsigned int" is sufficient on all machines.  However, if you need to
+- * handle larger images and you don't mind deviating from the spec, you
+- * can change this datatype.
+- */
+-
+-typedef unsigned int JDIMENSION;
+-
+-#ifndef _LP64
+-#define JPEG_MAX_DIMENSION  65500L  /* a tad under 64K to prevent overflows */
+-#else
+-#define JPEG_MAX_DIMENSION  65500  /* a tad under 64K to prevent overflows */
+-#endif
+-
+-
+-/* These macros are used in all function definitions and extern declarations.
+- * You could modify them if you need to change function linkage conventions;
+- * in particular, you'll need to do that to make the library a Windows DLL.
+- * Another application is to make all functions global for use with debuggers
+- * or code profilers that require it.
+- */
+-
+-/* a function called through method pointers: */
+-#define METHODDEF(type)		static type
+-/* a function used only in its module: */
+-#define LOCAL(type)		static type
+-/* a function referenced thru EXTERNs: */
+-#define GLOBAL(type)		type
+-/* a reference to a GLOBAL function: */
+-#define EXTERN(type)		extern type
+-
+-
+-/* This macro is used to declare a "method", that is, a function pointer.
+- * We want to supply prototype parameters if the compiler can cope.
+- * Note that the arglist parameter must be parenthesized!
+- * Again, you can customize this if you need special linkage keywords.
+- */
+-
+-#ifdef HAVE_PROTOTYPES
+-#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist
+-#else
+-#define JMETHOD(type,methodname,arglist)  type (*methodname) ()
+-#endif
+-
+-
+-/* Here is the pseudo-keyword for declaring pointers that must be "far"
+- * on 80x86 machines.  Most of the specialized coding for 80x86 is handled
+- * by just saying "FAR *" where such a pointer is needed.  In a few places
+- * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
+- */
+-
+-#ifdef NEED_FAR_POINTERS
+-#define FAR  far
+-#else
+-#define FAR
+-#endif
+-
+-
+-/*
+- * On a few systems, type boolean and/or its values FALSE, TRUE may appear
+- * in standard header files.  Or you may have conflicts with application-
+- * specific header files that you want to include together with these files.
+- * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
+- */
+-
+-#ifndef HAVE_BOOLEAN
+-typedef int boolean;
+-#endif
+-#ifndef FALSE			/* in case these macros already exist */
+-#define FALSE	0		/* values of boolean */
+-#endif
+-#ifndef TRUE
+-#define TRUE	1
+-#endif
+-
+-
+-/*
+- * The remaining options affect code selection within the JPEG library,
+- * but they don't need to be visible to most applications using the library.
+- * To minimize application namespace pollution, the symbols won't be
+- * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
+- */
+-
+-#ifdef JPEG_INTERNALS
+-#define JPEG_INTERNAL_OPTIONS
+-#endif
+-
+-#ifdef JPEG_INTERNAL_OPTIONS
+-
+-
+-/*
+- * These defines indicate whether to include various optional functions.
+- * Undefining some of these symbols will produce a smaller but less capable
+- * library.  Note that you can leave certain source files out of the
+- * compilation/linking process if you've #undef'd the corresponding symbols.
+- * (You may HAVE to do that if your compiler doesn't like null source files.)
+- */
+-
+-/* Arithmetic coding is unsupported for legal reasons.  Complaints to IBM. */
+-
+-/* Capability options common to encoder and decoder: */
+-
+-#define DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */
+-#define DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */
+-#define DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */
+-
+-/* Encoder capability options: */
+-
+-#undef  C_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */
+-#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+-#define C_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
+-#define ENTROPY_OPT_SUPPORTED	    /* Optimization of entropy coding parms? */
+-/* Note: if you selected 12-bit data precision, it is dangerous to turn off
+- * ENTROPY_OPT_SUPPORTED.  The standard Huffman tables are only good for 8-bit
+- * precision, so jchuff.c normally uses entropy optimization to compute
+- * usable tables for higher precision.  If you don't want to do optimization,
+- * you'll have to supply different default Huffman tables.
+- * The exact same statements apply for progressive JPEG: the default tables
+- * don't work for progressive mode.  (This may get fixed, however.)
+- */
+-#define INPUT_SMOOTHING_SUPPORTED   /* Input image smoothing option? */
+-
+-/* Decoder capability options: */
+-
+-#undef  D_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */
+-#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+-#define D_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
+-#define SAVE_MARKERS_SUPPORTED	    /* jpeg_save_markers() needed? */
+-#define BLOCK_SMOOTHING_SUPPORTED   /* Block smoothing? (Progressive only) */
+-#define IDCT_SCALING_SUPPORTED	    /* Output rescaling via IDCT? */
+-#undef  UPSAMPLE_SCALING_SUPPORTED  /* Output rescaling at upsample stage? */
+-#define UPSAMPLE_MERGING_SUPPORTED  /* Fast path for sloppy upsampling? */
+-#define QUANT_1PASS_SUPPORTED	    /* 1-pass color quantization? */
+-#define QUANT_2PASS_SUPPORTED	    /* 2-pass color quantization? */
+-
+-/* more capability options later, no doubt */
+-
+-
+-/*
+- * Ordering of RGB data in scanlines passed to or from the application.
+- * If your application wants to deal with data in the order B,G,R, just
+- * change these macros.  You can also deal with formats such as R,G,B,X
+- * (one extra byte per pixel) by changing RGB_PIXELSIZE.  Note that changing
+- * the offsets will also change the order in which colormap data is organized.
+- * RESTRICTIONS:
+- * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
+- * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
+- *    useful if you are using JPEG color spaces other than YCbCr or grayscale.
+- * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
+- *    is not 3 (they don't understand about dummy color components!).  So you
+- *    can't use color quantization if you change that value.
+- */
+-
+-#define RGB_RED		0	/* Offset of Red in an RGB scanline element */
+-#define RGB_GREEN	1	/* Offset of Green */
+-#define RGB_BLUE	2	/* Offset of Blue */
+-#define RGB_PIXELSIZE	3	/* JSAMPLEs per RGB scanline element */
+-
+-
+-/* Definitions for speed-related optimizations. */
+-
+-
+-/* If your compiler supports inline functions, define INLINE
+- * as the inline keyword; otherwise define it as empty.
+- */
+-
+-#ifndef INLINE
+-#ifdef __GNUC__			/* for instance, GNU C knows about inline */
+-#define INLINE __inline__
+-#endif
+-#ifndef INLINE
+-#define INLINE			/* default is to define it as empty */
+-#endif
+-#endif
+-
+-
+-/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
+- * two 16-bit shorts is faster than multiplying two ints.  Define MULTIPLIER
+- * as short on such a machine.  MULTIPLIER must be at least 16 bits wide.
+- */
+-
+-#ifndef MULTIPLIER
+-#define MULTIPLIER  int		/* type for fastest integer multiply */
+-#endif
+-
+-
+-/* FAST_FLOAT should be either float or double, whichever is done faster
+- * by your compiler.  (Note that this type is only used in the floating point
+- * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
+- * Typically, float is faster in ANSI C compilers, while double is faster in
+- * pre-ANSI compilers (because they insist on converting to double anyway).
+- * The code below therefore chooses float if we have ANSI-style prototypes.
+- */
+-
+-#ifndef FAST_FLOAT
+-#ifdef HAVE_PROTOTYPES
+-#define FAST_FLOAT  float
+-#else
+-#define FAST_FLOAT  double
+-#endif
+-#endif
+-
+-#endif /* JPEG_INTERNAL_OPTIONS */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jpegint.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jpegint.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jpegint.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jpegint.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,396 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jpegint.h
+- *
+- * Copyright (C) 1991-1997, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file provides common declarations for the various JPEG modules.
+- * These declarations are considered internal to the JPEG library; most
+- * applications using the library shouldn't need to include this file.
+- */
+-
+-
+-/* Declarations for both compression & decompression */
+-
+-typedef enum {			/* Operating modes for buffer controllers */
+-	JBUF_PASS_THRU,		/* Plain stripwise operation */
+-	/* Remaining modes require a full-image buffer to have been created */
+-	JBUF_SAVE_SOURCE,	/* Run source subobject only, save output */
+-	JBUF_CRANK_DEST,	/* Run dest subobject only, using saved data */
+-	JBUF_SAVE_AND_PASS	/* Run both subobjects, save output */
+-} J_BUF_MODE;
+-
+-/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+-#define CSTATE_START	100	/* after create_compress */
+-#define CSTATE_SCANNING	101	/* start_compress done, write_scanlines OK */
+-#define CSTATE_RAW_OK	102	/* start_compress done, write_raw_data OK */
+-#define CSTATE_WRCOEFS	103	/* jpeg_write_coefficients done */
+-#define DSTATE_START	200	/* after create_decompress */
+-#define DSTATE_INHEADER	201	/* reading header markers, no SOS yet */
+-#define DSTATE_READY	202	/* found SOS, ready for start_decompress */
+-#define DSTATE_PRELOAD	203	/* reading multiscan file in start_decompress*/
+-#define DSTATE_PRESCAN	204	/* performing dummy pass for 2-pass quant */
+-#define DSTATE_SCANNING	205	/* start_decompress done, read_scanlines OK */
+-#define DSTATE_RAW_OK	206	/* start_decompress done, read_raw_data OK */
+-#define DSTATE_BUFIMAGE	207	/* expecting jpeg_start_output */
+-#define DSTATE_BUFPOST	208	/* looking for SOS/EOI in jpeg_finish_output */
+-#define DSTATE_RDCOEFS	209	/* reading file in jpeg_read_coefficients */
+-#define DSTATE_STOPPING	210	/* looking for EOI in jpeg_finish_decompress */
+-
+-
+-/* Declarations for compression modules */
+-
+-/* Master control module */
+-struct jpeg_comp_master {
+-  JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+-  JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+-  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+-
+-  /* State variables made visible to other modules */
+-  boolean call_pass_startup;	/* True if pass_startup must be called */
+-  boolean is_last_pass;		/* True during last pass */
+-};
+-
+-/* Main buffer control (downsampled-data buffer) */
+-struct jpeg_c_main_controller {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+-  JMETHOD(void, process_data, (j_compress_ptr cinfo,
+-			       JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+-			       JDIMENSION in_rows_avail));
+-};
+-
+-/* Compression preprocessing (downsampling input buffer control) */
+-struct jpeg_c_prep_controller {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+-  JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+-				   JSAMPARRAY input_buf,
+-				   JDIMENSION *in_row_ctr,
+-				   JDIMENSION in_rows_avail,
+-				   JSAMPIMAGE output_buf,
+-				   JDIMENSION *out_row_group_ctr,
+-				   JDIMENSION out_row_groups_avail));
+-};
+-
+-/* Coefficient buffer control */
+-struct jpeg_c_coef_controller {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+-  JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+-				   JSAMPIMAGE input_buf));
+-};
+-
+-/* Colorspace conversion */
+-struct jpeg_color_converter {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+-  JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+-				JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+-				JDIMENSION output_row, int num_rows));
+-};
+-
+-/* Downsampling */
+-struct jpeg_downsampler {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+-  JMETHOD(void, downsample, (j_compress_ptr cinfo,
+-			     JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+-			     JSAMPIMAGE output_buf,
+-			     JDIMENSION out_row_group_index));
+-
+-  boolean need_context_rows;	/* TRUE if need rows above & below */
+-};
+-
+-/* Forward DCT (also controls coefficient quantization) */
+-struct jpeg_forward_dct {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+-  /* perhaps this should be an array??? */
+-  JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
+-			      jpeg_component_info * compptr,
+-			      JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+-			      JDIMENSION start_row, JDIMENSION start_col,
+-			      JDIMENSION num_blocks));
+-};
+-
+-/* Entropy encoding */
+-struct jpeg_entropy_encoder {
+-  JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+-  JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+-  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+-};
+-
+-/* Marker writing */
+-struct jpeg_marker_writer {
+-  JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+-  JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+-  JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+-  JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+-  JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+-  /* These routines are exported to allow insertion of extra markers */
+-  /* Probably only COM and APPn markers should be written this way */
+-  JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
+-				      unsigned int datalen));
+-  JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
+-};
+-
+-
+-/* Declarations for decompression modules */
+-
+-/* Master control module */
+-struct jpeg_decomp_master {
+-  JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+-
+-  /* State variables made visible to other modules */
+-  boolean is_dummy_pass;	/* True during 1st pass for 2-pass quant */
+-};
+-
+-/* Input control module */
+-struct jpeg_input_controller {
+-  JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+-  JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+-  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+-
+-  /* State variables made visible to other modules */
+-  boolean has_multiple_scans;	/* True if file has multiple scans */
+-  boolean eoi_reached;		/* True when EOI has been consumed */
+-};
+-
+-/* Main buffer control (downsampled-data buffer) */
+-struct jpeg_d_main_controller {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+-  JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+-			       JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+-			       JDIMENSION out_rows_avail));
+-};
+-
+-/* Coefficient buffer control */
+-struct jpeg_d_coef_controller {
+-  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+-  JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+-				 JSAMPIMAGE output_buf));
+-  /* Pointer to array of coefficient virtual arrays, or NULL if none */
+-  jvirt_barray_ptr *coef_arrays;
+-};
+-
+-/* Decompression postprocessing (color quantization buffer control) */
+-struct jpeg_d_post_controller {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+-  JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+-				    JSAMPIMAGE input_buf,
+-				    JDIMENSION *in_row_group_ctr,
+-				    JDIMENSION in_row_groups_avail,
+-				    JSAMPARRAY output_buf,
+-				    JDIMENSION *out_row_ctr,
+-				    JDIMENSION out_rows_avail));
+-};
+-
+-/* Marker reading & parsing */
+-struct jpeg_marker_reader {
+-  JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+-  /* Read markers until SOS or EOI.
+-   * Returns same codes as are defined for jpeg_consume_input:
+-   * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+-   */
+-  JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+-  /* Read a restart marker --- exported for use by entropy decoder only */
+-  jpeg_marker_parser_method read_restart_marker;
+-
+-  /* State of marker reader --- nominally internal, but applications
+-   * supplying COM or APPn handlers might like to know the state.
+-   */
+-  boolean saw_SOI;		/* found SOI? */
+-  boolean saw_SOF;		/* found SOF? */
+-  int next_restart_num;		/* next restart number expected (0-7) */
+-  unsigned int discarded_bytes;	/* # of bytes skipped looking for a marker */
+-};
+-
+-/* Entropy decoding */
+-struct jpeg_entropy_decoder {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+-				JBLOCKROW *MCU_data));
+-
+-  /* This is here to share code between baseline and progressive decoders; */
+-  /* other modules probably should not use it */
+-  boolean insufficient_data;	/* set TRUE after emitting warning */
+-};
+-
+-/* Inverse DCT (also performs dequantization) */
+-typedef JMETHOD(void, inverse_DCT_method_ptr,
+-		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
+-		 JCOEFPTR coef_block,
+-		 JSAMPARRAY output_buf, JDIMENSION output_col));
+-
+-struct jpeg_inverse_dct {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+-  /* It is useful to allow each component to have a separate IDCT method. */
+-  inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+-};
+-
+-/* Upsampling (note that upsampler must also call color converter) */
+-struct jpeg_upsampler {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+-			   JSAMPIMAGE input_buf,
+-			   JDIMENSION *in_row_group_ctr,
+-			   JDIMENSION in_row_groups_avail,
+-			   JSAMPARRAY output_buf,
+-			   JDIMENSION *out_row_ctr,
+-			   JDIMENSION out_rows_avail));
+-
+-  boolean need_context_rows;	/* TRUE if need rows above & below */
+-};
+-
+-/* Colorspace conversion */
+-struct jpeg_color_deconverter {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+-				JSAMPIMAGE input_buf, JDIMENSION input_row,
+-				JSAMPARRAY output_buf, int num_rows));
+-};
+-
+-/* Color quantization or color precision reduction */
+-struct jpeg_color_quantizer {
+-  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+-  JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+-				 JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+-				 int num_rows));
+-  JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+-  JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+-};
+-
+-
+-/* Miscellaneous useful macros */
+-
+-#undef MAX
+-#define MAX(a,b)	((a) > (b) ? (a) : (b))
+-#undef MIN
+-#define MIN(a,b)	((a) < (b) ? (a) : (b))
+-
+-
+-/* We assume that right shift corresponds to signed division by 2 with
+- * rounding towards minus infinity.  This is correct for typical "arithmetic
+- * shift" instructions that shift in copies of the sign bit.  But some
+- * C compilers implement >> with an unsigned shift.  For these machines you
+- * must define RIGHT_SHIFT_IS_UNSIGNED.
+- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+- * It is only applied with constant shift counts.  SHIFT_TEMPS must be
+- * included in the variables of any routine using RIGHT_SHIFT.
+- */
+-
+-#ifdef RIGHT_SHIFT_IS_UNSIGNED
+-#define SHIFT_TEMPS	INT32 shift_temp;
+-#define RIGHT_SHIFT(x,shft)  \
+-	((shift_temp = (x)) < 0 ? \
+-	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+-	 (shift_temp >> (shft)))
+-#else
+-#define SHIFT_TEMPS
+-#define RIGHT_SHIFT(x,shft)	((x) >> (shft))
+-#endif
+-
+-
+-/* Short forms of external names for systems with brain-damaged linkers. */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jinit_compress_master	jICompress
+-#define jinit_c_master_control	jICMaster
+-#define jinit_c_main_controller	jICMainC
+-#define jinit_c_prep_controller	jICPrepC
+-#define jinit_c_coef_controller	jICCoefC
+-#define jinit_color_converter	jICColor
+-#define jinit_downsampler	jIDownsampler
+-#define jinit_forward_dct	jIFDCT
+-#define jinit_huff_encoder	jIHEncoder
+-#define jinit_phuff_encoder	jIPHEncoder
+-#define jinit_marker_writer	jIMWriter
+-#define jinit_master_decompress	jIDMaster
+-#define jinit_d_main_controller	jIDMainC
+-#define jinit_d_coef_controller	jIDCoefC
+-#define jinit_d_post_controller	jIDPostC
+-#define jinit_input_controller	jIInCtlr
+-#define jinit_marker_reader	jIMReader
+-#define jinit_huff_decoder	jIHDecoder
+-#define jinit_phuff_decoder	jIPHDecoder
+-#define jinit_inverse_dct	jIIDCT
+-#define jinit_upsampler		jIUpsampler
+-#define jinit_color_deconverter	jIDColor
+-#define jinit_1pass_quantizer	jI1Quant
+-#define jinit_2pass_quantizer	jI2Quant
+-#define jinit_merged_upsampler	jIMUpsampler
+-#define jinit_memory_mgr	jIMemMgr
+-#define jdiv_round_up		jDivRound
+-#define jround_up		jRound
+-#define jcopy_sample_rows	jCopySamples
+-#define jcopy_block_row		jCopyBlocks
+-#define jzero_far		jZeroFar
+-#define jpeg_zigzag_order	jZIGTable
+-#define jpeg_natural_order	jZAGTable
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-
+-/* Compression module initialization routines */
+-EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
+-					 boolean transcode_only));
+-EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
+-EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
+-/* Decompression module initialization routines */
+-EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+-					  boolean need_full_buffer));
+-EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+-/* Memory manager initialization */
+-EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
+-
+-/* Utility routines in jutils.c */
+-EXTERN(long) jdiv_round_up JPP((long a, long b));
+-EXTERN(long) jround_up JPP((long a, long b));
+-EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+-				    JSAMPARRAY output_array, int dest_row,
+-				    int num_rows, JDIMENSION num_cols));
+-EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+-				  JDIMENSION num_blocks));
+-EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
+-/* Constant tables in jutils.c */
+-#if 0				/* This table is not actually needed in v6a */
+-extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+-#endif
+-extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+-
+-/* Suppress undefined-structure complaints if necessary. */
+-
+-#ifdef INCOMPLETE_TYPES_BROKEN
+-#ifndef AM_MEMORY_MANAGER	/* only jmemmgr.c defines these */
+-struct jvirt_sarray_control { long dummy; };
+-struct jvirt_barray_control { long dummy; };
+-#endif
+-#endif /* INCOMPLETE_TYPES_BROKEN */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jpeglib.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jpeglib.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jpeglib.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jpeglib.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,1100 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jpeglib.h
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file defines the application interface for the JPEG library.
+- * Most applications using the library need only include this file,
+- * and perhaps jerror.h if they want to know the exact error codes.
+- */
+-
+-#ifndef JPEGLIB_H
+-#define JPEGLIB_H
+-
+-/*
+- * First we include the configuration files that record how this
+- * installation of the JPEG library is set up.  jconfig.h can be
+- * generated automatically for many systems.  jmorecfg.h contains
+- * manual configuration options that most people need not worry about.
+- */
+-
+-#ifndef JCONFIG_INCLUDED	/* in case jinclude.h already did */
+-#include "jconfig.h"		/* widely used configuration options */
+-#endif
+-#include "jmorecfg.h"		/* seldom changed options */
+-
+-
+-/* Version ID for the JPEG library.
+- * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
+- */
+-
+-#define JPEG_LIB_VERSION  62	/* Version 6b */
+-
+-
+-/* Various constants determining the sizes of things.
+- * All of these are specified by the JPEG standard, so don't change them
+- * if you want to be compatible.
+- */
+-
+-#define DCTSIZE		    8	/* The basic DCT block is 8x8 samples */
+-#define DCTSIZE2	    64	/* DCTSIZE squared; # of elements in a block */
+-#define NUM_QUANT_TBLS      4	/* Quantization tables are numbered 0..3 */
+-#define NUM_HUFF_TBLS       4	/* Huffman tables are numbered 0..3 */
+-#define NUM_ARITH_TBLS      16	/* Arith-coding tables are numbered 0..15 */
+-#define MAX_COMPS_IN_SCAN   4	/* JPEG limit on # of components in one scan */
+-#define MAX_SAMP_FACTOR     4	/* JPEG limit on sampling factors */
+-/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
+- * the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
+- * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
+- * to handle it.  We even let you do this from the jconfig.h file.  However,
+- * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
+- * sometimes emits noncompliant files doesn't mean you should too.
+- */
+-#define C_MAX_BLOCKS_IN_MCU   10 /* compressor's limit on blocks per MCU */
+-#ifndef D_MAX_BLOCKS_IN_MCU
+-#define D_MAX_BLOCKS_IN_MCU   10 /* decompressor's limit on blocks per MCU */
+-#endif
+-
+-
+-/* Data structures for images (arrays of samples and of DCT coefficients).
+- * On 80x86 machines, the image arrays are too big for near pointers,
+- * but the pointer arrays can fit in near memory.
+- */
+-
+-typedef JSAMPLE FAR *JSAMPROW;	/* ptr to one image row of pixel samples. */
+-typedef JSAMPROW *JSAMPARRAY;	/* ptr to some rows (a 2-D sample array) */
+-typedef JSAMPARRAY *JSAMPIMAGE;	/* a 3-D sample array: top index is color */
+-
+-typedef JCOEF JBLOCK[DCTSIZE2];	/* one block of coefficients */
+-typedef JBLOCK FAR *JBLOCKROW;	/* pointer to one row of coefficient blocks */
+-typedef JBLOCKROW *JBLOCKARRAY;		/* a 2-D array of coefficient blocks */
+-typedef JBLOCKARRAY *JBLOCKIMAGE;	/* a 3-D array of coefficient blocks */
+-
+-typedef JCOEF FAR *JCOEFPTR;	/* useful in a couple of places */
+-
+-
+-/* Types for JPEG compression parameters and working tables. */
+-
+-
+-/* DCT coefficient quantization tables. */
+-
+-typedef struct {
+-  /* This array gives the coefficient quantizers in natural array order
+-   * (not the zigzag order in which they are stored in a JPEG DQT marker).
+-   * CAUTION: IJG versions prior to v6a kept this array in zigzag order.
+-   */
+-  UINT16 quantval[DCTSIZE2];	/* quantization step for each coefficient */
+-  /* This field is used only during compression.  It's initialized FALSE when
+-   * the table is created, and set TRUE when it's been output to the file.
+-   * You could suppress output of a table by setting this to TRUE.
+-   * (See jpeg_suppress_tables for an example.)
+-   */
+-  boolean sent_table;		/* TRUE when table has been output */
+-} JQUANT_TBL;
+-
+-
+-/* Huffman coding tables. */
+-
+-typedef struct {
+-  /* These two fields directly represent the contents of a JPEG DHT marker */
+-  UINT8 bits[17];		/* bits[k] = # of symbols with codes of */
+-				/* length k bits; bits[0] is unused */
+-  UINT8 huffval[256];		/* The symbols, in order of incr code length */
+-  /* This field is used only during compression.  It's initialized FALSE when
+-   * the table is created, and set TRUE when it's been output to the file.
+-   * You could suppress output of a table by setting this to TRUE.
+-   * (See jpeg_suppress_tables for an example.)
+-   */
+-  boolean sent_table;		/* TRUE when table has been output */
+-} JHUFF_TBL;
+-
+-
+-/* Basic info about one component (color channel). */
+-
+-typedef struct {
+-  /* These values are fixed over the whole image. */
+-  /* For compression, they must be supplied by parameter setup; */
+-  /* for decompression, they are read from the SOF marker. */
+-  int component_id;		/* identifier for this component (0..255) */
+-  int component_index;		/* its index in SOF or cinfo->comp_info[] */
+-  int h_samp_factor;		/* horizontal sampling factor (1..4) */
+-  int v_samp_factor;		/* vertical sampling factor (1..4) */
+-  int quant_tbl_no;		/* quantization table selector (0..3) */
+-  /* These values may vary between scans. */
+-  /* For compression, they must be supplied by parameter setup; */
+-  /* for decompression, they are read from the SOS marker. */
+-  /* The decompressor output side may not use these variables. */
+-  int dc_tbl_no;		/* DC entropy table selector (0..3) */
+-  int ac_tbl_no;		/* AC entropy table selector (0..3) */
+-  
+-  /* Remaining fields should be treated as private by applications. */
+-  
+-  /* These values are computed during compression or decompression startup: */
+-  /* Component's size in DCT blocks.
+-   * Any dummy blocks added to complete an MCU are not counted; therefore
+-   * these values do not depend on whether a scan is interleaved or not.
+-   */
+-  JDIMENSION width_in_blocks;
+-  JDIMENSION height_in_blocks;
+-  /* Size of a DCT block in samples.  Always DCTSIZE for compression.
+-   * For decompression this is the size of the output from one DCT block,
+-   * reflecting any scaling we choose to apply during the IDCT step.
+-   * Values of 1,2,4,8 are likely to be supported.  Note that different
+-   * components may receive different IDCT scalings.
+-   */
+-  int DCT_scaled_size;
+-  /* The downsampled dimensions are the component's actual, unpadded number
+-   * of samples at the main buffer (preprocessing/compression interface), thus
+-   * downsampled_width = ceil(image_width * Hi/Hmax)
+-   * and similarly for height.  For decompression, IDCT scaling is included, so
+-   * downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
+-   */
+-  JDIMENSION downsampled_width;	 /* actual width in samples */
+-  JDIMENSION downsampled_height; /* actual height in samples */
+-  /* This flag is used only for decompression.  In cases where some of the
+-   * components will be ignored (eg grayscale output from YCbCr image),
+-   * we can skip most computations for the unused components.
+-   */
+-  boolean component_needed;	/* do we need the value of this component? */
+-
+-  /* These values are computed before starting a scan of the component. */
+-  /* The decompressor output side may not use these variables. */
+-  int MCU_width;		/* number of blocks per MCU, horizontally */
+-  int MCU_height;		/* number of blocks per MCU, vertically */
+-  int MCU_blocks;		/* MCU_width * MCU_height */
+-  int MCU_sample_width;		/* MCU width in samples, MCU_width*DCT_scaled_size */
+-  int last_col_width;		/* # of non-dummy blocks across in last MCU */
+-  int last_row_height;		/* # of non-dummy blocks down in last MCU */
+-
+-  /* Saved quantization table for component; NULL if none yet saved.
+-   * See jdinput.c comments about the need for this information.
+-   * This field is currently used only for decompression.
+-   */
+-  JQUANT_TBL * quant_table;
+-
+-  /* Private per-component storage for DCT or IDCT subsystem. */
+-  void * dct_table;
+-} jpeg_component_info;
+-
+-
+-/* The script for encoding a multiple-scan file is an array of these: */
+-
+-typedef struct {
+-  int comps_in_scan;		/* number of components encoded in this scan */
+-  int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
+-  int Ss, Se;			/* progressive JPEG spectral selection parms */
+-  int Ah, Al;			/* progressive JPEG successive approx. parms */
+-} jpeg_scan_info;
+-
+-/* The decompressor can save APPn and COM markers in a list of these: */
+-
+-typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
+-
+-struct jpeg_marker_struct {
+-  jpeg_saved_marker_ptr next;	/* next in list, or NULL */
+-  UINT8 marker;			/* marker code: JPEG_COM, or JPEG_APP0+n */
+-  unsigned int original_length;	/* # bytes of data in the file */
+-  unsigned int data_length;	/* # bytes of data saved at data[] */
+-  JOCTET FAR * data;		/* the data contained in the marker */
+-  /* the marker length word is not counted in data_length or original_length */
+-};
+-
+-/* Known color spaces. */
+-
+-typedef enum {
+-	JCS_UNKNOWN,		/* error/unspecified */
+-	JCS_GRAYSCALE,		/* monochrome */
+-	JCS_RGB,		/* red/green/blue */
+-	JCS_YCbCr,		/* Y/Cb/Cr (also known as YUV) */
+-	JCS_CMYK,		/* C/M/Y/K */
+-	JCS_YCCK		/* Y/Cb/Cr/K */
+-} J_COLOR_SPACE;
+-
+-/* DCT/IDCT algorithm options. */
+-
+-typedef enum {
+-	JDCT_ISLOW,		/* slow but accurate integer algorithm */
+-	JDCT_IFAST,		/* faster, less accurate integer method */
+-	JDCT_FLOAT		/* floating-point: accurate, fast on fast HW */
+-} J_DCT_METHOD;
+-
+-#ifndef JDCT_DEFAULT		/* may be overridden in jconfig.h */
+-#define JDCT_DEFAULT  JDCT_ISLOW
+-#endif
+-#ifndef JDCT_FASTEST		/* may be overridden in jconfig.h */
+-#define JDCT_FASTEST  JDCT_IFAST
+-#endif
+-
+-/* Dithering options for decompression. */
+-
+-typedef enum {
+-	JDITHER_NONE,		/* no dithering */
+-	JDITHER_ORDERED,	/* simple ordered dither */
+-	JDITHER_FS		/* Floyd-Steinberg error diffusion dither */
+-} J_DITHER_MODE;
+-
+-
+-/* Common fields between JPEG compression and decompression master structs. */
+-
+-#define jpeg_common_fields \
+-  struct jpeg_error_mgr * err;	/* Error handler module */\
+-  struct jpeg_memory_mgr * mem;	/* Memory manager module */\
+-  struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
+-  void * client_data;		/* Available for use by application */\
+-  boolean is_decompressor;	/* So common code can tell which is which */\
+-  int global_state		/* For checking call sequence validity */
+-
+-/* Routines that are to be used by both halves of the library are declared
+- * to receive a pointer to this structure.  There are no actual instances of
+- * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
+- */
+-struct jpeg_common_struct {
+-  jpeg_common_fields;		/* Fields common to both master struct types */
+-  /* Additional fields follow in an actual jpeg_compress_struct or
+-   * jpeg_decompress_struct.  All three structs must agree on these
+-   * initial fields!  (This would be a lot cleaner in C++.)
+-   */
+-};
+-
+-typedef struct jpeg_common_struct * j_common_ptr;
+-typedef struct jpeg_compress_struct * j_compress_ptr;
+-typedef struct jpeg_decompress_struct * j_decompress_ptr;
+-
+-
+-/* Master record for a compression instance */
+-
+-struct jpeg_compress_struct {
+-  jpeg_common_fields;		/* Fields shared with jpeg_decompress_struct */
+-
+-  /* Destination for compressed data */
+-  struct jpeg_destination_mgr * dest;
+-
+-  /* Description of source image --- these fields must be filled in by
+-   * outer application before starting compression.  in_color_space must
+-   * be correct before you can even call jpeg_set_defaults().
+-   */
+-
+-  JDIMENSION image_width;	/* input image width */
+-  JDIMENSION image_height;	/* input image height */
+-  int input_components;		/* # of color components in input image */
+-  J_COLOR_SPACE in_color_space;	/* colorspace of input image */
+-
+-  double input_gamma;		/* image gamma of input image */
+-
+-  /* Compression parameters --- these fields must be set before calling
+-   * jpeg_start_compress().  We recommend calling jpeg_set_defaults() to
+-   * initialize everything to reasonable defaults, then changing anything
+-   * the application specifically wants to change.  That way you won't get
+-   * burnt when new parameters are added.  Also note that there are several
+-   * helper routines to simplify changing parameters.
+-   */
+-
+-  int data_precision;		/* bits of precision in image data */
+-
+-  int num_components;		/* # of color components in JPEG image */
+-  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+-
+-  jpeg_component_info * comp_info;
+-  /* comp_info[i] describes component that appears i'th in SOF */
+-  
+-  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+-  /* ptrs to coefficient quantization tables, or NULL if not defined */
+-  
+-  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+-  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+-  /* ptrs to Huffman coding tables, or NULL if not defined */
+-  
+-  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+-  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+-  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+-
+-  int num_scans;		/* # of entries in scan_info array */
+-  const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
+-  /* The default value of scan_info is NULL, which causes a single-scan
+-   * sequential JPEG file to be emitted.  To create a multi-scan file,
+-   * set num_scans and scan_info to point to an array of scan definitions.
+-   */
+-
+-  boolean raw_data_in;		/* TRUE=caller supplies downsampled data */
+-  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */
+-  boolean optimize_coding;	/* TRUE=optimize entropy encoding parms */
+-  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */
+-  int smoothing_factor;		/* 1..100, or 0 for no input smoothing */
+-  J_DCT_METHOD dct_method;	/* DCT algorithm selector */
+-
+-  /* The restart interval can be specified in absolute MCUs by setting
+-   * restart_interval, or in MCU rows by setting restart_in_rows
+-   * (in which case the correct restart_interval will be figured
+-   * for each scan).
+-   */
+-  unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
+-  int restart_in_rows;		/* if > 0, MCU rows per restart interval */
+-
+-  /* Parameters controlling emission of special markers. */
+-
+-  boolean write_JFIF_header;	/* should a JFIF marker be written? */
+-  UINT8 JFIF_major_version;	/* What to write for the JFIF version number */
+-  UINT8 JFIF_minor_version;
+-  /* These three values are not used by the JPEG code, merely copied */
+-  /* into the JFIF APP0 marker.  density_unit can be 0 for unknown, */
+-  /* 1 for dots/inch, or 2 for dots/cm.  Note that the pixel aspect */
+-  /* ratio is defined by X_density/Y_density even when density_unit=0. */
+-  UINT8 density_unit;		/* JFIF code for pixel size units */
+-  UINT16 X_density;		/* Horizontal pixel density */
+-  UINT16 Y_density;		/* Vertical pixel density */
+-  boolean write_Adobe_marker;	/* should an Adobe marker be written? */
+-  
+-  /* State variable: index of next scanline to be written to
+-   * jpeg_write_scanlines().  Application may use this to control its
+-   * processing loop, e.g., "while (next_scanline < image_height)".
+-   */
+-
+-  JDIMENSION next_scanline;	/* 0 .. image_height-1  */
+-
+-  /* Remaining fields are known throughout compressor, but generally
+-   * should not be touched by a surrounding application.
+-   */
+-
+-  /*
+-   * These fields are computed during compression startup
+-   */
+-  boolean progressive_mode;	/* TRUE if scan script uses progressive mode */
+-  int max_h_samp_factor;	/* largest h_samp_factor */
+-  int max_v_samp_factor;	/* largest v_samp_factor */
+-
+-  JDIMENSION total_iMCU_rows;	/* # of iMCU rows to be input to coef ctlr */
+-  /* The coefficient controller receives data in units of MCU rows as defined
+-   * for fully interleaved scans (whether the JPEG file is interleaved or not).
+-   * There are v_samp_factor * DCTSIZE sample rows of each component in an
+-   * "iMCU" (interleaved MCU) row.
+-   */
+-  
+-  /*
+-   * These fields are valid during any one scan.
+-   * They describe the components and MCUs actually appearing in the scan.
+-   */
+-  int comps_in_scan;		/* # of JPEG components in this scan */
+-  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+-  /* *cur_comp_info[i] describes component that appears i'th in SOS */
+-  
+-  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */
+-  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */
+-  
+-  int blocks_in_MCU;		/* # of DCT blocks per MCU */
+-  int MCU_membership[C_MAX_BLOCKS_IN_MCU];
+-  /* MCU_membership[i] is index in cur_comp_info of component owning */
+-  /* i'th block in an MCU */
+-
+-  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */
+-
+-  /*
+-   * Links to compression subobjects (methods and private variables of modules)
+-   */
+-  struct jpeg_comp_master * master;
+-  struct jpeg_c_main_controller * main;
+-  struct jpeg_c_prep_controller * prep;
+-  struct jpeg_c_coef_controller * coef;
+-  struct jpeg_marker_writer * marker;
+-  struct jpeg_color_converter * cconvert;
+-  struct jpeg_downsampler * downsample;
+-  struct jpeg_forward_dct * fdct;
+-  struct jpeg_entropy_encoder * entropy;
+-  jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
+-  int script_space_size;
+-};
+-
+-
+-/* Master record for a decompression instance */
+-
+-struct jpeg_decompress_struct {
+-  jpeg_common_fields;		/* Fields shared with jpeg_compress_struct */
+-
+-  /* Source of compressed data */
+-  struct jpeg_source_mgr * src;
+-
+-  /* Basic description of image --- filled in by jpeg_read_header(). */
+-  /* Application may inspect these values to decide how to process image. */
+-
+-  JDIMENSION image_width;	/* nominal image width (from SOF marker) */
+-  JDIMENSION image_height;	/* nominal image height */
+-  int num_components;		/* # of color components in JPEG image */
+-  J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
+-
+-  /* Decompression processing parameters --- these fields must be set before
+-   * calling jpeg_start_decompress().  Note that jpeg_read_header() initializes
+-   * them to default values.
+-   */
+-
+-  J_COLOR_SPACE out_color_space; /* colorspace for output */
+-
+-  unsigned int scale_num, scale_denom; /* fraction by which to scale image */
+-
+-  double output_gamma;		/* image gamma wanted in output */
+-
+-  boolean buffered_image;	/* TRUE=multiple output passes */
+-  boolean raw_data_out;		/* TRUE=downsampled data wanted */
+-
+-  J_DCT_METHOD dct_method;	/* IDCT algorithm selector */
+-  boolean do_fancy_upsampling;	/* TRUE=apply fancy upsampling */
+-  boolean do_block_smoothing;	/* TRUE=apply interblock smoothing */
+-
+-  boolean quantize_colors;	/* TRUE=colormapped output wanted */
+-  /* the following are ignored if not quantize_colors: */
+-  J_DITHER_MODE dither_mode;	/* type of color dithering to use */
+-  boolean two_pass_quantize;	/* TRUE=use two-pass color quantization */
+-  int desired_number_of_colors;	/* max # colors to use in created colormap */
+-  /* these are significant only in buffered-image mode: */
+-  boolean enable_1pass_quant;	/* enable future use of 1-pass quantizer */
+-  boolean enable_external_quant;/* enable future use of external colormap */
+-  boolean enable_2pass_quant;	/* enable future use of 2-pass quantizer */
+-
+-  /* Description of actual output image that will be returned to application.
+-   * These fields are computed by jpeg_start_decompress().
+-   * You can also use jpeg_calc_output_dimensions() to determine these values
+-   * in advance of calling jpeg_start_decompress().
+-   */
+-
+-  JDIMENSION output_width;	/* scaled image width */
+-  JDIMENSION output_height;	/* scaled image height */
+-  int out_color_components;	/* # of color components in out_color_space */
+-  int output_components;	/* # of color components returned */
+-  /* output_components is 1 (a colormap index) when quantizing colors;
+-   * otherwise it equals out_color_components.
+-   */
+-  int rec_outbuf_height;	/* min recommended height of scanline buffer */
+-  /* If the buffer passed to jpeg_read_scanlines() is less than this many rows
+-   * high, space and time will be wasted due to unnecessary data copying.
+-   * Usually rec_outbuf_height will be 1 or 2, at most 4.
+-   */
+-
+-  /* When quantizing colors, the output colormap is described by these fields.
+-   * The application can supply a colormap by setting colormap non-NULL before
+-   * calling jpeg_start_decompress; otherwise a colormap is created during
+-   * jpeg_start_decompress or jpeg_start_output.
+-   * The map has out_color_components rows and actual_number_of_colors columns.
+-   */
+-  int actual_number_of_colors;	/* number of entries in use */
+-  JSAMPARRAY colormap;		/* The color map as a 2-D pixel array */
+-
+-  /* State variables: these variables indicate the progress of decompression.
+-   * The application may examine these but must not modify them.
+-   */
+-
+-  /* Row index of next scanline to be read from jpeg_read_scanlines().
+-   * Application may use this to control its processing loop, e.g.,
+-   * "while (output_scanline < output_height)".
+-   */
+-  JDIMENSION output_scanline;	/* 0 .. output_height-1  */
+-
+-  /* Current input scan number and number of iMCU rows completed in scan.
+-   * These indicate the progress of the decompressor input side.
+-   */
+-  int input_scan_number;	/* Number of SOS markers seen so far */
+-  JDIMENSION input_iMCU_row;	/* Number of iMCU rows completed */
+-
+-  /* The "output scan number" is the notional scan being displayed by the
+-   * output side.  The decompressor will not allow output scan/row number
+-   * to get ahead of input scan/row, but it can fall arbitrarily far behind.
+-   */
+-  int output_scan_number;	/* Nominal scan number being displayed */
+-  JDIMENSION output_iMCU_row;	/* Number of iMCU rows read */
+-
+-  /* Current progression status.  coef_bits[c][i] indicates the precision
+-   * with which component c's DCT coefficient i (in zigzag order) is known.
+-   * It is -1 when no data has yet been received, otherwise it is the point
+-   * transform (shift) value for the most recent scan of the coefficient
+-   * (thus, 0 at completion of the progression).
+-   * This pointer is NULL when reading a non-progressive file.
+-   */
+-  int (*coef_bits)[DCTSIZE2];	/* -1 or current Al value for each coef */
+-
+-  /* Internal JPEG parameters --- the application usually need not look at
+-   * these fields.  Note that the decompressor output side may not use
+-   * any parameters that can change between scans.
+-   */
+-
+-  /* Quantization and Huffman tables are carried forward across input
+-   * datastreams when processing abbreviated JPEG datastreams.
+-   */
+-
+-  JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
+-  /* ptrs to coefficient quantization tables, or NULL if not defined */
+-
+-  JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
+-  JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
+-  /* ptrs to Huffman coding tables, or NULL if not defined */
+-
+-  /* These parameters are never carried across datastreams, since they
+-   * are given in SOF/SOS markers or defined to be reset by SOI.
+-   */
+-
+-  int data_precision;		/* bits of precision in image data */
+-
+-  jpeg_component_info * comp_info;
+-  /* comp_info[i] describes component that appears i'th in SOF */
+-
+-  boolean progressive_mode;	/* TRUE if SOFn specifies progressive mode */
+-  boolean arith_code;		/* TRUE=arithmetic coding, FALSE=Huffman */
+-
+-  UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
+-  UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
+-  UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
+-
+-  unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
+-
+-  /* These fields record data obtained from optional markers recognized by
+-   * the JPEG library.
+-   */
+-  boolean saw_JFIF_marker;	/* TRUE iff a JFIF APP0 marker was found */
+-  /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
+-  UINT8 JFIF_major_version;	/* JFIF version number */
+-  UINT8 JFIF_minor_version;
+-  UINT8 density_unit;		/* JFIF code for pixel size units */
+-  UINT16 X_density;		/* Horizontal pixel density */
+-  UINT16 Y_density;		/* Vertical pixel density */
+-  boolean saw_Adobe_marker;	/* TRUE iff an Adobe APP14 marker was found */
+-  UINT8 Adobe_transform;	/* Color transform code from Adobe marker */
+-
+-  boolean CCIR601_sampling;	/* TRUE=first samples are cosited */
+-
+-  /* Aside from the specific data retained from APPn markers known to the
+-   * library, the uninterpreted contents of any or all APPn and COM markers
+-   * can be saved in a list for examination by the application.
+-   */
+-  jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
+-
+-  /* Remaining fields are known throughout decompressor, but generally
+-   * should not be touched by a surrounding application.
+-   */
+-
+-  /*
+-   * These fields are computed during decompression startup
+-   */
+-  int max_h_samp_factor;	/* largest h_samp_factor */
+-  int max_v_samp_factor;	/* largest v_samp_factor */
+-
+-  int min_DCT_scaled_size;	/* smallest DCT_scaled_size of any component */
+-
+-  JDIMENSION total_iMCU_rows;	/* # of iMCU rows in image */
+-  /* The coefficient controller's input and output progress is measured in
+-   * units of "iMCU" (interleaved MCU) rows.  These are the same as MCU rows
+-   * in fully interleaved JPEG scans, but are used whether the scan is
+-   * interleaved or not.  We define an iMCU row as v_samp_factor DCT block
+-   * rows of each component.  Therefore, the IDCT output contains
+-   * v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row.
+-   */
+-
+-  JSAMPLE * sample_range_limit; /* table for fast range-limiting */
+-
+-  /*
+-   * These fields are valid during any one scan.
+-   * They describe the components and MCUs actually appearing in the scan.
+-   * Note that the decompressor output side must not use these fields.
+-   */
+-  int comps_in_scan;		/* # of JPEG components in this scan */
+-  jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
+-  /* *cur_comp_info[i] describes component that appears i'th in SOS */
+-
+-  JDIMENSION MCUs_per_row;	/* # of MCUs across the image */
+-  JDIMENSION MCU_rows_in_scan;	/* # of MCU rows in the image */
+-
+-  int blocks_in_MCU;		/* # of DCT blocks per MCU */
+-  int MCU_membership[D_MAX_BLOCKS_IN_MCU];
+-  /* MCU_membership[i] is index in cur_comp_info of component owning */
+-  /* i'th block in an MCU */
+-
+-  int Ss, Se, Ah, Al;		/* progressive JPEG parameters for scan */
+-
+-  /* This field is shared between entropy decoder and marker parser.
+-   * It is either zero or the code of a JPEG marker that has been
+-   * read from the data source, but has not yet been processed.
+-   */
+-  int unread_marker;
+-
+-  /*
+-   * Links to decompression subobjects (methods, private variables of modules)
+-   */
+-  struct jpeg_decomp_master * master;
+-  struct jpeg_d_main_controller * main;
+-  struct jpeg_d_coef_controller * coef;
+-  struct jpeg_d_post_controller * post;
+-  struct jpeg_input_controller * inputctl;
+-  struct jpeg_marker_reader * marker;
+-  struct jpeg_entropy_decoder * entropy;
+-  struct jpeg_inverse_dct * idct;
+-  struct jpeg_upsampler * upsample;
+-  struct jpeg_color_deconverter * cconvert;
+-  struct jpeg_color_quantizer * cquantize;
+-};
+-
+-
+-/* "Object" declarations for JPEG modules that may be supplied or called
+- * directly by the surrounding application.
+- * As with all objects in the JPEG library, these structs only define the
+- * publicly visible methods and state variables of a module.  Additional
+- * private fields may exist after the public ones.
+- */
+-
+-
+-/* Error handler object */
+-
+-struct jpeg_error_mgr {
+-  /* Error exit handler: does not return to caller */
+-  JMETHOD(void, error_exit, (j_common_ptr cinfo));
+-  /* Conditionally emit a trace or warning message */
+-  JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
+-  /* Routine that actually outputs a trace or error message */
+-  JMETHOD(void, output_message, (j_common_ptr cinfo));
+-  /* Format a message string for the most recent JPEG error or message */
+-  JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
+-#define JMSG_LENGTH_MAX  200	/* recommended size of format_message buffer */
+-  /* Reset error state variables at start of a new image */
+-  JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
+-  
+-  /* The message ID code and any parameters are saved here.
+-   * A message can have one string parameter or up to 8 int parameters.
+-   */
+-  int msg_code;
+-#define JMSG_STR_PARM_MAX  80
+-  union {
+-    int i[8];
+-    char s[JMSG_STR_PARM_MAX];
+-  } msg_parm;
+-  
+-  /* Standard state variables for error facility */
+-  
+-  int trace_level;		/* max msg_level that will be displayed */
+-  
+-  /* For recoverable corrupt-data errors, we emit a warning message,
+-   * but keep going unless emit_message chooses to abort.  emit_message
+-   * should count warnings in num_warnings.  The surrounding application
+-   * can check for bad data by seeing if num_warnings is nonzero at the
+-   * end of processing.
+-   */
+-  long num_warnings;		/* number of corrupt-data warnings */
+-
+-  /* These fields point to the table(s) of error message strings.
+-   * An application can change the table pointer to switch to a different
+-   * message list (typically, to change the language in which errors are
+-   * reported).  Some applications may wish to add additional error codes
+-   * that will be handled by the JPEG library error mechanism; the second
+-   * table pointer is used for this purpose.
+-   *
+-   * First table includes all errors generated by JPEG library itself.
+-   * Error code 0 is reserved for a "no such error string" message.
+-   */
+-  const char * const * jpeg_message_table; /* Library errors */
+-  int last_jpeg_message;    /* Table contains strings 0..last_jpeg_message */
+-  /* Second table can be added by application (see cjpeg/djpeg for example).
+-   * It contains strings numbered first_addon_message..last_addon_message.
+-   */
+-  const char * const * addon_message_table; /* Non-library errors */
+-  int first_addon_message;	/* code for first string in addon table */
+-  int last_addon_message;	/* code for last string in addon table */
+-};
+-
+-
+-/* Progress monitor object */
+-
+-struct jpeg_progress_mgr {
+-  JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
+-
+-  long pass_counter;		/* work units completed in this pass */
+-  long pass_limit;		/* total number of work units in this pass */
+-  int completed_passes;		/* passes completed so far */
+-  int total_passes;		/* total number of passes expected */
+-};
+-
+-
+-/* Data destination object for compression */
+-
+-struct jpeg_destination_mgr {
+-  JOCTET * next_output_byte;	/* => next byte to write in buffer */
+-  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
+-
+-  JMETHOD(void, init_destination, (j_compress_ptr cinfo));
+-  JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
+-  JMETHOD(void, term_destination, (j_compress_ptr cinfo));
+-};
+-
+-
+-/* Data source object for decompression */
+-
+-struct jpeg_source_mgr {
+-  const JOCTET * next_input_byte; /* => next byte to read from buffer */
+-  size_t bytes_in_buffer;	/* # of bytes remaining in buffer */
+-
+-  JMETHOD(void, init_source, (j_decompress_ptr cinfo));
+-  JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
+-  JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
+-  JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
+-  JMETHOD(void, term_source, (j_decompress_ptr cinfo));
+-};
+-
+-
+-/* Memory manager object.
+- * Allocates "small" objects (a few K total), "large" objects (tens of K),
+- * and "really big" objects (virtual arrays with backing store if needed).
+- * The memory manager does not allow individual objects to be freed; rather,
+- * each created object is assigned to a pool, and whole pools can be freed
+- * at once.  This is faster and more convenient than remembering exactly what
+- * to free, especially where malloc()/free() are not too speedy.
+- * NB: alloc routines never return NULL.  They exit to error_exit if not
+- * successful.
+- */
+-
+-#define JPOOL_PERMANENT	0	/* lasts until master record is destroyed */
+-#define JPOOL_IMAGE	1	/* lasts until done with image/datastream */
+-#define JPOOL_NUMPOOLS	2
+-
+-typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
+-typedef struct jvirt_barray_control * jvirt_barray_ptr;
+-
+-
+-struct jpeg_memory_mgr {
+-  /* Method pointers */
+-  JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
+-				size_t sizeofobject));
+-  JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
+-				     size_t sizeofobject));
+-  JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
+-				     JDIMENSION samplesperrow,
+-				     JDIMENSION numrows));
+-  JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
+-				      JDIMENSION blocksperrow,
+-				      JDIMENSION numrows));
+-  JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
+-						  int pool_id,
+-						  boolean pre_zero,
+-						  JDIMENSION samplesperrow,
+-						  JDIMENSION numrows,
+-						  JDIMENSION maxaccess));
+-  JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
+-						  int pool_id,
+-						  boolean pre_zero,
+-						  JDIMENSION blocksperrow,
+-						  JDIMENSION numrows,
+-						  JDIMENSION maxaccess));
+-  JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
+-  JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
+-					   jvirt_sarray_ptr ptr,
+-					   JDIMENSION start_row,
+-					   JDIMENSION num_rows,
+-					   boolean writable));
+-  JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
+-					    jvirt_barray_ptr ptr,
+-					    JDIMENSION start_row,
+-					    JDIMENSION num_rows,
+-					    boolean writable));
+-  JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
+-  JMETHOD(void, self_destruct, (j_common_ptr cinfo));
+-
+-  /* Limit on memory allocation for this JPEG object.  (Note that this is
+-   * merely advisory, not a guaranteed maximum; it only affects the space
+-   * used for virtual-array buffers.)  May be changed by outer application
+-   * after creating the JPEG object.
+-   */
+-  long max_memory_to_use;
+-
+-  /* Maximum allocation request accepted by alloc_large. */
+-  long max_alloc_chunk;
+-};
+-
+-
+-/* Routine signature for application-supplied marker processing methods.
+- * Need not pass marker code since it is stored in cinfo->unread_marker.
+- */
+-typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
+-
+-
+-/* Declarations for routines called by application.
+- * The JPP macro hides prototype parameters from compilers that can't cope.
+- * Note JPP requires double parentheses.
+- */
+-
+-#ifdef HAVE_PROTOTYPES
+-#define JPP(arglist)	arglist
+-#else
+-#define JPP(arglist)	()
+-#endif
+-
+-
+-/* Short forms of external names for systems with brain-damaged linkers.
+- * We shorten external names to be unique in the first six letters, which
+- * is good enough for all known systems.
+- * (If your compiler itself needs names to be unique in less than 15 
+- * characters, you are out of luck.  Get a better compiler.)
+- */
+-
+-#ifdef NEED_SHORT_EXTERNAL_NAMES
+-#define jpeg_std_error		jStdError
+-#define jpeg_CreateCompress	jCreaCompress
+-#define jpeg_CreateDecompress	jCreaDecompress
+-#define jpeg_destroy_compress	jDestCompress
+-#define jpeg_destroy_decompress	jDestDecompress
+-#define jpeg_stdio_dest		jStdDest
+-#define jpeg_stdio_src		jStdSrc
+-#define jpeg_set_defaults	jSetDefaults
+-#define jpeg_set_colorspace	jSetColorspace
+-#define jpeg_default_colorspace	jDefColorspace
+-#define jpeg_set_quality	jSetQuality
+-#define jpeg_set_linear_quality	jSetLQuality
+-#define jpeg_add_quant_table	jAddQuantTable
+-#define jpeg_quality_scaling	jQualityScaling
+-#define jpeg_simple_progression	jSimProgress
+-#define jpeg_suppress_tables	jSuppressTables
+-#define jpeg_alloc_quant_table	jAlcQTable
+-#define jpeg_alloc_huff_table	jAlcHTable
+-#define jpeg_start_compress	jStrtCompress
+-#define jpeg_write_scanlines	jWrtScanlines
+-#define jpeg_finish_compress	jFinCompress
+-#define jpeg_write_raw_data	jWrtRawData
+-#define jpeg_write_marker	jWrtMarker
+-#define jpeg_write_m_header	jWrtMHeader
+-#define jpeg_write_m_byte	jWrtMByte
+-#define jpeg_write_tables	jWrtTables
+-#define jpeg_read_header	jReadHeader
+-#define jpeg_start_decompress	jStrtDecompress
+-#define jpeg_read_scanlines	jReadScanlines
+-#define jpeg_finish_decompress	jFinDecompress
+-#define jpeg_read_raw_data	jReadRawData
+-#define jpeg_has_multiple_scans	jHasMultScn
+-#define jpeg_start_output	jStrtOutput
+-#define jpeg_finish_output	jFinOutput
+-#define jpeg_input_complete	jInComplete
+-#define jpeg_new_colormap	jNewCMap
+-#define jpeg_consume_input	jConsumeInput
+-#define jpeg_calc_output_dimensions	jCalcDimensions
+-#define jpeg_save_markers	jSaveMarkers
+-#define jpeg_set_marker_processor	jSetMarker
+-#define jpeg_read_coefficients	jReadCoefs
+-#define jpeg_write_coefficients	jWrtCoefs
+-#define jpeg_copy_critical_parameters	jCopyCrit
+-#define jpeg_abort_compress	jAbrtCompress
+-#define jpeg_abort_decompress	jAbrtDecompress
+-#define jpeg_abort		jAbort
+-#define jpeg_destroy		jDestroy
+-#define jpeg_resync_to_restart	jResyncRestart
+-#endif /* NEED_SHORT_EXTERNAL_NAMES */
+-
+-
+-/* Default error-management setup */
+-EXTERN(struct jpeg_error_mgr *) jpeg_std_error
+-	JPP((struct jpeg_error_mgr * err));
+-
+-/* Initialization of JPEG compression objects.
+- * jpeg_create_compress() and jpeg_create_decompress() are the exported
+- * names that applications should call.  These expand to calls on
+- * jpeg_CreateCompress and jpeg_CreateDecompress with additional information
+- * passed for version mismatch checking.
+- * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
+- */
+-#define jpeg_create_compress(cinfo) \
+-    jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
+-			(size_t) sizeof(struct jpeg_compress_struct))
+-#define jpeg_create_decompress(cinfo) \
+-    jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
+-			  (size_t) sizeof(struct jpeg_decompress_struct))
+-EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
+-				      int version, size_t structsize));
+-EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
+-					int version, size_t structsize));
+-/* Destruction of JPEG compression objects */
+-EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
+-EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
+-
+-/* Standard data source and destination managers: stdio streams. */
+-/* Caller is responsible for opening the file before and closing after. */
+-EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
+-EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
+-
+-/* Default parameter setup for compression */
+-EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
+-/* Compression parameter setup aids */
+-EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
+-				      J_COLOR_SPACE colorspace));
+-EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
+-EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
+-				   boolean force_baseline));
+-EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
+-					  int scale_factor,
+-					  boolean force_baseline));
+-EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
+-				       const unsigned int *basic_table,
+-				       int scale_factor,
+-				       boolean force_baseline));
+-EXTERN(int) jpeg_quality_scaling JPP((int quality));
+-EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
+-EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
+-				       boolean suppress));
+-EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
+-EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
+-
+-/* Main entry points for compression */
+-EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
+-				      boolean write_all_tables));
+-EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
+-					     JSAMPARRAY scanlines,
+-					     JDIMENSION num_lines));
+-EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
+-
+-/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
+-EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
+-					    JSAMPIMAGE data,
+-					    JDIMENSION num_lines));
+-
+-/* Write a special marker.  See libjpeg.doc concerning safe usage. */
+-EXTERN(void) jpeg_write_marker
+-	JPP((j_compress_ptr cinfo, int marker,
+-	     const JOCTET * dataptr, unsigned int datalen));
+-/* Same, but piecemeal. */
+-EXTERN(void) jpeg_write_m_header
+-	JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
+-EXTERN(void) jpeg_write_m_byte
+-	JPP((j_compress_ptr cinfo, int val));
+-
+-/* Alternate compression function: just write an abbreviated table file */
+-EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
+-
+-/* Decompression startup: read start of JPEG datastream to see what's there */
+-EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
+-				  boolean require_image));
+-/* Return value is one of: */
+-#define JPEG_SUSPENDED		0 /* Suspended due to lack of input data */
+-#define JPEG_HEADER_OK		1 /* Found valid image datastream */
+-#define JPEG_HEADER_TABLES_ONLY	2 /* Found valid table-specs-only datastream */
+-/* If you pass require_image = TRUE (normal case), you need not check for
+- * a TABLES_ONLY return code; an abbreviated file will cause an error exit.
+- * JPEG_SUSPENDED is only possible if you use a data source module that can
+- * give a suspension return (the stdio source module doesn't).
+- */
+-
+-/* Main entry points for decompression */
+-EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
+-EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
+-					    JSAMPARRAY scanlines,
+-					    JDIMENSION max_lines));
+-EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
+-
+-/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
+-EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
+-					   JSAMPIMAGE data,
+-					   JDIMENSION max_lines));
+-
+-/* Additional entry points for buffered-image mode. */
+-EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
+-EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
+-				       int scan_number));
+-EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
+-EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
+-EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
+-/* Return value is one of: */
+-/* #define JPEG_SUSPENDED	0    Suspended due to lack of input data */
+-#define JPEG_REACHED_SOS	1 /* Reached start of new scan */
+-#define JPEG_REACHED_EOI	2 /* Reached end of image */
+-#define JPEG_ROW_COMPLETED	3 /* Completed one iMCU row */
+-#define JPEG_SCAN_COMPLETED	4 /* Completed last iMCU row of a scan */
+-
+-/* Precalculate output dimensions for current decompression parameters. */
+-EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
+-
+-/* Control saving of COM and APPn markers into marker_list. */
+-EXTERN(void) jpeg_save_markers
+-	JPP((j_decompress_ptr cinfo, int marker_code,
+-	     unsigned int length_limit));
+-
+-/* Install a special processing method for COM or APPn markers. */
+-EXTERN(void) jpeg_set_marker_processor
+-	JPP((j_decompress_ptr cinfo, int marker_code,
+-	     jpeg_marker_parser_method routine));
+-
+-/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
+-EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
+-EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
+-					  jvirt_barray_ptr * coef_arrays));
+-EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
+-						j_compress_ptr dstinfo));
+-
+-/* If you choose to abort compression or decompression before completing
+- * jpeg_finish_(de)compress, then you need to clean up to release memory,
+- * temporary files, etc.  You can just call jpeg_destroy_(de)compress
+- * if you're done with the JPEG object, but if you want to clean it up and
+- * reuse it, call this:
+- */
+-EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
+-EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
+-
+-/* Generic versions of jpeg_abort and jpeg_destroy that work on either
+- * flavor of JPEG object.  These may be more convenient in some places.
+- */
+-EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
+-EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
+-
+-/* Default restart-marker-resync procedure for use by data source modules */
+-EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
+-					    int desired));
+-
+-
+-/* These marker codes are exported since applications and data source modules
+- * are likely to want to use them.
+- */
+-
+-#define JPEG_RST0	0xD0	/* RST0 marker code */
+-#define JPEG_EOI	0xD9	/* EOI marker code */
+-#define JPEG_APP0	0xE0	/* APP0 marker code */
+-#define JPEG_COM	0xFE	/* COM marker code */
+-
+-
+-/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
+- * for structure definitions that are never filled in, keep it quiet by
+- * supplying dummy definitions for the various substructures.
+- */
+-
+-#ifdef INCOMPLETE_TYPES_BROKEN
+-#ifndef JPEG_INTERNALS		/* will be defined in jpegint.h */
+-struct jvirt_sarray_control { long dummy; };
+-struct jvirt_barray_control { long dummy; };
+-struct jpeg_comp_master { long dummy; };
+-struct jpeg_c_main_controller { long dummy; };
+-struct jpeg_c_prep_controller { long dummy; };
+-struct jpeg_c_coef_controller { long dummy; };
+-struct jpeg_marker_writer { long dummy; };
+-struct jpeg_color_converter { long dummy; };
+-struct jpeg_downsampler { long dummy; };
+-struct jpeg_forward_dct { long dummy; };
+-struct jpeg_entropy_encoder { long dummy; };
+-struct jpeg_decomp_master { long dummy; };
+-struct jpeg_d_main_controller { long dummy; };
+-struct jpeg_d_coef_controller { long dummy; };
+-struct jpeg_d_post_controller { long dummy; };
+-struct jpeg_input_controller { long dummy; };
+-struct jpeg_marker_reader { long dummy; };
+-struct jpeg_entropy_decoder { long dummy; };
+-struct jpeg_inverse_dct { long dummy; };
+-struct jpeg_upsampler { long dummy; };
+-struct jpeg_color_deconverter { long dummy; };
+-struct jpeg_color_quantizer { long dummy; };
+-#endif /* JPEG_INTERNALS */
+-#endif /* INCOMPLETE_TYPES_BROKEN */
+-
+-
+-/*
+- * The JPEG library modules define JPEG_INTERNALS before including this file.
+- * The internal structure declarations are read only when that is true.
+- * Applications using the library should not include jpegint.h, but may wish
+- * to include jerror.h.
+- */
+-
+-#ifdef JPEG_INTERNALS
+-#include "jpegint.h"		/* fetch private declarations */
+-#include "jerror.h"		/* fetch error codes too */
+-#endif
+-
+-#endif /* JPEGLIB_H */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jquant1.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jquant1.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jquant1.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jquant1.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,860 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jquant1.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains 1-pass color quantization (color mapping) routines.
+- * These routines provide mapping to a fixed color map using equally spaced
+- * color values.  Optional Floyd-Steinberg or ordered dithering is available.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-#ifdef QUANT_1PASS_SUPPORTED
+-
+-
+-/*
+- * The main purpose of 1-pass quantization is to provide a fast, if not very
+- * high quality, colormapped output capability.  A 2-pass quantizer usually
+- * gives better visual quality; however, for quantized grayscale output this
+- * quantizer is perfectly adequate.  Dithering is highly recommended with this
+- * quantizer, though you can turn it off if you really want to.
+- *
+- * In 1-pass quantization the colormap must be chosen in advance of seeing the
+- * image.  We use a map consisting of all combinations of Ncolors[i] color
+- * values for the i'th component.  The Ncolors[] values are chosen so that
+- * their product, the total number of colors, is no more than that requested.
+- * (In most cases, the product will be somewhat less.)
+- *
+- * Since the colormap is orthogonal, the representative value for each color
+- * component can be determined without considering the other components;
+- * then these indexes can be combined into a colormap index by a standard
+- * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
+- * can be precalculated and stored in the lookup table colorindex[].
+- * colorindex[i][j] maps pixel value j in component i to the nearest
+- * representative value (grid plane) for that component; this index is
+- * multiplied by the array stride for component i, so that the
+- * index of the colormap entry closest to a given pixel value is just
+- *    sum( colorindex[component-number][pixel-component-value] )
+- * Aside from being fast, this scheme allows for variable spacing between
+- * representative values with no additional lookup cost.
+- *
+- * If gamma correction has been applied in color conversion, it might be wise
+- * to adjust the color grid spacing so that the representative colors are
+- * equidistant in linear space.  At this writing, gamma correction is not
+- * implemented by jdcolor, so nothing is done here.
+- */
+-
+-
+-/* Declarations for ordered dithering.
+- *
+- * We use a standard 16x16 ordered dither array.  The basic concept of ordered
+- * dithering is described in many references, for instance Dale Schumacher's
+- * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
+- * In place of Schumacher's comparisons against a "threshold" value, we add a
+- * "dither" value to the input pixel and then round the result to the nearest
+- * output value.  The dither value is equivalent to (0.5 - threshold) times
+- * the distance between output values.  For ordered dithering, we assume that
+- * the output colors are equally spaced; if not, results will probably be
+- * worse, since the dither may be too much or too little at a given point.
+- *
+- * The normal calculation would be to form pixel value + dither, range-limit
+- * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
+- * We can skip the separate range-limiting step by extending the colorindex
+- * table in both directions.
+- */
+-
+-#define ODITHER_SIZE  16	/* dimension of dither matrix */
+-/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
+-#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
+-#define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
+-
+-typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
+-typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
+-
+-static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
+-  /* Bayer's order-4 dither array.  Generated by the code given in
+-   * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
+-   * The values in this array must range from 0 to ODITHER_CELLS-1.
+-   */
+-  {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
+-  { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
+-  {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
+-  { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
+-  {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
+-  { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
+-  {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
+-  { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
+-  {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
+-  { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
+-  {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
+-  { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
+-  {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
+-  { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
+-  {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
+-  { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
+-};
+-
+-
+-/* Declarations for Floyd-Steinberg dithering.
+- *
+- * Errors are accumulated into the array fserrors[], at a resolution of
+- * 1/16th of a pixel count.  The error at a given pixel is propagated
+- * to its not-yet-processed neighbors using the standard F-S fractions,
+- *		...	(here)	7/16
+- *		3/16	5/16	1/16
+- * We work left-to-right on even rows, right-to-left on odd rows.
+- *
+- * We can get away with a single array (holding one row's worth of errors)
+- * by using it to store the current row's errors at pixel columns not yet
+- * processed, but the next row's errors at columns already processed.  We
+- * need only a few extra variables to hold the errors immediately around the
+- * current column.  (If we are lucky, those variables are in registers, but
+- * even if not, they're probably cheaper to access than array elements are.)
+- *
+- * The fserrors[] array is indexed [component#][position].
+- * We provide (#columns + 2) entries per component; the extra entry at each
+- * end saves us from special-casing the first and last pixels.
+- *
+- * Note: on a wide image, we might not have enough room in a PC's near data
+- * segment to hold the error array; so it is allocated with alloc_large.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-typedef INT16 FSERROR;		/* 16 bits should be enough */
+-typedef int LOCFSERROR;		/* use 'int' for calculation temps */
+-#else
+-typedef INT32 FSERROR;		/* may need more than 16 bits */
+-typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
+-#endif
+-
+-typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
+-
+-
+-/* Private subobject */
+-
+-#define MAX_Q_COMPS 4		/* max components I can handle */
+-
+-typedef struct {
+-  struct jpeg_color_quantizer pub; /* public fields */
+-
+-  /* Initially allocated colormap is saved here */
+-  JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
+-  int sv_actual;		/* number of entries in use */
+-
+-  JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
+-  /* colorindex[i][j] = index of color closest to pixel value j in component i,
+-   * premultiplied as described above.  Since colormap indexes must fit into
+-   * JSAMPLEs, the entries of this array will too.
+-   */
+-  boolean is_padded;		/* is the colorindex padded for odither? */
+-
+-  int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
+-
+-  /* Variables for ordered dithering */
+-  int row_index;		/* cur row's vertical index in dither matrix */
+-  ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
+-
+-  /* Variables for Floyd-Steinberg dithering */
+-  FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
+-  boolean on_odd_row;		/* flag to remember which row we are on */
+-} my_cquantizer;
+-
+-typedef my_cquantizer * my_cquantize_ptr;
+-
+-
+-/*
+- * Policy-making subroutines for create_colormap and create_colorindex.
+- * These routines determine the colormap to be used.  The rest of the module
+- * only assumes that the colormap is orthogonal.
+- *
+- *  * select_ncolors decides how to divvy up the available colors
+- *    among the components.
+- *  * output_value defines the set of representative values for a component.
+- *  * largest_input_value defines the mapping from input values to
+- *    representative values for a component.
+- * Note that the latter two routines may impose different policies for
+- * different components, though this is not currently done.
+- */
+-
+-
+-LOCAL(int)
+-select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
+-/* Determine allocation of desired colors to components, */
+-/* and fill in Ncolors[] array to indicate choice. */
+-/* Return value is total number of colors (product of Ncolors[] values). */
+-{
+-  int nc = cinfo->out_color_components; /* number of color components */
+-  int max_colors = cinfo->desired_number_of_colors;
+-  int total_colors, iroot, i, j;
+-  boolean changed;
+-  long temp;
+-  static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
+-
+-  /* We can allocate at least the nc'th root of max_colors per component. */
+-  /* Compute floor(nc'th root of max_colors). */
+-  iroot = 1;
+-  do {
+-    iroot++;
+-    temp = iroot;		/* set temp = iroot ** nc */
+-    for (i = 1; i < nc; i++)
+-      temp *= iroot;
+-  } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
+-  iroot--;			/* now iroot = floor(root) */
+-
+-  /* Must have at least 2 color values per component */
+-  if (iroot < 2)
+-    ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
+-
+-  /* Initialize to iroot color values for each component */
+-  total_colors = 1;
+-  for (i = 0; i < nc; i++) {
+-    Ncolors[i] = iroot;
+-    total_colors *= iroot;
+-  }
+-  /* We may be able to increment the count for one or more components without
+-   * exceeding max_colors, though we know not all can be incremented.
+-   * Sometimes, the first component can be incremented more than once!
+-   * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
+-   * In RGB colorspace, try to increment G first, then R, then B.
+-   */
+-  do {
+-    changed = FALSE;
+-    for (i = 0; i < nc; i++) {
+-      j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
+-      /* calculate new total_colors if Ncolors[j] is incremented */
+-      temp = total_colors / Ncolors[j];
+-      temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
+-      if (temp > (long) max_colors)
+-	break;			/* won't fit, done with this pass */
+-      Ncolors[j]++;		/* OK, apply the increment */
+-      total_colors = (int) temp;
+-      changed = TRUE;
+-    }
+-  } while (changed);
+-
+-  return total_colors;
+-}
+-
+-
+-LOCAL(int)
+-output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+-/* Return j'th output value, where j will range from 0 to maxj */
+-/* The output values must fall in 0..MAXJSAMPLE in increasing order */
+-{
+-  /* We always provide values 0 and MAXJSAMPLE for each component;
+-   * any additional values are equally spaced between these limits.
+-   * (Forcing the upper and lower values to the limits ensures that
+-   * dithering can't produce a color outside the selected gamut.)
+-   */
+-  return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
+-}
+-
+-
+-LOCAL(int)
+-largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
+-/* Return largest input value that should map to j'th output value */
+-/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
+-{
+-  /* Breakpoints are halfway between values returned by output_value */
+-  return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
+-}
+-
+-
+-/*
+- * Create the colormap.
+- */
+-
+-LOCAL(void)
+-create_colormap (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  JSAMPARRAY colormap;		/* Created colormap */
+-  int total_colors;		/* Number of distinct output colors */
+-  int i,j,k, nci, blksize, blkdist, ptr, val;
+-
+-  /* Select number of colors for each component */
+-  total_colors = select_ncolors(cinfo, cquantize->Ncolors);
+-
+-  /* Report selected color counts */
+-  if (cinfo->out_color_components == 3)
+-    TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
+-	     total_colors, cquantize->Ncolors[0],
+-	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
+-  else
+-    TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
+-
+-  /* Allocate and fill in the colormap. */
+-  /* The colors are ordered in the map in standard row-major order, */
+-  /* i.e. rightmost (highest-indexed) color changes most rapidly. */
+-
+-  colormap = (*cinfo->mem->alloc_sarray)
+-    ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-     (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
+-
+-  /* blksize is number of adjacent repeated entries for a component */
+-  /* blkdist is distance between groups of identical entries for a component */
+-  blkdist = total_colors;
+-
+-  for (i = 0; i < cinfo->out_color_components; i++) {
+-    /* fill in colormap entries for i'th color component */
+-    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+-    blksize = blkdist / nci;
+-    for (j = 0; j < nci; j++) {
+-      /* Compute j'th output value (out of nci) for component */
+-      val = output_value(cinfo, i, j, nci-1);
+-      /* Fill in all colormap entries that have this value of this component */
+-      for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
+-	/* fill in blksize entries beginning at ptr */
+-	for (k = 0; k < blksize; k++)
+-	  colormap[i][ptr+k] = (JSAMPLE) val;
+-      }
+-    }
+-    blkdist = blksize;		/* blksize of this color is blkdist of next */
+-  }
+-
+-  /* Save the colormap in private storage,
+-   * where it will survive color quantization mode changes.
+-   */
+-  cquantize->sv_colormap = colormap;
+-  cquantize->sv_actual = total_colors;
+-}
+-
+-
+-/*
+- * Create the color index table.
+- */
+-
+-LOCAL(void)
+-create_colorindex (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  JSAMPROW indexptr;
+-  int i,j,k, nci, blksize, val, pad;
+-
+-  /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
+-   * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
+-   * This is not necessary in the other dithering modes.  However, we
+-   * flag whether it was done in case user changes dithering mode.
+-   */
+-  if (cinfo->dither_mode == JDITHER_ORDERED) {
+-    pad = MAXJSAMPLE*2;
+-    cquantize->is_padded = TRUE;
+-  } else {
+-    pad = 0;
+-    cquantize->is_padded = FALSE;
+-  }
+-
+-  cquantize->colorindex = (*cinfo->mem->alloc_sarray)
+-    ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-     (JDIMENSION) (MAXJSAMPLE+1 + pad),
+-     (JDIMENSION) cinfo->out_color_components);
+-
+-  /* blksize is number of adjacent repeated entries for a component */
+-  blksize = cquantize->sv_actual;
+-
+-  for (i = 0; i < cinfo->out_color_components; i++) {
+-    /* fill in colorindex entries for i'th color component */
+-    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+-    blksize = blksize / nci;
+-
+-    /* adjust colorindex pointers to provide padding at negative indexes. */
+-    if (pad)
+-      cquantize->colorindex[i] += MAXJSAMPLE;
+-
+-    /* in loop, val = index of current output value, */
+-    /* and k = largest j that maps to current val */
+-    indexptr = cquantize->colorindex[i];
+-    val = 0;
+-    k = largest_input_value(cinfo, i, 0, nci-1);
+-    for (j = 0; j <= MAXJSAMPLE; j++) {
+-      while (j > k)		/* advance val if past boundary */
+-	k = largest_input_value(cinfo, i, ++val, nci-1);
+-      /* premultiply so that no multiplication needed in main processing */
+-      indexptr[j] = (JSAMPLE) (val * blksize);
+-    }
+-    /* Pad at both ends if necessary */
+-    if (pad)
+-      for (j = 1; j <= MAXJSAMPLE; j++) {
+-	indexptr[-j] = indexptr[0];
+-	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
+-      }
+-  }
+-}
+-
+-
+-/*
+- * Create an ordered-dither array for a component having ncolors
+- * distinct output values.
+- */
+-
+-LOCAL(ODITHER_MATRIX_PTR)
+-make_odither_array (j_decompress_ptr cinfo, int ncolors)
+-{
+-  ODITHER_MATRIX_PTR odither;
+-  int j,k;
+-  INT32 num,den;
+-
+-  odither = (ODITHER_MATRIX_PTR)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(ODITHER_MATRIX));
+-  /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
+-   * Hence the dither value for the matrix cell with fill order f
+-   * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
+-   * On 16-bit-int machine, be careful to avoid overflow.
+-   */
+-  den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
+-  for (j = 0; j < ODITHER_SIZE; j++) {
+-    for (k = 0; k < ODITHER_SIZE; k++) {
+-      num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
+-	    * MAXJSAMPLE;
+-      /* Ensure round towards zero despite C's lack of consistency
+-       * about rounding negative values in integer division...
+-       */
+-      odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
+-    }
+-  }
+-  return odither;
+-}
+-
+-
+-/*
+- * Create the ordered-dither tables.
+- * Components having the same number of representative colors may 
+- * share a dither table.
+- */
+-
+-LOCAL(void)
+-create_odither_tables (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  ODITHER_MATRIX_PTR odither;
+-  int i, j, nci;
+-
+-  for (i = 0; i < cinfo->out_color_components; i++) {
+-    nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
+-    odither = NULL;		/* search for matching prior component */
+-    for (j = 0; j < i; j++) {
+-      if (nci == cquantize->Ncolors[j]) {
+-	odither = cquantize->odither[j];
+-	break;
+-      }
+-    }
+-    if (odither == NULL)	/* need a new table? */
+-      odither = make_odither_array(cinfo, nci);
+-    cquantize->odither[i] = odither;
+-  }
+-}
+-
+-
+-/*
+- * Map some rows of pixels to the output colormapped representation.
+- */
+-
+-METHODDEF(void)
+-color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		JSAMPARRAY output_buf, int num_rows)
+-/* General case, no dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  JSAMPARRAY colorindex = cquantize->colorindex;
+-  register int pixcode, ci;
+-  register JSAMPROW ptrin, ptrout;
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-  register int nc = cinfo->out_color_components;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    ptrin = input_buf[row];
+-    ptrout = output_buf[row];
+-    for (col = width; col > 0; col--) {
+-      pixcode = 0;
+-      for (ci = 0; ci < nc; ci++) {
+-	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
+-      }
+-      *ptrout++ = (JSAMPLE) pixcode;
+-    }
+-  }
+-}
+-
+-
+-METHODDEF(void)
+-color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		 JSAMPARRAY output_buf, int num_rows)
+-/* Fast path for out_color_components==3, no dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  register int pixcode;
+-  register JSAMPROW ptrin, ptrout;
+-  JSAMPROW colorindex0 = cquantize->colorindex[0];
+-  JSAMPROW colorindex1 = cquantize->colorindex[1];
+-  JSAMPROW colorindex2 = cquantize->colorindex[2];
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    ptrin = input_buf[row];
+-    ptrout = output_buf[row];
+-    for (col = width; col > 0; col--) {
+-      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
+-      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
+-      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
+-      *ptrout++ = (JSAMPLE) pixcode;
+-    }
+-  }
+-}
+-
+-
+-METHODDEF(void)
+-quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		     JSAMPARRAY output_buf, int num_rows)
+-/* General case, with ordered dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  register JSAMPROW input_ptr;
+-  register JSAMPROW output_ptr;
+-  JSAMPROW colorindex_ci;
+-  int * dither;			/* points to active row of dither matrix */
+-  int row_index, col_index;	/* current indexes into dither matrix */
+-  int nc = cinfo->out_color_components;
+-  int ci;
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    /* Initialize output values to 0 so can process components separately */
+-    jzero_far((void FAR *) output_buf[row],
+-	      (size_t) (width * SIZEOF(JSAMPLE)));
+-    row_index = cquantize->row_index;
+-    for (ci = 0; ci < nc; ci++) {
+-      input_ptr = input_buf[row] + ci;
+-      output_ptr = output_buf[row];
+-      colorindex_ci = cquantize->colorindex[ci];
+-      dither = cquantize->odither[ci][row_index];
+-      col_index = 0;
+-
+-      for (col = width; col > 0; col--) {
+-	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
+-	 * select output value, accumulate into output code for this pixel.
+-	 * Range-limiting need not be done explicitly, as we have extended
+-	 * the colorindex table to produce the right answers for out-of-range
+-	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
+-	 * required amount of padding.
+-	 */
+-	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
+-	input_ptr += nc;
+-	output_ptr++;
+-	col_index = (col_index + 1) & ODITHER_MASK;
+-      }
+-    }
+-    /* Advance row index for next row */
+-    row_index = (row_index + 1) & ODITHER_MASK;
+-    cquantize->row_index = row_index;
+-  }
+-}
+-
+-
+-METHODDEF(void)
+-quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		      JSAMPARRAY output_buf, int num_rows)
+-/* Fast path for out_color_components==3, with ordered dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  register int pixcode;
+-  register JSAMPROW input_ptr;
+-  register JSAMPROW output_ptr;
+-  JSAMPROW colorindex0 = cquantize->colorindex[0];
+-  JSAMPROW colorindex1 = cquantize->colorindex[1];
+-  JSAMPROW colorindex2 = cquantize->colorindex[2];
+-  int * dither0;		/* points to active row of dither matrix */
+-  int * dither1;
+-  int * dither2;
+-  int row_index, col_index;	/* current indexes into dither matrix */
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    row_index = cquantize->row_index;
+-    input_ptr = input_buf[row];
+-    output_ptr = output_buf[row];
+-    dither0 = cquantize->odither[0][row_index];
+-    dither1 = cquantize->odither[1][row_index];
+-    dither2 = cquantize->odither[2][row_index];
+-    col_index = 0;
+-
+-    for (col = width; col > 0; col--) {
+-      pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
+-					dither0[col_index]]);
+-      pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
+-					dither1[col_index]]);
+-      pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
+-					dither2[col_index]]);
+-      *output_ptr++ = (JSAMPLE) pixcode;
+-      col_index = (col_index + 1) & ODITHER_MASK;
+-    }
+-    row_index = (row_index + 1) & ODITHER_MASK;
+-    cquantize->row_index = row_index;
+-  }
+-}
+-
+-
+-METHODDEF(void)
+-quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		    JSAMPARRAY output_buf, int num_rows)
+-/* General case, with Floyd-Steinberg dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  register LOCFSERROR cur;	/* current error or pixel value */
+-  LOCFSERROR belowerr;		/* error for pixel below cur */
+-  LOCFSERROR bpreverr;		/* error for below/prev col */
+-  LOCFSERROR bnexterr;		/* error for below/next col */
+-  LOCFSERROR delta;
+-  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
+-  register JSAMPROW input_ptr;
+-  register JSAMPROW output_ptr;
+-  JSAMPROW colorindex_ci;
+-  JSAMPROW colormap_ci;
+-  int pixcode;
+-  int nc = cinfo->out_color_components;
+-  int dir;			/* 1 for left-to-right, -1 for right-to-left */
+-  int dirnc;			/* dir * nc */
+-  int ci;
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-  JSAMPLE *range_limit = cinfo->sample_range_limit;
+-  SHIFT_TEMPS
+-
+-  for (row = 0; row < num_rows; row++) {
+-    /* Initialize output values to 0 so can process components separately */
+-    jzero_far((void FAR *) output_buf[row],
+-	      (size_t) (width * SIZEOF(JSAMPLE)));
+-    for (ci = 0; ci < nc; ci++) {
+-      input_ptr = input_buf[row] + ci;
+-      output_ptr = output_buf[row];
+-      if (cquantize->on_odd_row) {
+-	/* work right to left in this row */
+-	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
+-	output_ptr += width-1;
+-	dir = -1;
+-	dirnc = -nc;
+-	errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
+-      } else {
+-	/* work left to right in this row */
+-	dir = 1;
+-	dirnc = nc;
+-	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
+-      }
+-      colorindex_ci = cquantize->colorindex[ci];
+-      colormap_ci = cquantize->sv_colormap[ci];
+-      /* Preset error values: no error propagated to first pixel from left */
+-      cur = 0;
+-      /* and no error propagated to row below yet */
+-      belowerr = bpreverr = 0;
+-
+-      for (col = width; col > 0; col--) {
+-	/* cur holds the error propagated from the previous pixel on the
+-	 * current line.  Add the error propagated from the previous line
+-	 * to form the complete error correction term for this pixel, and
+-	 * round the error term (which is expressed * 16) to an integer.
+-	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+-	 * for either sign of the error value.
+-	 * Note: errorptr points to *previous* column's array entry.
+-	 */
+-	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
+-	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+-	 * The maximum error is +- MAXJSAMPLE; this sets the required size
+-	 * of the range_limit array.
+-	 */
+-	cur += GETJSAMPLE(*input_ptr);
+-	cur = GETJSAMPLE(range_limit[cur]);
+-	/* Select output value, accumulate into output code for this pixel */
+-	pixcode = GETJSAMPLE(colorindex_ci[cur]);
+-	*output_ptr += (JSAMPLE) pixcode;
+-	/* Compute actual representation error at this pixel */
+-	/* Note: we can do this even though we don't have the final */
+-	/* pixel code, because the colormap is orthogonal. */
+-	cur -= GETJSAMPLE(colormap_ci[pixcode]);
+-	/* Compute error fractions to be propagated to adjacent pixels.
+-	 * Add these into the running sums, and simultaneously shift the
+-	 * next-line error sums left by 1 column.
+-	 */
+-	bnexterr = cur;
+-	delta = cur * 2;
+-	cur += delta;		/* form error * 3 */
+-	errorptr[0] = (FSERROR) (bpreverr + cur);
+-	cur += delta;		/* form error * 5 */
+-	bpreverr = belowerr + cur;
+-	belowerr = bnexterr;
+-	cur += delta;		/* form error * 7 */
+-	/* At this point cur contains the 7/16 error value to be propagated
+-	 * to the next pixel on the current line, and all the errors for the
+-	 * next line have been shifted over. We are therefore ready to move on.
+-	 */
+-	input_ptr += dirnc;	/* advance input ptr to next column */
+-	output_ptr += dir;	/* advance output ptr to next column */
+-	errorptr += dir;	/* advance errorptr to current column */
+-      }
+-      /* Post-loop cleanup: we must unload the final error value into the
+-       * final fserrors[] entry.  Note we need not unload belowerr because
+-       * it is for the dummy column before or after the actual array.
+-       */
+-      errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
+-    }
+-    cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
+-  }
+-}
+-
+-
+-/*
+- * Allocate workspace for Floyd-Steinberg errors.
+- */
+-
+-LOCAL(void)
+-alloc_fs_workspace (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  size_t arraysize;
+-  int i;
+-
+-  arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+-  for (i = 0; i < cinfo->out_color_components; i++) {
+-    cquantize->fserrors[i] = (FSERRPTR)
+-      (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+-  }
+-}
+-
+-
+-/*
+- * Initialize for one-pass color quantization.
+- */
+-
+-METHODDEF(void)
+-start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  size_t arraysize;
+-  int i;
+-
+-  /* Install my colormap. */
+-  cinfo->colormap = cquantize->sv_colormap;
+-  cinfo->actual_number_of_colors = cquantize->sv_actual;
+-
+-  /* Initialize for desired dithering mode. */
+-  switch (cinfo->dither_mode) {
+-  case JDITHER_NONE:
+-    if (cinfo->out_color_components == 3)
+-      cquantize->pub.color_quantize = color_quantize3;
+-    else
+-      cquantize->pub.color_quantize = color_quantize;
+-    break;
+-  case JDITHER_ORDERED:
+-    if (cinfo->out_color_components == 3)
+-      cquantize->pub.color_quantize = quantize3_ord_dither;
+-    else
+-      cquantize->pub.color_quantize = quantize_ord_dither;
+-    cquantize->row_index = 0;	/* initialize state for ordered dither */
+-    /* If user changed to ordered dither from another mode,
+-     * we must recreate the color index table with padding.
+-     * This will cost extra space, but probably isn't very likely.
+-     */
+-    if (! cquantize->is_padded)
+-      create_colorindex(cinfo);
+-    /* Create ordered-dither tables if we didn't already. */
+-    if (cquantize->odither[0] == NULL)
+-      create_odither_tables(cinfo);
+-    break;
+-  case JDITHER_FS:
+-    cquantize->pub.color_quantize = quantize_fs_dither;
+-    cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
+-    /* Allocate Floyd-Steinberg workspace if didn't already. */
+-    if (cquantize->fserrors[0] == NULL)
+-      alloc_fs_workspace(cinfo);
+-    /* Initialize the propagated errors to zero. */
+-    arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
+-    for (i = 0; i < cinfo->out_color_components; i++)
+-      jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
+-    break;
+-  default:
+-    ERREXIT(cinfo, JERR_NOT_COMPILED);
+-    break;
+-  }
+-}
+-
+-
+-/*
+- * Finish up at the end of the pass.
+- */
+-
+-METHODDEF(void)
+-finish_pass_1_quant (j_decompress_ptr cinfo)
+-{
+-  /* no work in 1-pass case */
+-}
+-
+-
+-/*
+- * Switch to a new external colormap between output passes.
+- * Shouldn't get to this module!
+- */
+-
+-METHODDEF(void)
+-new_color_map_1_quant (j_decompress_ptr cinfo)
+-{
+-  ERREXIT(cinfo, JERR_MODE_CHANGE);
+-}
+-
+-
+-/*
+- * Module initialization routine for 1-pass color quantization.
+- */
+-
+-GLOBAL(void)
+-jinit_1pass_quantizer (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize;
+-
+-  cquantize = (my_cquantize_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_cquantizer));
+-  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+-  cquantize->pub.start_pass = start_pass_1_quant;
+-  cquantize->pub.finish_pass = finish_pass_1_quant;
+-  cquantize->pub.new_color_map = new_color_map_1_quant;
+-  cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
+-  cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
+-
+-  /* Make sure my internal arrays won't overflow */
+-  if (cinfo->out_color_components > MAX_Q_COMPS)
+-    ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
+-  /* Make sure colormap indexes can be represented by JSAMPLEs */
+-  if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
+-    ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
+-
+-  /* Create the colormap and color index table. */
+-  create_colormap(cinfo);
+-  create_colorindex(cinfo);
+-
+-  /* Allocate Floyd-Steinberg workspace now if requested.
+-   * We do this now since it is FAR storage and may affect the memory
+-   * manager's space calculations.  If the user changes to FS dither
+-   * mode in a later pass, we will allocate the space then, and will
+-   * possibly overrun the max_memory_to_use setting.
+-   */
+-  if (cinfo->dither_mode == JDITHER_FS)
+-    alloc_fs_workspace(cinfo);
+-}
+-
+-#endif /* QUANT_1PASS_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jquant2.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jquant2.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jquant2.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jquant2.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,1314 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jquant2.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains 2-pass color quantization (color mapping) routines.
+- * These routines provide selection of a custom color map for an image,
+- * followed by mapping of the image to that color map, with optional
+- * Floyd-Steinberg dithering.
+- * It is also possible to use just the second pass to map to an arbitrary
+- * externally-given color map.
+- *
+- * Note: ordered dithering is not supported, since there isn't any fast
+- * way to compute intercolor distances; it's unclear that ordered dither's
+- * fundamental assumptions even hold with an irregularly spaced color map.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-#ifdef QUANT_2PASS_SUPPORTED
+-
+-
+-/*
+- * This module implements the well-known Heckbert paradigm for color
+- * quantization.  Most of the ideas used here can be traced back to
+- * Heckbert's seminal paper
+- *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
+- *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
+- *
+- * In the first pass over the image, we accumulate a histogram showing the
+- * usage count of each possible color.  To keep the histogram to a reasonable
+- * size, we reduce the precision of the input; typical practice is to retain
+- * 5 or 6 bits per color, so that 8 or 4 different input values are counted
+- * in the same histogram cell.
+- *
+- * Next, the color-selection step begins with a box representing the whole
+- * color space, and repeatedly splits the "largest" remaining box until we
+- * have as many boxes as desired colors.  Then the mean color in each
+- * remaining box becomes one of the possible output colors.
+- * 
+- * The second pass over the image maps each input pixel to the closest output
+- * color (optionally after applying a Floyd-Steinberg dithering correction).
+- * This mapping is logically trivial, but making it go fast enough requires
+- * considerable care.
+- *
+- * Heckbert-style quantizers vary a good deal in their policies for choosing
+- * the "largest" box and deciding where to cut it.  The particular policies
+- * used here have proved out well in experimental comparisons, but better ones
+- * may yet be found.
+- *
+- * In earlier versions of the IJG code, this module quantized in YCbCr color
+- * space, processing the raw upsampled data without a color conversion step.
+- * This allowed the color conversion math to be done only once per colormap
+- * entry, not once per pixel.  However, that optimization precluded other
+- * useful optimizations (such as merging color conversion with upsampling)
+- * and it also interfered with desired capabilities such as quantizing to an
+- * externally-supplied colormap.  We have therefore abandoned that approach.
+- * The present code works in the post-conversion color space, typically RGB.
+- *
+- * To improve the visual quality of the results, we actually work in scaled
+- * RGB space, giving G distances more weight than R, and R in turn more than
+- * B.  To do everything in integer math, we must use integer scale factors.
+- * The 2/3/1 scale factors used here correspond loosely to the relative
+- * weights of the colors in the NTSC grayscale equation.
+- * If you want to use this code to quantize a non-RGB color space, you'll
+- * probably need to change these scale factors.
+- */
+-
+-#define R_SCALE 2		/* scale R distances by this much */
+-#define G_SCALE 3		/* scale G distances by this much */
+-#define B_SCALE 1		/* and B by this much */
+-
+-/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
+- * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
+- * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
+- * you'll get compile errors until you extend this logic.  In that case
+- * you'll probably want to tweak the histogram sizes too.
+- */
+-
+-#if RGB_RED == 0
+-#define C0_SCALE R_SCALE
+-#endif
+-#if RGB_BLUE == 0
+-#define C0_SCALE B_SCALE
+-#endif
+-#if RGB_GREEN == 1
+-#define C1_SCALE G_SCALE
+-#endif
+-#if RGB_RED == 2
+-#define C2_SCALE R_SCALE
+-#endif
+-#if RGB_BLUE == 2
+-#define C2_SCALE B_SCALE
+-#endif
+-
+-
+-/*
+- * First we have the histogram data structure and routines for creating it.
+- *
+- * The number of bits of precision can be adjusted by changing these symbols.
+- * We recommend keeping 6 bits for G and 5 each for R and B.
+- * If you have plenty of memory and cycles, 6 bits all around gives marginally
+- * better results; if you are short of memory, 5 bits all around will save
+- * some space but degrade the results.
+- * To maintain a fully accurate histogram, we'd need to allocate a "long"
+- * (preferably unsigned long) for each cell.  In practice this is overkill;
+- * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
+- * and clamping those that do overflow to the maximum value will give close-
+- * enough results.  This reduces the recommended histogram size from 256Kb
+- * to 128Kb, which is a useful savings on PC-class machines.
+- * (In the second pass the histogram space is re-used for pixel mapping data;
+- * in that capacity, each cell must be able to store zero to the number of
+- * desired colors.  16 bits/cell is plenty for that too.)
+- * Since the JPEG code is intended to run in small memory model on 80x86
+- * machines, we can't just allocate the histogram in one chunk.  Instead
+- * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
+- * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
+- * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
+- * on 80x86 machines, the pointer row is in near memory but the actual
+- * arrays are in far memory (same arrangement as we use for image arrays).
+- */
+-
+-#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
+-
+-/* These will do the right thing for either R,G,B or B,G,R color order,
+- * but you may not like the results for other color orders.
+- */
+-#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
+-#define HIST_C1_BITS  6		/* bits of precision in G histogram */
+-#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
+-
+-/* Number of elements along histogram axes. */
+-#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
+-#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
+-#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
+-
+-/* These are the amounts to shift an input value to get a histogram index. */
+-#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
+-#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
+-#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
+-
+-
+-typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
+-
+-typedef histcell FAR * histptr;	/* for pointers to histogram cells */
+-
+-typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
+-typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
+-typedef hist2d * hist3d;	/* type for top-level pointer */
+-
+-
+-/* Declarations for Floyd-Steinberg dithering.
+- *
+- * Errors are accumulated into the array fserrors[], at a resolution of
+- * 1/16th of a pixel count.  The error at a given pixel is propagated
+- * to its not-yet-processed neighbors using the standard F-S fractions,
+- *		...	(here)	7/16
+- *		3/16	5/16	1/16
+- * We work left-to-right on even rows, right-to-left on odd rows.
+- *
+- * We can get away with a single array (holding one row's worth of errors)
+- * by using it to store the current row's errors at pixel columns not yet
+- * processed, but the next row's errors at columns already processed.  We
+- * need only a few extra variables to hold the errors immediately around the
+- * current column.  (If we are lucky, those variables are in registers, but
+- * even if not, they're probably cheaper to access than array elements are.)
+- *
+- * The fserrors[] array has (#columns + 2) entries; the extra entry at
+- * each end saves us from special-casing the first and last pixels.
+- * Each entry is three values long, one value for each color component.
+- *
+- * Note: on a wide image, we might not have enough room in a PC's near data
+- * segment to hold the error array; so it is allocated with alloc_large.
+- */
+-
+-#if BITS_IN_JSAMPLE == 8
+-typedef INT16 FSERROR;		/* 16 bits should be enough */
+-typedef int LOCFSERROR;		/* use 'int' for calculation temps */
+-#else
+-typedef INT32 FSERROR;		/* may need more than 16 bits */
+-typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
+-#endif
+-
+-typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
+-
+-
+-/* Private subobject */
+-
+-typedef struct {
+-  struct jpeg_color_quantizer pub; /* public fields */
+-
+-  /* Space for the eventually created colormap is stashed here */
+-  JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
+-  int desired;			/* desired # of colors = size of colormap */
+-
+-  /* Variables for accumulating image statistics */
+-  hist3d histogram;		/* pointer to the histogram */
+-
+-  boolean needs_zeroed;		/* TRUE if next pass must zero histogram */
+-
+-  /* Variables for Floyd-Steinberg dithering */
+-  FSERRPTR fserrors;		/* accumulated errors */
+-  boolean on_odd_row;		/* flag to remember which row we are on */
+-  int * error_limiter;		/* table for clamping the applied error */
+-} my_cquantizer;
+-
+-typedef my_cquantizer * my_cquantize_ptr;
+-
+-
+-/*
+- * Prescan some rows of pixels.
+- * In this module the prescan simply updates the histogram, which has been
+- * initialized to zeroes by start_pass.
+- * An output_buf parameter is required by the method signature, but no data
+- * is actually output (in fact the buffer controller is probably passing a
+- * NULL pointer).
+- */
+-
+-METHODDEF(void)
+-prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
+-		  JSAMPARRAY output_buf, int num_rows)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  register JSAMPROW ptr;
+-  register histptr histp;
+-  register hist3d histogram = cquantize->histogram;
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    ptr = input_buf[row];
+-    for (col = width; col > 0; col--) {
+-      /* get pixel value and index into the histogram */
+-      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
+-			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
+-			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
+-      /* increment, check for overflow and undo increment if so. */
+-      if (++(*histp) <= 0)
+-	(*histp)--;
+-      ptr += 3;
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Next we have the really interesting routines: selection of a colormap
+- * given the completed histogram.
+- * These routines work with a list of "boxes", each representing a rectangular
+- * subset of the input color space (to histogram precision).
+- */
+-
+-typedef struct {
+-  /* The bounds of the box (inclusive); expressed as histogram indexes */
+-  int c0min, c0max;
+-  int c1min, c1max;
+-  int c2min, c2max;
+-  /* The volume (actually 2-norm) of the box */
+-  INT32 volume;
+-  /* The number of nonzero histogram cells within this box */
+-  long colorcount;
+-} box;
+-
+-typedef box * boxptr;
+-
+-
+-LOCAL(boxptr)
+-find_biggest_color_pop (boxptr boxlist, int numboxes)
+-/* Find the splittable box with the largest color population */
+-/* Returns NULL if no splittable boxes remain */
+-{
+-  register boxptr boxp;
+-  register int i;
+-  register long maxc = 0;
+-  boxptr which = NULL;
+-  
+-  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+-    if (boxp->colorcount > maxc && boxp->volume > 0) {
+-      which = boxp;
+-      maxc = boxp->colorcount;
+-    }
+-  }
+-  return which;
+-}
+-
+-
+-LOCAL(boxptr)
+-find_biggest_volume (boxptr boxlist, int numboxes)
+-/* Find the splittable box with the largest (scaled) volume */
+-/* Returns NULL if no splittable boxes remain */
+-{
+-  register boxptr boxp;
+-  register int i;
+-  register INT32 maxv = 0;
+-  boxptr which = NULL;
+-  
+-  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
+-    if (boxp->volume > maxv) {
+-      which = boxp;
+-      maxv = boxp->volume;
+-    }
+-  }
+-  return which;
+-}
+-
+-
+-LOCAL(void)
+-update_box (j_decompress_ptr cinfo, boxptr boxp)
+-/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
+-/* and recompute its volume and population */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  histptr histp;
+-  int c0,c1,c2;
+-  int c0min,c0max,c1min,c1max,c2min,c2max;
+-  INT32 dist0,dist1,dist2;
+-  long ccount;
+-  
+-  c0min = boxp->c0min;  c0max = boxp->c0max;
+-  c1min = boxp->c1min;  c1max = boxp->c1max;
+-  c2min = boxp->c2min;  c2max = boxp->c2max;
+-  
+-  if (c0max > c0min)
+-    for (c0 = c0min; c0 <= c0max; c0++)
+-      for (c1 = c1min; c1 <= c1max; c1++) {
+-	histp = & histogram[c0][c1][c2min];
+-	for (c2 = c2min; c2 <= c2max; c2++)
+-	  if (*histp++ != 0) {
+-	    boxp->c0min = c0min = c0;
+-	    goto have_c0min;
+-	  }
+-      }
+- have_c0min:
+-  if (c0max > c0min)
+-    for (c0 = c0max; c0 >= c0min; c0--)
+-      for (c1 = c1min; c1 <= c1max; c1++) {
+-	histp = & histogram[c0][c1][c2min];
+-	for (c2 = c2min; c2 <= c2max; c2++)
+-	  if (*histp++ != 0) {
+-	    boxp->c0max = c0max = c0;
+-	    goto have_c0max;
+-	  }
+-      }
+- have_c0max:
+-  if (c1max > c1min)
+-    for (c1 = c1min; c1 <= c1max; c1++)
+-      for (c0 = c0min; c0 <= c0max; c0++) {
+-	histp = & histogram[c0][c1][c2min];
+-	for (c2 = c2min; c2 <= c2max; c2++)
+-	  if (*histp++ != 0) {
+-	    boxp->c1min = c1min = c1;
+-	    goto have_c1min;
+-	  }
+-      }
+- have_c1min:
+-  if (c1max > c1min)
+-    for (c1 = c1max; c1 >= c1min; c1--)
+-      for (c0 = c0min; c0 <= c0max; c0++) {
+-	histp = & histogram[c0][c1][c2min];
+-	for (c2 = c2min; c2 <= c2max; c2++)
+-	  if (*histp++ != 0) {
+-	    boxp->c1max = c1max = c1;
+-	    goto have_c1max;
+-	  }
+-      }
+- have_c1max:
+-  if (c2max > c2min)
+-    for (c2 = c2min; c2 <= c2max; c2++)
+-      for (c0 = c0min; c0 <= c0max; c0++) {
+-	histp = & histogram[c0][c1min][c2];
+-	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+-	  if (*histp != 0) {
+-	    boxp->c2min = c2min = c2;
+-	    goto have_c2min;
+-	  }
+-      }
+- have_c2min:
+-  if (c2max > c2min)
+-    for (c2 = c2max; c2 >= c2min; c2--)
+-      for (c0 = c0min; c0 <= c0max; c0++) {
+-	histp = & histogram[c0][c1min][c2];
+-	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
+-	  if (*histp != 0) {
+-	    boxp->c2max = c2max = c2;
+-	    goto have_c2max;
+-	  }
+-      }
+- have_c2max:
+-
+-  /* Update box volume.
+-   * We use 2-norm rather than real volume here; this biases the method
+-   * against making long narrow boxes, and it has the side benefit that
+-   * a box is splittable iff norm > 0.
+-   * Since the differences are expressed in histogram-cell units,
+-   * we have to shift back to JSAMPLE units to get consistent distances;
+-   * after which, we scale according to the selected distance scale factors.
+-   */
+-  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
+-  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
+-  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
+-  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
+-  
+-  /* Now scan remaining volume of box and compute population */
+-  ccount = 0;
+-  for (c0 = c0min; c0 <= c0max; c0++)
+-    for (c1 = c1min; c1 <= c1max; c1++) {
+-      histp = & histogram[c0][c1][c2min];
+-      for (c2 = c2min; c2 <= c2max; c2++, histp++)
+-	if (*histp != 0) {
+-	  ccount++;
+-	}
+-    }
+-  boxp->colorcount = ccount;
+-}
+-
+-
+-LOCAL(int)
+-median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
+-	    int desired_colors)
+-/* Repeatedly select and split the largest box until we have enough boxes */
+-{
+-  int n,lb;
+-  int c0,c1,c2,cmax;
+-  register boxptr b1,b2;
+-
+-  while (numboxes < desired_colors) {
+-    /* Select box to split.
+-     * Current algorithm: by population for first half, then by volume.
+-     */
+-    if (numboxes*2 <= desired_colors) {
+-      b1 = find_biggest_color_pop(boxlist, numboxes);
+-    } else {
+-      b1 = find_biggest_volume(boxlist, numboxes);
+-    }
+-    if (b1 == NULL)		/* no splittable boxes left! */
+-      break;
+-    b2 = &boxlist[numboxes];	/* where new box will go */
+-    /* Copy the color bounds to the new box. */
+-    b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
+-    b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
+-    /* Choose which axis to split the box on.
+-     * Current algorithm: longest scaled axis.
+-     * See notes in update_box about scaling distances.
+-     */
+-    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
+-    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
+-    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
+-    /* We want to break any ties in favor of green, then red, blue last.
+-     * This code does the right thing for R,G,B or B,G,R color orders only.
+-     */
+-#if RGB_RED == 0
+-    cmax = c1; n = 1;
+-    if (c0 > cmax) { cmax = c0; n = 0; }
+-    if (c2 > cmax) { n = 2; }
+-#else
+-    cmax = c1; n = 1;
+-    if (c2 > cmax) { cmax = c2; n = 2; }
+-    if (c0 > cmax) { n = 0; }
+-#endif
+-    /* Choose split point along selected axis, and update box bounds.
+-     * Current algorithm: split at halfway point.
+-     * (Since the box has been shrunk to minimum volume,
+-     * any split will produce two nonempty subboxes.)
+-     * Note that lb value is max for lower box, so must be < old max.
+-     */
+-    switch (n) {
+-    case 0:
+-      lb = (b1->c0max + b1->c0min) / 2;
+-      b1->c0max = lb;
+-      b2->c0min = lb+1;
+-      break;
+-    case 1:
+-      lb = (b1->c1max + b1->c1min) / 2;
+-      b1->c1max = lb;
+-      b2->c1min = lb+1;
+-      break;
+-    case 2:
+-      lb = (b1->c2max + b1->c2min) / 2;
+-      b1->c2max = lb;
+-      b2->c2min = lb+1;
+-      break;
+-    }
+-    /* Update stats for boxes */
+-    update_box(cinfo, b1);
+-    update_box(cinfo, b2);
+-    numboxes++;
+-  }
+-  return numboxes;
+-}
+-
+-
+-LOCAL(void)
+-compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
+-/* Compute representative color for a box, put it in colormap[icolor] */
+-{
+-  /* Current algorithm: mean weighted by pixels (not colors) */
+-  /* Note it is important to get the rounding correct! */
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  histptr histp;
+-  int c0,c1,c2;
+-  int c0min,c0max,c1min,c1max,c2min,c2max;
+-  long count;
+-  long total = 0;
+-  long c0total = 0;
+-  long c1total = 0;
+-  long c2total = 0;
+-  
+-  c0min = boxp->c0min;  c0max = boxp->c0max;
+-  c1min = boxp->c1min;  c1max = boxp->c1max;
+-  c2min = boxp->c2min;  c2max = boxp->c2max;
+-  
+-  for (c0 = c0min; c0 <= c0max; c0++)
+-    for (c1 = c1min; c1 <= c1max; c1++) {
+-      histp = & histogram[c0][c1][c2min];
+-      for (c2 = c2min; c2 <= c2max; c2++) {
+-	if ((count = *histp++) != 0) {
+-	  total += count;
+-	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
+-	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
+-	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
+-	}
+-      }
+-    }
+-  
+-  cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
+-  cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
+-  cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
+-}
+-
+-
+-LOCAL(void)
+-select_colors (j_decompress_ptr cinfo, int desired_colors)
+-/* Master routine for color selection */
+-{
+-  boxptr boxlist;
+-  int numboxes;
+-  int i;
+-
+-  /* Allocate workspace for box list */
+-  boxlist = (boxptr) (*cinfo->mem->alloc_small)
+-    ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
+-  /* Initialize one box containing whole space */
+-  numboxes = 1;
+-  boxlist[0].c0min = 0;
+-  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
+-  boxlist[0].c1min = 0;
+-  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
+-  boxlist[0].c2min = 0;
+-  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
+-  /* Shrink it to actually-used volume and set its statistics */
+-  update_box(cinfo, & boxlist[0]);
+-  /* Perform median-cut to produce final box list */
+-  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
+-  /* Compute the representative color for each box, fill colormap */
+-  for (i = 0; i < numboxes; i++)
+-    compute_color(cinfo, & boxlist[i], i);
+-  cinfo->actual_number_of_colors = numboxes;
+-  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
+-}
+-
+-
+-/*
+- * These routines are concerned with the time-critical task of mapping input
+- * colors to the nearest color in the selected colormap.
+- *
+- * We re-use the histogram space as an "inverse color map", essentially a
+- * cache for the results of nearest-color searches.  All colors within a
+- * histogram cell will be mapped to the same colormap entry, namely the one
+- * closest to the cell's center.  This may not be quite the closest entry to
+- * the actual input color, but it's almost as good.  A zero in the cache
+- * indicates we haven't found the nearest color for that cell yet; the array
+- * is cleared to zeroes before starting the mapping pass.  When we find the
+- * nearest color for a cell, its colormap index plus one is recorded in the
+- * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
+- * when they need to use an unfilled entry in the cache.
+- *
+- * Our method of efficiently finding nearest colors is based on the "locally
+- * sorted search" idea described by Heckbert and on the incremental distance
+- * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
+- * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
+- * the distances from a given colormap entry to each cell of the histogram can
+- * be computed quickly using an incremental method: the differences between
+- * distances to adjacent cells themselves differ by a constant.  This allows a
+- * fairly fast implementation of the "brute force" approach of computing the
+- * distance from every colormap entry to every histogram cell.  Unfortunately,
+- * it needs a work array to hold the best-distance-so-far for each histogram
+- * cell (because the inner loop has to be over cells, not colormap entries).
+- * The work array elements have to be INT32s, so the work array would need
+- * 256Kb at our recommended precision.  This is not feasible in DOS machines.
+- *
+- * To get around these problems, we apply Thomas' method to compute the
+- * nearest colors for only the cells within a small subbox of the histogram.
+- * The work array need be only as big as the subbox, so the memory usage
+- * problem is solved.  Furthermore, we need not fill subboxes that are never
+- * referenced in pass2; many images use only part of the color gamut, so a
+- * fair amount of work is saved.  An additional advantage of this
+- * approach is that we can apply Heckbert's locality criterion to quickly
+- * eliminate colormap entries that are far away from the subbox; typically
+- * three-fourths of the colormap entries are rejected by Heckbert's criterion,
+- * and we need not compute their distances to individual cells in the subbox.
+- * The speed of this approach is heavily influenced by the subbox size: too
+- * small means too much overhead, too big loses because Heckbert's criterion
+- * can't eliminate as many colormap entries.  Empirically the best subbox
+- * size seems to be about 1/512th of the histogram (1/8th in each direction).
+- *
+- * Thomas' article also describes a refined method which is asymptotically
+- * faster than the brute-force method, but it is also far more complex and
+- * cannot efficiently be applied to small subboxes.  It is therefore not
+- * useful for programs intended to be portable to DOS machines.  On machines
+- * with plenty of memory, filling the whole histogram in one shot with Thomas'
+- * refined method might be faster than the present code --- but then again,
+- * it might not be any faster, and it's certainly more complicated.
+- */
+-
+-
+-/* log2(histogram cells in update box) for each axis; this can be adjusted */
+-#define BOX_C0_LOG  (HIST_C0_BITS-3)
+-#define BOX_C1_LOG  (HIST_C1_BITS-3)
+-#define BOX_C2_LOG  (HIST_C2_BITS-3)
+-
+-#define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
+-#define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
+-#define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
+-
+-#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
+-#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
+-#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
+-
+-
+-/*
+- * The next three routines implement inverse colormap filling.  They could
+- * all be folded into one big routine, but splitting them up this way saves
+- * some stack space (the mindist[] and bestdist[] arrays need not coexist)
+- * and may allow some compilers to produce better code by registerizing more
+- * inner-loop variables.
+- */
+-
+-LOCAL(int)
+-find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+-		    JSAMPLE colorlist[])
+-/* Locate the colormap entries close enough to an update box to be candidates
+- * for the nearest entry to some cell(s) in the update box.  The update box
+- * is specified by the center coordinates of its first cell.  The number of
+- * candidate colormap entries is returned, and their colormap indexes are
+- * placed in colorlist[].
+- * This routine uses Heckbert's "locally sorted search" criterion to select
+- * the colors that need further consideration.
+- */
+-{
+-  int numcolors = cinfo->actual_number_of_colors;
+-  int maxc0, maxc1, maxc2;
+-  int centerc0, centerc1, centerc2;
+-  int i, x, ncolors;
+-  INT32 minmaxdist, min_dist, max_dist, tdist;
+-  INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
+-
+-  /* Compute true coordinates of update box's upper corner and center.
+-   * Actually we compute the coordinates of the center of the upper-corner
+-   * histogram cell, which are the upper bounds of the volume we care about.
+-   * Note that since ">>" rounds down, the "center" values may be closer to
+-   * min than to max; hence comparisons to them must be "<=", not "<".
+-   */
+-  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
+-  centerc0 = (minc0 + maxc0) >> 1;
+-  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
+-  centerc1 = (minc1 + maxc1) >> 1;
+-  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
+-  centerc2 = (minc2 + maxc2) >> 1;
+-
+-  /* For each color in colormap, find:
+-   *  1. its minimum squared-distance to any point in the update box
+-   *     (zero if color is within update box);
+-   *  2. its maximum squared-distance to any point in the update box.
+-   * Both of these can be found by considering only the corners of the box.
+-   * We save the minimum distance for each color in mindist[];
+-   * only the smallest maximum distance is of interest.
+-   */
+-  minmaxdist = 0x7FFFFFFFL;
+-
+-  for (i = 0; i < numcolors; i++) {
+-    /* We compute the squared-c0-distance term, then add in the other two. */
+-    x = GETJSAMPLE(cinfo->colormap[0][i]);
+-    if (x < minc0) {
+-      tdist = (x - minc0) * C0_SCALE;
+-      min_dist = tdist*tdist;
+-      tdist = (x - maxc0) * C0_SCALE;
+-      max_dist = tdist*tdist;
+-    } else if (x > maxc0) {
+-      tdist = (x - maxc0) * C0_SCALE;
+-      min_dist = tdist*tdist;
+-      tdist = (x - minc0) * C0_SCALE;
+-      max_dist = tdist*tdist;
+-    } else {
+-      /* within cell range so no contribution to min_dist */
+-      min_dist = 0;
+-      if (x <= centerc0) {
+-	tdist = (x - maxc0) * C0_SCALE;
+-	max_dist = tdist*tdist;
+-      } else {
+-	tdist = (x - minc0) * C0_SCALE;
+-	max_dist = tdist*tdist;
+-      }
+-    }
+-
+-    x = GETJSAMPLE(cinfo->colormap[1][i]);
+-    if (x < minc1) {
+-      tdist = (x - minc1) * C1_SCALE;
+-      min_dist += tdist*tdist;
+-      tdist = (x - maxc1) * C1_SCALE;
+-      max_dist += tdist*tdist;
+-    } else if (x > maxc1) {
+-      tdist = (x - maxc1) * C1_SCALE;
+-      min_dist += tdist*tdist;
+-      tdist = (x - minc1) * C1_SCALE;
+-      max_dist += tdist*tdist;
+-    } else {
+-      /* within cell range so no contribution to min_dist */
+-      if (x <= centerc1) {
+-	tdist = (x - maxc1) * C1_SCALE;
+-	max_dist += tdist*tdist;
+-      } else {
+-	tdist = (x - minc1) * C1_SCALE;
+-	max_dist += tdist*tdist;
+-      }
+-    }
+-
+-    x = GETJSAMPLE(cinfo->colormap[2][i]);
+-    if (x < minc2) {
+-      tdist = (x - minc2) * C2_SCALE;
+-      min_dist += tdist*tdist;
+-      tdist = (x - maxc2) * C2_SCALE;
+-      max_dist += tdist*tdist;
+-    } else if (x > maxc2) {
+-      tdist = (x - maxc2) * C2_SCALE;
+-      min_dist += tdist*tdist;
+-      tdist = (x - minc2) * C2_SCALE;
+-      max_dist += tdist*tdist;
+-    } else {
+-      /* within cell range so no contribution to min_dist */
+-      if (x <= centerc2) {
+-	tdist = (x - maxc2) * C2_SCALE;
+-	max_dist += tdist*tdist;
+-      } else {
+-	tdist = (x - minc2) * C2_SCALE;
+-	max_dist += tdist*tdist;
+-      }
+-    }
+-
+-    mindist[i] = min_dist;	/* save away the results */
+-    if (max_dist < minmaxdist)
+-      minmaxdist = max_dist;
+-  }
+-
+-  /* Now we know that no cell in the update box is more than minmaxdist
+-   * away from some colormap entry.  Therefore, only colors that are
+-   * within minmaxdist of some part of the box need be considered.
+-   */
+-  ncolors = 0;
+-  for (i = 0; i < numcolors; i++) {
+-    if (mindist[i] <= minmaxdist)
+-      colorlist[ncolors++] = (JSAMPLE) i;
+-  }
+-  return ncolors;
+-}
+-
+-
+-LOCAL(void)
+-find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
+-		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
+-/* Find the closest colormap entry for each cell in the update box,
+- * given the list of candidate colors prepared by find_nearby_colors.
+- * Return the indexes of the closest entries in the bestcolor[] array.
+- * This routine uses Thomas' incremental distance calculation method to
+- * find the distance from a colormap entry to successive cells in the box.
+- */
+-{
+-  int ic0, ic1, ic2;
+-  int i, icolor;
+-  register INT32 * bptr;	/* pointer into bestdist[] array */
+-  JSAMPLE * cptr;		/* pointer into bestcolor[] array */
+-  INT32 dist0, dist1;		/* initial distance values */
+-  register INT32 dist2;		/* current distance in inner loop */
+-  INT32 xx0, xx1;		/* distance increments */
+-  register INT32 xx2;
+-  INT32 inc0, inc1, inc2;	/* initial values for increments */
+-  /* This array holds the distance to the nearest-so-far color for each cell */
+-  INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+-
+-  /* Initialize best-distance for each cell of the update box */
+-  bptr = bestdist;
+-  for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
+-    *bptr++ = 0x7FFFFFFFL;
+-  
+-  /* For each color selected by find_nearby_colors,
+-   * compute its distance to the center of each cell in the box.
+-   * If that's less than best-so-far, update best distance and color number.
+-   */
+-  
+-  /* Nominal steps between cell centers ("x" in Thomas article) */
+-#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
+-#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
+-#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
+-  
+-  for (i = 0; i < numcolors; i++) {
+-    icolor = GETJSAMPLE(colorlist[i]);
+-    /* Compute (square of) distance from minc0/c1/c2 to this color */
+-    inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
+-    dist0 = inc0*inc0;
+-    inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
+-    dist0 += inc1*inc1;
+-    inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
+-    dist0 += inc2*inc2;
+-    /* Form the initial difference increments */
+-    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
+-    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
+-    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
+-    /* Now loop over all cells in box, updating distance per Thomas method */
+-    bptr = bestdist;
+-    cptr = bestcolor;
+-    xx0 = inc0;
+-    for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
+-      dist1 = dist0;
+-      xx1 = inc1;
+-      for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
+-	dist2 = dist1;
+-	xx2 = inc2;
+-	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
+-	  if (dist2 < *bptr) {
+-	    *bptr = dist2;
+-	    *cptr = (JSAMPLE) icolor;
+-	  }
+-	  dist2 += xx2;
+-	  xx2 += 2 * STEP_C2 * STEP_C2;
+-	  bptr++;
+-	  cptr++;
+-	}
+-	dist1 += xx1;
+-	xx1 += 2 * STEP_C1 * STEP_C1;
+-      }
+-      dist0 += xx0;
+-      xx0 += 2 * STEP_C0 * STEP_C0;
+-    }
+-  }
+-}
+-
+-
+-LOCAL(void)
+-fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
+-/* Fill the inverse-colormap entries in the update box that contains */
+-/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
+-/* we can fill as many others as we wish.) */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  int minc0, minc1, minc2;	/* lower left corner of update box */
+-  int ic0, ic1, ic2;
+-  register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
+-  register histptr cachep;	/* pointer into main cache array */
+-  /* This array lists the candidate colormap indexes. */
+-  JSAMPLE colorlist[MAXNUMCOLORS];
+-  int numcolors;		/* number of candidate colors */
+-  /* This array holds the actually closest colormap index for each cell. */
+-  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
+-
+-  /* Convert cell coordinates to update box ID */
+-  c0 >>= BOX_C0_LOG;
+-  c1 >>= BOX_C1_LOG;
+-  c2 >>= BOX_C2_LOG;
+-
+-  /* Compute true coordinates of update box's origin corner.
+-   * Actually we compute the coordinates of the center of the corner
+-   * histogram cell, which are the lower bounds of the volume we care about.
+-   */
+-  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
+-  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
+-  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
+-  
+-  /* Determine which colormap entries are close enough to be candidates
+-   * for the nearest entry to some cell in the update box.
+-   */
+-  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
+-
+-  /* Determine the actually nearest colors. */
+-  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
+-		   bestcolor);
+-
+-  /* Save the best color numbers (plus 1) in the main cache array */
+-  c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
+-  c1 <<= BOX_C1_LOG;
+-  c2 <<= BOX_C2_LOG;
+-  cptr = bestcolor;
+-  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
+-    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
+-      cachep = & histogram[c0+ic0][c1+ic1][c2];
+-      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
+-	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
+-      }
+-    }
+-  }
+-}
+-
+-
+-/*
+- * Map some rows of pixels to the output colormapped representation.
+- */
+-
+-METHODDEF(void)
+-pass2_no_dither (j_decompress_ptr cinfo,
+-		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+-/* This version performs no dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  register JSAMPROW inptr, outptr;
+-  register histptr cachep;
+-  register int c0, c1, c2;
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-
+-  for (row = 0; row < num_rows; row++) {
+-    inptr = input_buf[row];
+-    outptr = output_buf[row];
+-    for (col = width; col > 0; col--) {
+-      /* get pixel value and index into the cache */
+-      c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
+-      c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
+-      c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
+-      cachep = & histogram[c0][c1][c2];
+-      /* If we have not seen this color before, find nearest colormap entry */
+-      /* and update the cache */
+-      if (*cachep == 0)
+-	fill_inverse_cmap(cinfo, c0,c1,c2);
+-      /* Now emit the colormap index for this cell */
+-      *outptr++ = (JSAMPLE) (*cachep - 1);
+-    }
+-  }
+-}
+-
+-
+-METHODDEF(void)
+-pass2_fs_dither (j_decompress_ptr cinfo,
+-		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
+-/* This version performs Floyd-Steinberg dithering */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
+-  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
+-  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
+-  register FSERRPTR errorptr;	/* => fserrors[] at column before current */
+-  JSAMPROW inptr;		/* => current input pixel */
+-  JSAMPROW outptr;		/* => current output pixel */
+-  histptr cachep;
+-  int dir;			/* +1 or -1 depending on direction */
+-  int dir3;			/* 3*dir, for advancing inptr & errorptr */
+-  int row;
+-  JDIMENSION col;
+-  JDIMENSION width = cinfo->output_width;
+-  JSAMPLE *range_limit = cinfo->sample_range_limit;
+-  int *error_limit = cquantize->error_limiter;
+-  JSAMPROW colormap0 = cinfo->colormap[0];
+-  JSAMPROW colormap1 = cinfo->colormap[1];
+-  JSAMPROW colormap2 = cinfo->colormap[2];
+-  SHIFT_TEMPS
+-
+-  for (row = 0; row < num_rows; row++) {
+-    inptr = input_buf[row];
+-    outptr = output_buf[row];
+-    if (cquantize->on_odd_row) {
+-      /* work right to left in this row */
+-      inptr += (width-1) * 3;	/* so point to rightmost pixel */
+-      outptr += width-1;
+-      dir = -1;
+-      dir3 = -3;
+-      errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
+-      cquantize->on_odd_row = FALSE; /* flip for next time */
+-    } else {
+-      /* work left to right in this row */
+-      dir = 1;
+-      dir3 = 3;
+-      errorptr = cquantize->fserrors; /* => entry before first real column */
+-      cquantize->on_odd_row = TRUE; /* flip for next time */
+-    }
+-    /* Preset error values: no error propagated to first pixel from left */
+-    cur0 = cur1 = cur2 = 0;
+-    /* and no error propagated to row below yet */
+-    belowerr0 = belowerr1 = belowerr2 = 0;
+-    bpreverr0 = bpreverr1 = bpreverr2 = 0;
+-
+-    for (col = width; col > 0; col--) {
+-      /* curN holds the error propagated from the previous pixel on the
+-       * current line.  Add the error propagated from the previous line
+-       * to form the complete error correction term for this pixel, and
+-       * round the error term (which is expressed * 16) to an integer.
+-       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
+-       * for either sign of the error value.
+-       * Note: errorptr points to *previous* column's array entry.
+-       */
+-      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
+-      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
+-      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
+-      /* Limit the error using transfer function set by init_error_limit.
+-       * See comments with init_error_limit for rationale.
+-       */
+-      cur0 = error_limit[cur0];
+-      cur1 = error_limit[cur1];
+-      cur2 = error_limit[cur2];
+-      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
+-       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
+-       * this sets the required size of the range_limit array.
+-       */
+-      cur0 += GETJSAMPLE(inptr[0]);
+-      cur1 += GETJSAMPLE(inptr[1]);
+-      cur2 += GETJSAMPLE(inptr[2]);
+-      cur0 = GETJSAMPLE(range_limit[cur0]);
+-      cur1 = GETJSAMPLE(range_limit[cur1]);
+-      cur2 = GETJSAMPLE(range_limit[cur2]);
+-      /* Index into the cache with adjusted pixel value */
+-      cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
+-      /* If we have not seen this color before, find nearest colormap */
+-      /* entry and update the cache */
+-      if (*cachep == 0)
+-	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
+-      /* Now emit the colormap index for this cell */
+-      { register int pixcode = *cachep - 1;
+-	*outptr = (JSAMPLE) pixcode;
+-	/* Compute representation error for this pixel */
+-	cur0 -= GETJSAMPLE(colormap0[pixcode]);
+-	cur1 -= GETJSAMPLE(colormap1[pixcode]);
+-	cur2 -= GETJSAMPLE(colormap2[pixcode]);
+-      }
+-      /* Compute error fractions to be propagated to adjacent pixels.
+-       * Add these into the running sums, and simultaneously shift the
+-       * next-line error sums left by 1 column.
+-       */
+-      { register LOCFSERROR bnexterr, delta;
+-
+-	bnexterr = cur0;	/* Process component 0 */
+-	delta = cur0 * 2;
+-	cur0 += delta;		/* form error * 3 */
+-	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
+-	cur0 += delta;		/* form error * 5 */
+-	bpreverr0 = belowerr0 + cur0;
+-	belowerr0 = bnexterr;
+-	cur0 += delta;		/* form error * 7 */
+-	bnexterr = cur1;	/* Process component 1 */
+-	delta = cur1 * 2;
+-	cur1 += delta;		/* form error * 3 */
+-	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
+-	cur1 += delta;		/* form error * 5 */
+-	bpreverr1 = belowerr1 + cur1;
+-	belowerr1 = bnexterr;
+-	cur1 += delta;		/* form error * 7 */
+-	bnexterr = cur2;	/* Process component 2 */
+-	delta = cur2 * 2;
+-	cur2 += delta;		/* form error * 3 */
+-	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
+-	cur2 += delta;		/* form error * 5 */
+-	bpreverr2 = belowerr2 + cur2;
+-	belowerr2 = bnexterr;
+-	cur2 += delta;		/* form error * 7 */
+-      }
+-      /* At this point curN contains the 7/16 error value to be propagated
+-       * to the next pixel on the current line, and all the errors for the
+-       * next line have been shifted over.  We are therefore ready to move on.
+-       */
+-      inptr += dir3;		/* Advance pixel pointers to next column */
+-      outptr += dir;
+-      errorptr += dir3;		/* advance errorptr to current column */
+-    }
+-    /* Post-loop cleanup: we must unload the final error values into the
+-     * final fserrors[] entry.  Note we need not unload belowerrN because
+-     * it is for the dummy column before or after the actual array.
+-     */
+-    errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
+-    errorptr[1] = (FSERROR) bpreverr1;
+-    errorptr[2] = (FSERROR) bpreverr2;
+-  }
+-}
+-
+-
+-/*
+- * Initialize the error-limiting transfer function (lookup table).
+- * The raw F-S error computation can potentially compute error values of up to
+- * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
+- * much less, otherwise obviously wrong pixels will be created.  (Typical
+- * effects include weird fringes at color-area boundaries, isolated bright
+- * pixels in a dark area, etc.)  The standard advice for avoiding this problem
+- * is to ensure that the "corners" of the color cube are allocated as output
+- * colors; then repeated errors in the same direction cannot cause cascading
+- * error buildup.  However, that only prevents the error from getting
+- * completely out of hand; Aaron Giles reports that error limiting improves
+- * the results even with corner colors allocated.
+- * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
+- * well, but the smoother transfer function used below is even better.  Thanks
+- * to Aaron Giles for this idea.
+- */
+-
+-LOCAL(void)
+-init_error_limit (j_decompress_ptr cinfo)
+-/* Allocate and fill in the error_limiter table */
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  int * table;
+-  int in, out;
+-
+-  table = (int *) (*cinfo->mem->alloc_small)
+-    ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
+-  table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
+-  cquantize->error_limiter = table;
+-
+-#define STEPSIZE ((MAXJSAMPLE+1)/16)
+-  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
+-  out = 0;
+-  for (in = 0; in < STEPSIZE; in++, out++) {
+-    table[in] = out; table[-in] = -out;
+-  }
+-  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
+-  for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
+-    table[in] = out; table[-in] = -out;
+-  }
+-  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
+-  for (; in <= MAXJSAMPLE; in++) {
+-    table[in] = out; table[-in] = -out;
+-  }
+-#undef STEPSIZE
+-}
+-
+-
+-/*
+- * Finish up at the end of each pass.
+- */
+-
+-METHODDEF(void)
+-finish_pass1 (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-
+-  /* Select the representative colors and fill in cinfo->colormap */
+-  cinfo->colormap = cquantize->sv_colormap;
+-  select_colors(cinfo, cquantize->desired);
+-  /* Force next pass to zero the color index table */
+-  cquantize->needs_zeroed = TRUE;
+-}
+-
+-
+-METHODDEF(void)
+-finish_pass2 (j_decompress_ptr cinfo)
+-{
+-  /* no work */
+-}
+-
+-
+-/*
+- * Initialize for each processing pass.
+- */
+-
+-METHODDEF(void)
+-start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-  hist3d histogram = cquantize->histogram;
+-  int i;
+-
+-  /* Only F-S dithering or no dithering is supported. */
+-  /* If user asks for ordered dither, give him F-S. */
+-  if (cinfo->dither_mode != JDITHER_NONE)
+-    cinfo->dither_mode = JDITHER_FS;
+-
+-  if (is_pre_scan) {
+-    /* Set up method pointers */
+-    cquantize->pub.color_quantize = prescan_quantize;
+-    cquantize->pub.finish_pass = finish_pass1;
+-    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
+-  } else {
+-    /* Set up method pointers */
+-    if (cinfo->dither_mode == JDITHER_FS)
+-      cquantize->pub.color_quantize = pass2_fs_dither;
+-    else
+-      cquantize->pub.color_quantize = pass2_no_dither;
+-    cquantize->pub.finish_pass = finish_pass2;
+-
+-    /* Make sure color count is acceptable */
+-    i = cinfo->actual_number_of_colors;
+-    if (i < 1)
+-      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
+-    if (i > MAXNUMCOLORS)
+-      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+-
+-    if (cinfo->dither_mode == JDITHER_FS) {
+-      size_t arraysize = (size_t) ((cinfo->output_width + 2) *
+-				   (3 * SIZEOF(FSERROR)));
+-      /* Allocate Floyd-Steinberg workspace if we didn't already. */
+-      if (cquantize->fserrors == NULL)
+-	cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+-	  ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
+-      /* Initialize the propagated errors to zero. */
+-      jzero_far((void FAR *) cquantize->fserrors, arraysize);
+-      /* Make the error-limit table if we didn't already. */
+-      if (cquantize->error_limiter == NULL)
+-	init_error_limit(cinfo);
+-      cquantize->on_odd_row = FALSE;
+-    }
+-
+-  }
+-  /* Zero the histogram or inverse color map, if necessary */
+-  if (cquantize->needs_zeroed) {
+-    for (i = 0; i < HIST_C0_ELEMS; i++) {
+-      jzero_far((void FAR *) histogram[i],
+-		HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+-    }
+-    cquantize->needs_zeroed = FALSE;
+-  }
+-}
+-
+-
+-/*
+- * Switch to a new external colormap between output passes.
+- */
+-
+-METHODDEF(void)
+-new_color_map_2_quant (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
+-
+-  /* Reset the inverse color map */
+-  cquantize->needs_zeroed = TRUE;
+-}
+-
+-
+-/*
+- * Module initialization routine for 2-pass color quantization.
+- */
+-
+-GLOBAL(void)
+-jinit_2pass_quantizer (j_decompress_ptr cinfo)
+-{
+-  my_cquantize_ptr cquantize;
+-  int i;
+-
+-  cquantize = (my_cquantize_ptr)
+-    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-				SIZEOF(my_cquantizer));
+-  cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
+-  cquantize->pub.start_pass = start_pass_2_quant;
+-  cquantize->pub.new_color_map = new_color_map_2_quant;
+-  cquantize->fserrors = NULL;	/* flag optional arrays not allocated */
+-  cquantize->error_limiter = NULL;
+-
+-  /* Make sure jdmaster didn't give me a case I can't handle */
+-  if (cinfo->out_color_components != 3)
+-    ERREXIT(cinfo, JERR_NOTIMPL);
+-
+-  /* Allocate the histogram/inverse colormap storage */
+-  cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
+-    ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
+-  for (i = 0; i < HIST_C0_ELEMS; i++) {
+-    cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
+-      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-       HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
+-  }
+-  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
+-
+-  /* Allocate storage for the completed colormap, if required.
+-   * We do this now since it is FAR storage and may affect
+-   * the memory manager's space calculations.
+-   */
+-  if (cinfo->enable_2pass_quant) {
+-    /* Make sure color count is acceptable */
+-    int desired = cinfo->desired_number_of_colors;
+-    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
+-    if (desired < 8)
+-      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
+-    /* Make sure colormap indexes can be represented by JSAMPLEs */
+-    if (desired > MAXNUMCOLORS)
+-      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
+-    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
+-      ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
+-    cquantize->desired = desired;
+-  } else
+-    cquantize->sv_colormap = NULL;
+-
+-  /* Only F-S dithering or no dithering is supported. */
+-  /* If user asks for ordered dither, give him F-S. */
+-  if (cinfo->dither_mode != JDITHER_NONE)
+-    cinfo->dither_mode = JDITHER_FS;
+-
+-  /* Allocate Floyd-Steinberg workspace if necessary.
+-   * This isn't really needed until pass 2, but again it is FAR storage.
+-   * Although we will cope with a later change in dither_mode,
+-   * we do not promise to honor max_memory_to_use if dither_mode changes.
+-   */
+-  if (cinfo->dither_mode == JDITHER_FS) {
+-    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
+-      ((j_common_ptr) cinfo, JPOOL_IMAGE,
+-       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
+-    /* Might as well create the error-limiting table too. */
+-    init_error_limit(cinfo);
+-  }
+-}
+-
+-#endif /* QUANT_2PASS_SUPPORTED */
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jutils.c openjdk/j2se/src/share/native/sun/awt/image/jpeg/jutils.c
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jutils.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jutils.c	1969-12-31 19:00:00.000000000 -0500
+@@ -1,183 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jutils.c
+- *
+- * Copyright (C) 1991-1996, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains tables and miscellaneous utility routines needed
+- * for both compression and decompression.
+- * Note we prefix all global names with "j" to minimize conflicts with
+- * a surrounding application.
+- */
+-
+-#define JPEG_INTERNALS
+-#include "jinclude.h"
+-#include "jpeglib.h"
+-
+-
+-/*
+- * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
+- * of a DCT block read in natural order (left to right, top to bottom).
+- */
+-
+-#if 0				/* This table is not actually needed in v6a */
+-
+-const int jpeg_zigzag_order[DCTSIZE2] = {
+-   0,  1,  5,  6, 14, 15, 27, 28,
+-   2,  4,  7, 13, 16, 26, 29, 42,
+-   3,  8, 12, 17, 25, 30, 41, 43,
+-   9, 11, 18, 24, 31, 40, 44, 53,
+-  10, 19, 23, 32, 39, 45, 52, 54,
+-  20, 22, 33, 38, 46, 51, 55, 60,
+-  21, 34, 37, 47, 50, 56, 59, 61,
+-  35, 36, 48, 49, 57, 58, 62, 63
+-};
+-
+-#endif
+-
+-/*
+- * jpeg_natural_order[i] is the natural-order position of the i'th element
+- * of zigzag order.
+- *
+- * When reading corrupted data, the Huffman decoders could attempt
+- * to reference an entry beyond the end of this array (if the decoded
+- * zero run length reaches past the end of the block).  To prevent
+- * wild stores without adding an inner-loop test, we put some extra
+- * "63"s after the real entries.  This will cause the extra coefficient
+- * to be stored in location 63 of the block, not somewhere random.
+- * The worst case would be a run-length of 15, which means we need 16
+- * fake entries.
+- */
+-
+-const int jpeg_natural_order[DCTSIZE2+16] = {
+-  0,  1,  8, 16,  9,  2,  3, 10,
+- 17, 24, 32, 25, 18, 11,  4,  5,
+- 12, 19, 26, 33, 40, 48, 41, 34,
+- 27, 20, 13,  6,  7, 14, 21, 28,
+- 35, 42, 49, 56, 57, 50, 43, 36,
+- 29, 22, 15, 23, 30, 37, 44, 51,
+- 58, 59, 52, 45, 38, 31, 39, 46,
+- 53, 60, 61, 54, 47, 55, 62, 63,
+- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+- 63, 63, 63, 63, 63, 63, 63, 63
+-};
+-
+-
+-/*
+- * Arithmetic utilities
+- */
+-
+-GLOBAL(long)
+-jdiv_round_up (long a, long b)
+-/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
+-/* Assumes a >= 0, b > 0 */
+-{
+-  return (a + b - 1L) / b;
+-}
+-
+-
+-GLOBAL(long)
+-jround_up (long a, long b)
+-/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
+-/* Assumes a >= 0, b > 0 */
+-{
+-  a += b - 1L;
+-  return a - (a % b);
+-}
+-
+-
+-/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+- * and coefficient-block arrays.  This won't work on 80x86 because the arrays
+- * are FAR and we're assuming a small-pointer memory model.  However, some
+- * DOS compilers provide far-pointer versions of memcpy() and memset() even
+- * in the small-model libraries.  These will be used if USE_FMEM is defined.
+- * Otherwise, the routines below do it the hard way.  (The performance cost
+- * is not all that great, because these routines aren't very heavily used.)
+- */
+-
+-#ifndef NEED_FAR_POINTERS	/* normal case, same as regular macros */
+-#define FMEMCOPY(dest,src,size)	MEMCOPY(dest,src,size)
+-#define FMEMZERO(target,size)	MEMZERO(target,size)
+-#else				/* 80x86 case, define if we can */
+-#ifdef USE_FMEM
+-#define FMEMCOPY(dest,src,size)	_fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
+-#define FMEMZERO(target,size)	_fmemset((void FAR *)(target), 0, (size_t)(size))
+-#endif
+-#endif
+-
+-
+-GLOBAL(void)
+-jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
+-		   JSAMPARRAY output_array, int dest_row,
+-		   int num_rows, JDIMENSION num_cols)
+-/* Copy some rows of samples from one place to another.
+- * num_rows rows are copied from input_array[source_row++]
+- * to output_array[dest_row++]; these areas may overlap for duplication.
+- * The source and destination arrays must be at least as wide as num_cols.
+- */
+-{
+-  register JSAMPROW inptr, outptr;
+-#ifdef FMEMCOPY
+-  register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
+-#else
+-  register JDIMENSION count;
+-#endif
+-  register int row;
+-
+-  input_array += source_row;
+-  output_array += dest_row;
+-
+-  for (row = num_rows; row > 0; row--) {
+-    inptr = *input_array++;
+-    outptr = *output_array++;
+-#ifdef FMEMCOPY
+-    FMEMCOPY(outptr, inptr, count);
+-#else
+-    for (count = num_cols; count > 0; count--)
+-      *outptr++ = *inptr++;	/* needn't bother with GETJSAMPLE() here */
+-#endif
+-  }
+-}
+-
+-
+-GLOBAL(void)
+-jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
+-		 JDIMENSION num_blocks)
+-/* Copy a row of coefficient blocks from one place to another. */
+-{
+-#ifdef FMEMCOPY
+-  FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
+-#else
+-  register JCOEFPTR inptr, outptr;
+-  register long count;
+-
+-  inptr = (JCOEFPTR) input_row;
+-  outptr = (JCOEFPTR) output_row;
+-  for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
+-    *outptr++ = *inptr++;
+-  }
+-#endif
+-}
+-
+-
+-GLOBAL(void)
+-jzero_far (void FAR * target, size_t bytestozero)
+-/* Zero out a chunk of FAR memory. */
+-/* This might be sample-array data, block-array data, or alloc_large data. */
+-{
+-#ifdef FMEMZERO
+-  FMEMZERO(target, bytestozero);
+-#else
+-  register char FAR * ptr = (char FAR *) target;
+-  register size_t count;
+-
+-  for (count = bytestozero; count > 0; count--) {
+-    *ptr++ = 0;
+-  }
+-#endif
+-}
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jversion.h openjdk/j2se/src/share/native/sun/awt/image/jpeg/jversion.h
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jversion.h	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jversion.h	1969-12-31 19:00:00.000000000 -0500
+@@ -1,18 +0,0 @@
+-/*
+- * reserved comment block
+- * DO NOT REMOVE OR ALTER!
+- */
+-/*
+- * jversion.h
+- *
+- * Copyright (C) 1991-1998, Thomas G. Lane.
+- * This file is part of the Independent JPEG Group's software.
+- * For conditions of distribution and use, see the accompanying README file.
+- *
+- * This file contains software version identification.
+- */
+-
+-
+-#define JVERSION	"6b  27-Mar-1998"
+-
+-#define JCOPYRIGHT	"Copyright (C) 1998, Thomas G. Lane"
+diff -ruN openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/README openjdk/j2se/src/share/native/sun/awt/image/jpeg/README
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/README	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/README	1969-12-31 19:00:00.000000000 -0500
+@@ -1,385 +0,0 @@
+-The Independent JPEG Group's JPEG software
+-==========================================
+-
+-README for release 6b of 27-Mar-1998
+-====================================
+-
+-This distribution contains the sixth public release of the Independent JPEG
+-Group's free JPEG software.  You are welcome to redistribute this software and
+-to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
+-
+-Serious users of this software (particularly those incorporating it into
+-larger programs) should contact IJG at jpeg-info@uunet.uu.net to be added to
+-our electronic mailing list.  Mailing list members are notified of updates
+-and have a chance to participate in technical discussions, etc.
+-
+-This software is the work of Tom Lane, Philip Gladstone, Jim Boucher,
+-Lee Crocker, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi,
+-Guido Vollbeding, Ge' Weijers, and other members of the Independent JPEG
+-Group.
+-
+-IJG is not affiliated with the official ISO JPEG standards committee.
+-
+-
+-DOCUMENTATION ROADMAP
+-=====================
+-
+-This file contains the following sections:
+-
+-OVERVIEW            General description of JPEG and the IJG software.
+-LEGAL ISSUES        Copyright, lack of warranty, terms of distribution.
+-REFERENCES          Where to learn more about JPEG.
+-ARCHIVE LOCATIONS   Where to find newer versions of this software.
+-RELATED SOFTWARE    Other stuff you should get.
+-FILE FORMAT WARS    Software *not* to get.
+-TO DO               Plans for future IJG releases.
+-
+-Other documentation files in the distribution are:
+-
+-User documentation:
+-  install.doc       How to configure and install the IJG software.
+-  usage.doc         Usage instructions for cjpeg, djpeg, jpegtran,
+-                    rdjpgcom, and wrjpgcom.
+-  *.1               Unix-style man pages for programs (same info as usage.doc).
+-  wizard.doc        Advanced usage instructions for JPEG wizards only.
+-  change.log        Version-to-version change highlights.
+-Programmer and internal documentation:
+-  libjpeg.doc       How to use the JPEG library in your own programs.
+-  example.c         Sample code for calling the JPEG library.
+-  structure.doc     Overview of the JPEG library's internal structure.
+-  filelist.doc      Road map of IJG files.
+-  coderules.doc     Coding style rules --- please read if you contribute code.
+-
+-Please read at least the files install.doc and usage.doc.  Useful information
+-can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See
+-ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
+-
+-If you want to understand how the JPEG code works, we suggest reading one or
+-more of the REFERENCES, then looking at the documentation files (in roughly
+-the order listed) before diving into the code.
+-
+-
+-OVERVIEW
+-========
+-
+-This package contains C software to implement JPEG image compression and
+-decompression.  JPEG (pronounced "jay-peg") is a standardized compression
+-method for full-color and gray-scale images.  JPEG is intended for compressing
+-"real-world" scenes; line drawings, cartoons and other non-realistic images
+-are not its strong suit.  JPEG is lossy, meaning that the output image is not
+-exactly identical to the input image.  Hence you must not use JPEG if you
+-have to have identical output bits.  However, on typical photographic images,
+-very good compression levels can be obtained with no visible change, and
+-remarkably high compression levels are possible if you can tolerate a
+-low-quality image.  For more details, see the references, or just experiment
+-with various compression settings.
+-
+-This software implements JPEG baseline, extended-sequential, and progressive
+-compression processes.  Provision is made for supporting all variants of these
+-processes, although some uncommon parameter settings aren't implemented yet.
+-For legal reasons, we are not distributing code for the arithmetic-coding
+-variants of JPEG; see LEGAL ISSUES.  We have made no provision for supporting
+-the hierarchical or lossless processes defined in the standard.
+-
+-We provide a set of library routines for reading and writing JPEG image files,
+-plus two sample applications "cjpeg" and "djpeg", which use the library to
+-perform conversion between JPEG and some other popular image file formats.
+-The library is intended to be reused in other applications.
+-
+-In order to support file conversion and viewing software, we have included
+-considerable functionality beyond the bare JPEG coding/decoding capability;
+-for example, the color quantization modules are not strictly part of JPEG
+-decoding, but they are essential for output to colormapped file formats or
+-colormapped displays.  These extra functions can be compiled out of the
+-library if not required for a particular application.  We have also included
+-"jpegtran", a utility for lossless transcoding between different JPEG
+-processes, and "rdjpgcom" and "wrjpgcom", two simple applications for
+-inserting and extracting textual comments in JFIF files.
+-
+-The emphasis in designing this software has been on achieving portability and
+-flexibility, while also making it fast enough to be useful.  In particular,
+-the software is not intended to be read as a tutorial on JPEG.  (See the
+-REFERENCES section for introductory material.)  Rather, it is intended to
+-be reliable, portable, industrial-strength code.  We do not claim to have
+-achieved that goal in every aspect of the software, but we strive for it.
+-
+-We welcome the use of this software as a component of commercial products.
+-No royalty is required, but we do ask for an acknowledgement in product
+-documentation, as described under LEGAL ISSUES.
+-
+-
+-LEGAL ISSUES
+-============
+-
+-In plain English:
+-
+-1. We don't promise that this software works.  (But if you find any bugs,
+-   please let us know!)
+-2. You can use this software for whatever you want.  You don't have to pay us.
+-3. You may not pretend that you wrote this software.  If you use it in a
+-   program, you must acknowledge somewhere in your documentation that
+-   you've used the IJG code.
+-
+-In legalese:
+-
+-The authors make NO WARRANTY or representation, either express or implied,
+-with respect to this software, its quality, accuracy, merchantability, or
+-fitness for a particular purpose.  This software is provided "AS IS", and you,
+-its user, assume the entire risk as to its quality and accuracy.
+-
+-This software is copyright (C) 1991-1998, Thomas G. Lane.
+-All Rights Reserved except as specified below.
+-
+-Permission is hereby granted to use, copy, modify, and distribute this
+-software (or portions thereof) for any purpose, without fee, subject to these
+-conditions:
+-(1) If any part of the source code for this software is distributed, then this
+-README file must be included, with this copyright and no-warranty notice
+-unaltered; and any additions, deletions, or changes to the original files
+-must be clearly indicated in accompanying documentation.
+-(2) If only executable code is distributed, then the accompanying
+-documentation must state that "this software is based in part on the work of
+-the Independent JPEG Group".
+-(3) Permission for use of this software is granted only if the user accepts
+-full responsibility for any undesirable consequences; the authors accept
+-NO LIABILITY for damages of any kind.
+-
+-These conditions apply to any software derived from or based on the IJG code,
+-not just to the unmodified library.  If you use our work, you ought to
+-acknowledge us.
+-
+-Permission is NOT granted for the use of any IJG author's name or company name
+-in advertising or publicity relating to this software or products derived from
+-it.  This software may be referred to only as "the Independent JPEG Group's
+-software".
+-
+-We specifically permit and encourage the use of this software as the basis of
+-commercial products, provided that all warranty or liability claims are
+-assumed by the product vendor.
+-
+-
+-ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
+-sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
+-ansi2knr.c is NOT covered by the above copyright and conditions, but instead
+-by the usual distribution terms of the Free Software Foundation; principally,
+-that you must include source code if you redistribute it.  (See the file
+-ansi2knr.c for full details.)  However, since ansi2knr.c is not needed as part
+-of any program generated from the IJG code, this does not limit you more than
+-the foregoing paragraphs do.
+-
+-The Unix configuration script "configure" was produced with GNU Autoconf.
+-It is copyright by the Free Software Foundation but is freely distributable.
+-The same holds for its supporting scripts (config.guess, config.sub,
+-ltconfig, ltmain.sh).  Another support script, install-sh, is copyright
+-by M.I.T. but is also freely distributable.
+-
+-It appears that the arithmetic coding option of the JPEG spec is covered by
+-patents owned by IBM, AT&T, and Mitsubishi.  Hence arithmetic coding cannot
+-legally be used without obtaining one or more licenses.  For this reason,
+-support for arithmetic coding has been removed from the free JPEG software.
+-(Since arithmetic coding provides only a marginal gain over the unpatented
+-Huffman mode, it is unlikely that very many implementations will support it.)
+-So far as we are aware, there are no patent restrictions on the remaining
+-code.
+-
+-The IJG distribution formerly included code to read and write GIF files.
+-To avoid entanglement with the Unisys LZW patent, GIF reading support has
+-been removed altogether, and the GIF writer has been simplified to produce
+-"uncompressed GIFs".  This technique does not use the LZW algorithm; the
+-resulting GIF files are larger than usual, but are readable by all standard
+-GIF decoders.
+-
+-We are required to state that
+-    "The Graphics Interchange Format(c) is the Copyright property of
+-    CompuServe Incorporated.  GIF(sm) is a Service Mark property of
+-    CompuServe Incorporated."
+-
+-
+-REFERENCES
+-==========
+-
+-We highly recommend reading one or more of these references before trying to
+-understand the innards of the JPEG software.
+-
+-The best short technical introduction to the JPEG compression algorithm is
+-	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
+-	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
+-(Adjacent articles in that issue discuss MPEG motion picture compression,
+-applications of JPEG, and related topics.)  If you don't have the CACM issue
+-handy, a PostScript file containing a revised version of Wallace's article is
+-available at ftp://ftp.uu.net/graphics/jpeg/wallace.ps.gz.  The file (actually
+-a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
+-omits the sample images that appeared in CACM, but it includes corrections
+-and some added material.  Note: the Wallace article is copyright ACM and IEEE,
+-and it may not be used for commercial purposes.
+-
+-A somewhat less technical, more leisurely introduction to JPEG can be found in
+-"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
+-M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides
+-good explanations and example C code for a multitude of compression methods
+-including JPEG.  It is an excellent source if you are comfortable reading C
+-code but don't know much about data compression in general.  The book's JPEG
+-sample code is far from industrial-strength, but when you are ready to look
+-at a full implementation, you've got one here...
+-
+-The best full description of JPEG is the textbook "JPEG Still Image Data
+-Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published
+-by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.  Price US$59.95, 638 pp.
+-The book includes the complete text of the ISO JPEG standards (DIS 10918-1
+-and draft DIS 10918-2).  This is by far the most complete exposition of JPEG
+-in existence, and we highly recommend it.
+-
+-The JPEG standard itself is not available electronically; you must order a
+-paper copy through ISO or ITU.  (Unless you feel a need to own a certified
+-official copy, we recommend buying the Pennebaker and Mitchell book instead;
+-it's much cheaper and includes a great deal of useful explanatory material.)
+-In the USA, copies of the standard may be ordered from ANSI Sales at (212)
+-642-4900, or from Global Engineering Documents at (800) 854-7179.  (ANSI
+-doesn't take credit card orders, but Global does.)  It's not cheap: as of
+-1992, ANSI was charging $95 for Part 1 and $47 for Part 2, plus 7%
+-shipping/handling.  The standard is divided into two parts, Part 1 being the
+-actual specification, while Part 2 covers compliance testing methods.  Part 1
+-is titled "Digital Compression and Coding of Continuous-tone Still Images,
+-Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
+-10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of
+-Continuous-tone Still Images, Part 2: Compliance testing" and has document
+-numbers ISO/IEC IS 10918-2, ITU-T T.83.
+-
+-Some extensions to the original JPEG standard are defined in JPEG Part 3,
+-a newer ISO standard numbered ISO/IEC IS 10918-3 and ITU-T T.84.  IJG
+-currently does not support any Part 3 extensions.
+-
+-The JPEG standard does not specify all details of an interchangeable file
+-format.  For the omitted details we follow the "JFIF" conventions, revision
+-1.02.  A copy of the JFIF spec is available from:
+-	Literature Department
+-	C-Cube Microsystems, Inc.
+-	1778 McCarthy Blvd.
+-	Milpitas, CA 95035
+-	phone (408) 944-6300,  fax (408) 944-6314
+-A PostScript version of this document is available by FTP at
+-ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.  There is also a plain text
+-version at ftp://ftp.uu.net/graphics/jpeg/jfif.txt.gz, but it is missing
+-the figures.
+-
+-The TIFF 6.0 file format specification can be obtained by FTP from
+-ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme
+-found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
+-IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
+-Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
+-(Compression tag 7).  Copies of this Note can be obtained from ftp.sgi.com or
+-from ftp://ftp.uu.net/graphics/jpeg/.  It is expected that the next revision
+-of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
+-Although IJG's own code does not support TIFF/JPEG, the free libtiff library
+-uses our library to implement TIFF/JPEG per the Note.  libtiff is available
+-from ftp://ftp.sgi.com/graphics/tiff/.
+-
+-
+-ARCHIVE LOCATIONS
+-=================
+-
+-The "official" archive site for this software is ftp.uu.net (Internet
+-address 192.48.96.9).  The most recent released version can always be found
+-there in directory graphics/jpeg.  This particular version will be archived
+-as ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz.  If you don't have
+-direct Internet access, UUNET's archives are also available via UUCP; contact
+-help@uunet.uu.net for information on retrieving files that way.
+-
+-Numerous Internet sites maintain copies of the UUNET files.  However, only
+-ftp.uu.net is guaranteed to have the latest official version.
+-
+-You can also obtain this software in DOS-compatible "zip" archive format from
+-the SimTel archives (ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/), or
+-on CompuServe in the Graphics Support forum (GO CIS:GRAPHSUP), library 12
+-"JPEG Tools".  Again, these versions may sometimes lag behind the ftp.uu.net
+-release.
+-
+-The JPEG FAQ (Frequently Asked Questions) article is a useful source of
+-general information about JPEG.  It is updated constantly and therefore is
+-not included in this distribution.  The FAQ is posted every two weeks to
+-Usenet newsgroups comp.graphics.misc, news.answers, and other groups.
+-It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
+-and other news.answers archive sites, including the official news.answers
+-archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
+-If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
+-with body
+-	send usenet/news.answers/jpeg-faq/part1
+-	send usenet/news.answers/jpeg-faq/part2
+-
+-
+-RELATED SOFTWARE
+-================
+-
+-Numerous viewing and image manipulation programs now support JPEG.  (Quite a
+-few of them use this library to do so.)  The JPEG FAQ described above lists
+-some of the more popular free and shareware viewers, and tells where to
+-obtain them on Internet.
+-
+-If you are on a Unix machine, we highly recommend Jef Poskanzer's free
+-PBMPLUS software, which provides many useful operations on PPM-format image
+-files.  In particular, it can convert PPM images to and from a wide range of
+-other formats, thus making cjpeg/djpeg considerably more useful.  The latest
+-version is distributed by the NetPBM group, and is available from numerous
+-sites, notably ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/.
+-Unfortunately PBMPLUS/NETPBM is not nearly as portable as the IJG software is;
+-you are likely to have difficulty making it work on any non-Unix machine.
+-
+-A different free JPEG implementation, written by the PVRG group at Stanford,
+-is available from ftp://havefun.stanford.edu/pub/jpeg/.  This program
+-is designed for research and experimentation rather than production use;
+-it is slower, harder to use, and less portable than the IJG code, but it
+-is easier to read and modify.  Also, the PVRG code supports lossless JPEG,
+-which we do not.  (On the other hand, it doesn't do progressive JPEG.)
+-
+-
+-FILE FORMAT WARS
+-================
+-
+-Some JPEG programs produce files that are not compatible with our library.
+-The root of the problem is that the ISO JPEG committee failed to specify a
+-concrete file format.  Some vendors "filled in the blanks" on their own,
+-creating proprietary formats that no one else could read.  (For example, none
+-of the early commercial JPEG implementations for the Macintosh were able to
+-exchange compressed files.)
+-
+-The file format we have adopted is called JFIF (see REFERENCES).  This format
+-has been agreed to by a number of major commercial JPEG vendors, and it has
+-become the de facto standard.  JFIF is a minimal or "low end" representation.
+-We recommend the use of TIFF/JPEG (TIFF revision 6.0 as modified by TIFF
+-Technical Note #2) for "high end" applications that need to record a lot of
+-additional data about an image.  TIFF/JPEG is fairly new and not yet widely
+-supported, unfortunately.
+-
+-The upcoming JPEG Part 3 standard defines a file format called SPIFF.
+-SPIFF is interoperable with JFIF, in the sense that most JFIF decoders should
+-be able to read the most common variant of SPIFF.  SPIFF has some technical
+-advantages over JFIF, but its major claim to fame is simply that it is an
+-official standard rather than an informal one.  At this point it is unclear
+-whether SPIFF will supersede JFIF or whether JFIF will remain the de-facto
+-standard.  IJG intends to support SPIFF once the standard is frozen, but we
+-have not decided whether it should become our default output format or not.
+-(In any case, our decoder will remain capable of reading JFIF indefinitely.)
+-
+-Various proprietary file formats incorporating JPEG compression also exist.
+-We have little or no sympathy for the existence of these formats.  Indeed,
+-one of the original reasons for developing this free software was to help
+-force convergence on common, open format standards for JPEG files.  Don't
+-use a proprietary file format!
+-
+-
+-TO DO
+-=====
+-
+-The major thrust for v7 will probably be improvement of visual quality.
+-The current method for scaling the quantization tables is known not to be
+-very good at low Q values.  We also intend to investigate block boundary
+-smoothing, "poor man's variable quantization", and other means of improving
+-quality-vs-file-size performance without sacrificing compatibility.
+-
+-In future versions, we are considering supporting some of the upcoming JPEG
+-Part 3 extensions --- principally, variable quantization and the SPIFF file
+-format.
+-
+-As always, speeding things up is of great interest.
+-
+-Please send bug reports, offers of help, etc. to jpeg-info@uunet.uu.net.
+--- openjdk.old/j2se/make/sun/jpeg/Makefile	2007-10-12 03:54:08.000000000 -0400
++++ openjdk/j2se/make/sun/jpeg/Makefile	2007-10-24 15:15:25.000000000 -0400
+@@ -68,6 +68,8 @@
+ include $(BUILDDIR)/common/Mapfile-vers.gmk
+ include $(BUILDDIR)/common/Library.gmk
+ 
++LDLIBS += -ljpeg -ldl 
++
+ #
+ # Add to ambient vpath to get files in a subdirectory
+ #
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/jpegdecoder.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/jpegdecoder.c	2007-10-24 22:15:52.000000000 -0400
+@@ -45,7 +45,9 @@
+ #undef boolean
+ #undef FAR
+ #include <jpeglib.h>
+-#include "jerror.h"
++#include <jerror.h>
++#include <dlfcn.h>
++
+ 
+ /* The method IDs we cache. Note that the last two belongs to the
+  * java.io.InputStream class.
+@@ -56,6 +58,32 @@
+ static jmethodID InputStream_readID;
+ static jmethodID InputStream_availableID;
+ 
++typedef struct jpeg_error_mgr * (*fn_jpegstderror)(struct jpeg_error_mgr *);
++typedef void (*fn_jpegcreatedecompress)(j_decompress_ptr, int, size_t);
++typedef boolean (*fn_jpegresynctorestart)(j_decompress_ptr, int);
++typedef JDIMENSION (*fn_jpegreadscanlines)(j_decompress_ptr, JSAMPARRAY, JDIMENSION);
++typedef boolean (*fn_jpegfinishoutput)(j_decompress_ptr);
++typedef int (*fn_jpegreadheader)(j_decompress_ptr, boolean);
++typedef boolean (*fn_jpegstartdecompress)(j_decompress_ptr);
++typedef boolean (*fn_jpeghasmultiplescans)(j_decompress_ptr);
++typedef void (*fn_jpegdestroydecompress)(j_decompress_ptr);
++typedef int (*fn_jpegconsumeinput)(j_decompress_ptr);
++typedef boolean (*fn_jpegfinishdecompress)(j_decompress_ptr);
++typedef boolean (*fn_jpegstartoutput)(j_decompress_ptr, int);
++
++fn_jpegstderror jpegstderror;
++fn_jpegstartoutput jpegstartoutput;
++fn_jpegfinishdecompress jpegfinishdecompress;
++fn_jpegconsumeinput jpegconsumeinput;
++fn_jpegdestroydecompress jpegdestroydecompress; 
++fn_jpeghasmultiplescans jpeghasmultiplescans;
++fn_jpegstartdecompress jpegstartdecompress;
++fn_jpegreadheader jpegreadheader;
++fn_jpegfinishoutput jpegfinishoutput;
++fn_jpegreadscanlines jpegreadscanlines;
++fn_jpegresynctorestart jpegresynctorestart;
++fn_jpegcreatedecompress jpegcreatedecompress;
++
+ /* Initialize the Java VM instance variable when the library is 
+    first loaded */
+ JavaVM *jvm;
+@@ -462,6 +490,68 @@
+ Java_sun_awt_image_JPEGImageDecoder_initIDs(JNIEnv *env, jclass cls, 
+ 					    jclass InputStreamClass)
+ {
++    void *handle = dlopen("/usr/lib/libjpeg.so", RTLD_LAZY | RTLD_GLOBAL);
++    
++    jpegstderror = (fn_jpegstderror)dlsym(handle, "jpeg_std_error");
++    if (jpegstderror == NULL) {
++       dlclose(handle);
++    }
++
++    jpegdestroydecompress = (fn_jpegdestroydecompress)dlsym(handle, "jpeg_destroy_decompress");
++    if (jpegdestroydecompress == NULL) {
++       dlclose(handle);
++    }  
++
++    jpegcreatedecompress = (fn_jpegcreatedecompress)dlsym(handle, "jpeg_CreateDecompress");
++    if (jpegcreatedecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegreadheader = (fn_jpegreadheader)dlsym(handle, "jpeg_read_header");
++    if (jpegreadheader == NULL) {
++       dlclose(handle);
++    }
++
++    jpeghasmultiplescans = (fn_jpeghasmultiplescans)dlsym(handle, "jpeg_has_multiple_scans");
++    if (jpeghasmultiplescans == NULL) {
++       dlclose(handle);
++    }
++
++    jpegstartdecompress = (fn_jpegstartdecompress)dlsym(handle, "jpeg_start_decompress");
++    if (jpegstartdecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegconsumeinput = (fn_jpegconsumeinput)dlsym(handle, "jpeg_consume_input");
++    if (jpegconsumeinput == NULL) {
++       dlclose(handle);
++    }
++
++    jpegstartoutput = (fn_jpegstartoutput)dlsym(handle, "jpeg_start_output");
++    if (jpegstartoutput == NULL) {
++       dlclose(handle);
++    }
++
++    jpegfinishdecompress = (fn_jpegfinishdecompress)dlsym(handle, "jpeg_finish_decompress");
++    if (jpegfinishdecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegreadscanlines = (fn_jpegreadscanlines)dlsym(handle, "jpeg_read_scanlines");
++    if (jpegreadscanlines == NULL) {
++       dlclose(handle);
++    }
++
++    jpegfinishoutput = (fn_jpegfinishoutput)dlsym(handle, "jpeg_finish_output");
++    if (jpegfinishoutput == NULL) {
++       dlclose(handle);
++    }
++
++    jpegresynctorestart = (fn_jpegresynctorestart)dlsym(handle, "jpeg_resync_to_restart");
++    if (jpegresynctorestart == NULL) {
++       dlclose(handle);
++    }
++
+     sendHeaderInfoID = (*env)->GetMethodID(env, cls, "sendHeaderInfo", 
+ 					   "(IIZZZ)Z");
+     sendPixelsByteID = (*env)->GetMethodID(env, cls, "sendPixels", "([BI)Z");
+@@ -519,7 +609,7 @@
+   /* Step 1: allocate and initialize JPEG decompression object */
+ 
+   /* We set up the normal JPEG error routines, then override error_exit. */
+-  cinfo.err = jpeg_std_error(&jerr.pub);
++  cinfo.err = jpegstderror(&jerr.pub);
+   jerr.pub.error_exit = sun_jpeg_error_exit;
+ 
+   /* We need to setup our own print routines */
+@@ -530,7 +620,7 @@
+     /* If we get here, the JPEG code has signaled an error.
+      * We need to clean up the JPEG object, close the input file, and return.
+      */
+-    jpeg_destroy_decompress(&cinfo);
++    jpegdestroydecompress(&cinfo);
+     RELEASE_ARRAYS(env, &jsrc);
+     if (!(*env)->ExceptionOccurred(env)) {
+ 	char buffer[JMSG_LENGTH_MAX];
+@@ -541,7 +631,7 @@
+     return;
+   }
+   /* Now we can initialize the JPEG decompression object. */
+-  jpeg_create_decompress(&cinfo);
++  jpegcreatedecompress(&cinfo, JPEG_LIB_VERSION, (size_t) sizeof(struct jpeg_decompress_struct));
+ 
+   /* Step 2: specify data source (eg, a file) */
+ 
+@@ -555,17 +645,17 @@
+   jsrc.pub.init_source = sun_jpeg_init_source;
+   jsrc.pub.fill_input_buffer = sun_jpeg_fill_input_buffer;
+   jsrc.pub.skip_input_data = sun_jpeg_skip_input_data;
+-  jsrc.pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
++  jsrc.pub.resync_to_restart = jpegresynctorestart; /* use default method */
+   jsrc.pub.term_source = sun_jpeg_term_source;
+   if (!GET_ARRAYS(env, &jsrc)) {
+-    jpeg_destroy_decompress(&cinfo);
++    jpegdestroydecompress(&cinfo);
+     return;
+   }
+   /* Step 3: read file parameters with jpeg_read_header() */
+ 
+-  (void) jpeg_read_header(&cinfo, TRUE);
++  (void) jpegreadheader(&cinfo, TRUE);
+   /* select buffered-image mode if it is a progressive JPEG only */
+-  buffered_mode = cinfo.buffered_image = jpeg_has_multiple_scans(&cinfo);
++  buffered_mode = cinfo.buffered_image = jpeghasmultiplescans(&cinfo);
+   grayscale = (cinfo.out_color_space == JCS_GRAYSCALE);
+ #ifdef YCCALPHA
+   hasalpha = (cinfo.out_color_space == JCS_RGBA);
+@@ -584,7 +674,7 @@
+ 				  grayscale, hasalpha, buffered_mode);
+   if ((*env)->ExceptionOccurred(env) || !ret) {
+     /* No more interest in this image... */
+-    jpeg_destroy_decompress(&cinfo);
++    jpegdestroydecompress(&cinfo);
+     return;
+   }
+   /* Make a one-row-high sample array with enough room to expand to ints */
+@@ -595,7 +685,7 @@
+   }
+ 
+   if (jsrc.hOutputBuffer == 0 || !GET_ARRAYS(env, &jsrc)) {
+-    jpeg_destroy_decompress(&cinfo);
++    jpegdestroydecompress(&cinfo);
+     return;
+   }
+   
+@@ -613,7 +703,7 @@
+ 
+   /* Step 5: Start decompressor */
+ 
+-  jpeg_start_decompress(&cinfo);
++  jpegstartdecompress(&cinfo);
+ 
+   /* We may need to do some setup of our own at this point before reading
+    * the data.  After jpeg_start_decompress() we have the correct scaled
+@@ -638,28 +728,28 @@
+ 	  do {
+ 	      sun_jpeg_fill_suspended_buffer(&cinfo);
+ 	      jsrc.suspendable = TRUE;
+-	      ret = jpeg_consume_input(&cinfo);
++	      ret = jpegconsumeinput(&cinfo);
+ 	      jsrc.suspendable = FALSE;
+ 	  } while (ret != JPEG_SUSPENDED && ret != JPEG_REACHED_EOI);
+ 	  if (ret == JPEG_REACHED_EOI) {
+ 	      final_pass = TRUE;
+ 	      cinfo.dct_method = JDCT_ISLOW;
+ 	  }
+-	  jpeg_start_output(&cinfo, cinfo.input_scan_number);
++	  jpegstartoutput(&cinfo, cinfo.input_scan_number);
+       }
+       while (cinfo.output_scanline < cinfo.output_height) {
+ 	  if (! final_pass) {
+ 	      do {
+ 		  sun_jpeg_fill_suspended_buffer(&cinfo);
+ 		  jsrc.suspendable = TRUE;
+-		  ret = jpeg_consume_input(&cinfo);
++		  ret = jpegconsumeinput(&cinfo);
+ 		  jsrc.suspendable = FALSE;
+ 	      } while (ret != JPEG_SUSPENDED && ret != JPEG_REACHED_EOI);
+ 	      if (ret == JPEG_REACHED_EOI) {
+ 		  break;
+ 	      }
+ 	  }
+-	  (void) jpeg_read_scanlines(&cinfo, (JSAMPARRAY) &(jsrc.outbuf), 1);
++	  (void) jpegreadscanlines(&cinfo, (JSAMPARRAY) &(jsrc.outbuf), 1);
+ 
+ 	  if (grayscale) {
+ 	      RELEASE_ARRAYS(env, &jsrc);
+@@ -695,18 +785,18 @@
+ 	  if ((*env)->ExceptionOccurred(env) || !ret || 
+ 	      !GET_ARRAYS(env, &jsrc)) {
+ 	      /* No more interest in this image... */
+-	      jpeg_destroy_decompress(&cinfo);
++	      jpegdestroydecompress(&cinfo);
+ 	      return;
+ 	  }
+       }
+       if (buffered_mode) {
+-	  jpeg_finish_output(&cinfo);
++	  jpegfinishoutput(&cinfo);
+       }
+   } while (! final_pass);
+ 
+   /* Step 7: Finish decompression */
+ 
+-  (void) jpeg_finish_decompress(&cinfo);
++  (void) jpegfinishdecompress(&cinfo);
+   /* We can ignore the return value since suspension is not possible
+    * with the stdio data source.
+    * (nor with the Java data source)
+@@ -715,7 +805,7 @@
+   /* Step 8: Release JPEG decompression object */
+ 
+   /* This is an important step since it will release a good deal of memory. */
+-  jpeg_destroy_decompress(&cinfo);
++  jpegdestroydecompress(&cinfo);
+ 
+   /* After finish_decompress, we can close the input file.
+    * Here we postpone it until after no more JPEG errors are possible,
+--- openjdk.old/j2se/src/share/native/sun/awt/image/jpeg/imageioJPEG.c	2007-10-12 04:03:48.000000000 -0400
++++ openjdk/j2se/src/share/native/sun/awt/image/jpeg/imageioJPEG.c	2007-10-24 22:21:25.000000000 -0400
+@@ -51,7 +51,9 @@
+ 
+ /* headers from the JPEG library */
+ #include <jpeglib.h>
+-#include "jerror.h"
++#include <jerror.h>
++
++#include <dlfcn.h>
+ 
+ #undef MAX
+ #define MAX(a,b)	((a) > (b) ? (a) : (b))
+@@ -75,6 +77,62 @@
+ static jfieldID JPEGHuffmanTable_lengthsID;
+ static jfieldID JPEGHuffmanTable_valuesID;
+ 
++static void initIDs();
++
++typedef struct jpeg_error_mgr * (*fn_jpegstderror)(struct jpeg_error_mgr *);
++typedef boolean (*fn_jpegresynctorestart)(j_decompress_ptr, int);
++typedef JDIMENSION (*fn_jpegreadscanlines)(j_decompress_ptr, JSAMPARRAY, JDIMENSION);
++typedef boolean (*fn_jpegfinishoutput)(j_decompress_ptr);
++typedef int (*fn_jpegreadheader)(j_decompress_ptr, boolean);
++typedef boolean (*fn_jpegstartdecompress)(j_decompress_ptr);
++typedef boolean (*fn_jpeghasmultiplescans)(j_decompress_ptr);
++typedef boolean (*fn_jpegfinishdecompress)(j_decompress_ptr);
++typedef boolean (*fn_jpegstartoutput)(j_decompress_ptr, int);
++typedef void (*fn_jpegabort)(j_common_ptr);
++typedef void (*fn_jpegabortdecompress)(j_decompress_ptr);
++typedef JHUFF_TBL * (*fn_jpegallochufftable)(j_common_ptr);
++typedef JQUANT_TBL * (*fn_jpegallocquanttable)(j_common_ptr);
++typedef void (*fn_jpegcreatecompress)(j_compress_ptr, int, size_t);
++typedef void (*fn_jpegcreatedecompress)(j_decompress_ptr, int, size_t);
++typedef void (*fn_jpegdestroy)(j_common_ptr);
++typedef void (*fn_jpegfinishcompress)(j_compress_ptr);
++typedef boolean (*fn_jpeginputcomplete)(j_decompress_ptr);
++typedef void (*fn_jpegsavemarkers)(j_decompress_ptr, int, unsigned int);
++typedef void (*fn_jpegsetcolorspace)(j_compress_ptr, J_COLOR_SPACE);
++typedef void (*fn_jpegsetdefaults)(j_compress_ptr);
++typedef void (*fn_jpegsimpleprogression)(j_compress_ptr);
++typedef void (*fn_jpegstartcompress)(j_compress_ptr, boolean);
++typedef void (*fn_jpegsuppresstables)(j_compress_ptr, boolean);
++typedef JDIMENSION (*fn_jpegwritescanlines)(j_compress_ptr, JSAMPARRAY, JDIMENSION);
++typedef void (*fn_jpegwritetables)(j_compress_ptr);
++
++fn_jpegabort jpegabort;
++fn_jpegabortdecompress jpegabortdecompress;
++fn_jpegallochufftable jpegallochufftable;
++fn_jpegallocquanttable jpegallocquanttable;
++fn_jpegcreatecompress jpegcreatecompress;
++fn_jpegcreatedecompress jpegcreatedecompress;
++fn_jpegdestroy jpegdestroy;
++fn_jpegfinishcompress jpegfinishcompress;
++fn_jpeginputcomplete jpeginputcomplete;
++fn_jpegsavemarkers jpegsavemarkers;
++fn_jpegsetcolorspace jpegsetcolorspace;
++fn_jpegsetdefaults jpegsetdefaults;
++fn_jpegsimpleprogression jpegsimpleprogression;
++fn_jpegstartcompress jpegstartcompress;
++fn_jpegsuppresstables jpegsuppresstables;
++fn_jpegwritescanlines jpegwritescanlines;
++fn_jpegwritetables jpegwritetables;
++fn_jpegstderror jpegstderror;
++fn_jpegstartoutput jpegstartoutput;
++fn_jpegfinishdecompress jpegfinishdecompress;
++fn_jpeghasmultiplescans jpeghasmultiplescans;
++fn_jpegstartdecompress jpegstartdecompress;
++fn_jpegreadheader jpegreadheader;
++fn_jpegfinishoutput jpegfinishoutput;
++fn_jpegreadscanlines jpegreadscanlines;
++fn_jpegresynctorestart jpegresynctorestart;
++
+ /* 
+  * Defined in jpegdecoder.c.  Copy code from there if and
+  * when that disappears. */
+@@ -606,7 +664,7 @@
+         return;
+     }
+ 
+-    jpeg_abort(cinfo);  // Frees any markers, but not tables
++    jpegabort(cinfo);  // Frees any markers, but not tables
+ 
+ }
+ 
+@@ -631,7 +689,7 @@
+         return;
+     }
+ 
+-    jpeg_abort(cinfo);  // Does not reset tables
++    jpegabort(cinfo);  // Does not reset tables
+ 
+ }
+ 
+@@ -649,7 +707,7 @@
+             free(cinfo->dest);
+             cinfo->dest = NULL;
+         }
+-        jpeg_destroy(info);
++        jpegdestroy(info);
+         free(info);
+     }
+ }
+@@ -685,14 +743,14 @@
+             decomp = (j_decompress_ptr) cinfo;
+             if (decomp->quant_tbl_ptrs[i] == NULL) {
+                 decomp->quant_tbl_ptrs[i] = 
+-                    jpeg_alloc_quant_table(cinfo);
++                    jpegallocquanttable(cinfo);
+             }
+             quant_ptr = decomp->quant_tbl_ptrs[i];
+         } else {
+             comp = (j_compress_ptr) cinfo;
+             if (comp->quant_tbl_ptrs[i] == NULL) {
+                 comp->quant_tbl_ptrs[i] = 
+-                    jpeg_alloc_quant_table(cinfo);
++                    jpegallocquanttable(cinfo);
+             }
+             quant_ptr = comp->quant_tbl_ptrs[i];
+         }
+@@ -768,14 +826,14 @@
+             decomp = (j_decompress_ptr) cinfo;
+             if (decomp->dc_huff_tbl_ptrs[i] == NULL) {
+                 decomp->dc_huff_tbl_ptrs[i] = 
+-                    jpeg_alloc_huff_table(cinfo);
++                    jpegallochufftable(cinfo);
+             }
+             huff_ptr = decomp->dc_huff_tbl_ptrs[i];
+         } else {
+             comp = (j_compress_ptr) cinfo;
+             if (comp->dc_huff_tbl_ptrs[i] == NULL) {
+                 comp->dc_huff_tbl_ptrs[i] = 
+-                    jpeg_alloc_huff_table(cinfo);
++                    jpegallochufftable(cinfo);
+             }
+             huff_ptr = comp->dc_huff_tbl_ptrs[i];
+         }
+@@ -789,14 +847,14 @@
+             decomp = (j_decompress_ptr) cinfo;
+             if (decomp->ac_huff_tbl_ptrs[i] == NULL) {
+                 decomp->ac_huff_tbl_ptrs[i] = 
+-                    jpeg_alloc_huff_table(cinfo);
++                    jpegallochufftable(cinfo);
+             }
+             huff_ptr = decomp->ac_huff_tbl_ptrs[i];
+         } else {
+             comp = (j_compress_ptr) cinfo;
+             if (comp->ac_huff_tbl_ptrs[i] == NULL) {
+                 comp->ac_huff_tbl_ptrs[i] = 
+-                    jpeg_alloc_huff_table(cinfo);
++                    jpegallochufftable(cinfo);
+             }
+             huff_ptr = comp->ac_huff_tbl_ptrs[i];
+         }
+@@ -1337,6 +1395,8 @@
+      jclass ImageInputStreamClass,
+      jclass qTableClass,
+      jclass huffClass) {
++   
++    initIDs();
+ 
+     ImageInputStream_readID = (*env)->GetMethodID(env, 
+                                                   ImageInputStreamClass,
+@@ -1422,7 +1482,7 @@
+     }
+ 
+     /* We set up the normal JPEG error routines, then override error_exit. */
+-    cinfo->err = jpeg_std_error(&(jerr->pub));
++    cinfo->err = jpegstderror(&(jerr->pub));
+     jerr->pub.error_exit = sun_jpeg_error_exit;
+     /* We need to setup our own print routines */
+     jerr->pub.output_message = sun_jpeg_output_message;
+@@ -1439,11 +1499,11 @@
+     }
+ 
+     /* Perform library initialization */
+-    jpeg_create_decompress(cinfo);
++    jpegcreatedecompress(cinfo, JPEG_LIB_VERSION, (size_t) sizeof(struct jpeg_decompress_struct));
+ 
+     // Set up to keep any APP2 markers, as these might contain ICC profile
+     // data
+-    jpeg_save_markers(cinfo, ICC_MARKER, 0xFFFF);
++    jpegsavemarkers(cinfo, ICC_MARKER, 0xFFFF);
+ 
+     /*
+      * Now set up our source.
+@@ -1461,7 +1521,7 @@
+     cinfo->src->init_source = imageio_init_source;
+     cinfo->src->fill_input_buffer = imageio_fill_input_buffer;
+     cinfo->src->skip_input_data = imageio_skip_input_data;
+-    cinfo->src->resync_to_restart = jpeg_resync_to_restart; // use default
++    cinfo->src->resync_to_restart = jpegresynctorestart; // use default
+     cinfo->src->term_source = imageio_term_source;
+ 
+     /* set up the association to persist for future calls */
+@@ -1579,7 +1639,7 @@
+         src->bytes_in_buffer = 0;
+     }
+ 
+-    ret = jpeg_read_header(cinfo, FALSE);
++    ret = jpegreadheader(cinfo, FALSE);
+ 
+     if (ret == JPEG_HEADER_TABLES_ONLY) {
+         retval = JNI_TRUE;
+@@ -1700,7 +1760,7 @@
+                                cinfo->num_components,
+                                read_icc_profile(env, cinfo));
+         if (reset) {
+-            jpeg_abort_decompress(cinfo);
++            jpegabortdecompress(cinfo);
+         }
+     }
+ 
+@@ -1896,7 +1956,7 @@
+                    TRUE);
+     }
+ 
+-    progressive = jpeg_has_multiple_scans(cinfo);
++    progressive = jpeghasmultiplescans(cinfo);
+     if (progressive) {
+         cinfo->buffered_image = TRUE;
+         cinfo->input_scan_number = minProgressivePass+1; // Java count from 0
+@@ -1908,7 +1968,7 @@
+ 
+     data->streamBuf.suspendable = FALSE;
+ 
+-    jpeg_start_decompress(cinfo);
++    jpegstartdecompress(cinfo);
+     
+     // loop over progressive passes
+     done = FALSE;
+@@ -1916,7 +1976,7 @@
+         if (progressive) {
+             // initialize the next pass.  Note that this skips up to
+             // the first interesting pass.
+-            jpeg_start_output(cinfo, cinfo->input_scan_number);
++            jpegstartoutput(cinfo, cinfo->input_scan_number);
+             if (wantUpdates) {
+                 (*env)->CallVoidMethod(env, this, 
+                                        JPEGImageReader_passStartedID,
+@@ -1932,7 +1992,7 @@
+         // Skip until the first interesting line
+         while ((data->abortFlag == JNI_FALSE) 
+                && ((jint)cinfo->output_scanline < sourceYStart)) {
+-            jpeg_read_scanlines(cinfo, &scanLinePtr, 1);
++            jpegreadscanlines(cinfo, &scanLinePtr, 1);
+         }
+ 
+         scanlineLimit = sourceYStart+sourceHeight;
+@@ -1945,7 +2005,7 @@
+         while ((data->abortFlag == JNI_FALSE) 
+                && ((jint)cinfo->output_scanline < scanlineLimit)) {
+             
+-            jpeg_read_scanlines(cinfo, &scanLinePtr, 1);
++            jpegreadscanlines(cinfo, &scanLinePtr, 1);
+ 
+             // Now mangle it into our buffer
+             out = data->pixelBuf.buf.bp;
+@@ -1993,13 +2053,13 @@
+                 skipLines = linesLeft;
+             }
+             for(i = 0; i < skipLines; i++) {
+-                jpeg_read_scanlines(cinfo, &scanLinePtr, 1);
++                jpegreadscanlines(cinfo, &scanLinePtr, 1);
+             }
+         }
+         if (progressive) {
+-            jpeg_finish_output(cinfo); // Increments pass counter
++            jpegfinishoutput(cinfo); // Increments pass counter
+             // Call Java to notify pass complete
+-            if (jpeg_input_complete(cinfo)
++            if (jpeginputcomplete(cinfo)
+                 || (cinfo->input_scan_number > maxProgressivePass)) {
+                 done = TRUE;
+             }
+@@ -2019,9 +2079,9 @@
+     if (cinfo->output_scanline == cinfo->output_height) {
+         //    if ((cinfo->output_scanline == cinfo->output_height) &&
+         //(jpeg_input_complete(cinfo))) {  // We read the whole file
+-        jpeg_finish_decompress(cinfo);
++        jpegfinishdecompress(cinfo);
+     } else {
+-        jpeg_abort_decompress(cinfo);
++        jpegabortdecompress(cinfo);
+     }
+ 
+     free(scanLinePtr);
+@@ -2067,7 +2127,7 @@
+ 
+     cinfo = (j_decompress_ptr) data->jpegObj;
+ 
+-    jpeg_abort_decompress(cinfo);
++    jpegabortdecompress(cinfo);
+ }
+ 
+ 
+@@ -2273,6 +2333,141 @@
+ 
+ /********************** end of destination manager ************/
+ 
++METHODDEF(void)
++initIDs()
++{
++    void *handle = dlopen("/usr/lib/libjpeg.so", RTLD_LAZY | RTLD_GLOBAL);
++    jpegstderror = (fn_jpegstderror)dlsym(handle, "jpeg_std_error");
++    if (jpegstderror == NULL) {
++       dlclose(handle);
++    }
++
++    jpegreadheader = (fn_jpegreadheader)dlsym(handle, "jpeg_read_header");
++    if (jpegreadheader == NULL) {
++       dlclose(handle);
++    }
++
++    jpeghasmultiplescans = (fn_jpeghasmultiplescans)dlsym(handle, "jpeg_has_multiple_scans");
++    if (jpeghasmultiplescans == NULL) {
++       dlclose(handle);
++    }
++
++    jpegstartdecompress = (fn_jpegstartdecompress)dlsym(handle, "jpeg_start_decompress");
++    if (jpegstartdecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegstartoutput = (fn_jpegstartoutput)dlsym(handle, "jpeg_start_output");
++    if (jpegstartoutput == NULL) {
++       dlclose(handle);
++    }
++
++    jpegfinishdecompress = (fn_jpegfinishdecompress)dlsym(handle, "jpeg_finish_decompress");
++    if (jpegfinishdecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegreadscanlines = (fn_jpegreadscanlines)dlsym(handle, "jpeg_read_scanlines");
++    if (jpegreadscanlines == NULL) {
++       dlclose(handle);
++    }
++
++    jpegfinishoutput = (fn_jpegfinishoutput)dlsym(handle, "jpeg_finish_output");
++    if (jpegfinishoutput == NULL) {
++       dlclose(handle);
++    }
++
++    jpegresynctorestart = (fn_jpegresynctorestart)dlsym(handle, "jpeg_resync_to_restart");
++    if (jpegresynctorestart == NULL) {
++       dlclose(handle);
++    }
++
++    jpegabort = (fn_jpegabort)dlsym(handle, "jpeg_abort");
++    if (jpegabort == NULL) {
++       dlclose(handle);
++    }
++ 
++    jpegabortdecompress = (fn_jpegabortdecompress)dlsym(handle, "jpeg_abort_decompress");
++    if (jpegabortdecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegallochufftable = (fn_jpegallochufftable)dlsym(handle, "jpeg_alloc_huff_table");
++    if (jpegallochufftable == NULL) {
++       dlclose(handle);
++    }
++
++    jpegallocquanttable = (fn_jpegallocquanttable)dlsym(handle, "jpeg_alloc_quant_table");
++    if (jpegallocquanttable == NULL) {
++       dlclose(handle);
++    }
++
++    jpegcreatecompress = (fn_jpegcreatecompress)dlsym(handle, "jpeg_CreateCompress");
++    if (jpegcreatecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegcreatedecompress = (fn_jpegcreatedecompress)dlsym(handle, "jpeg_CreateDecompress");
++    if (jpegcreatedecompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegdestroy = (fn_jpegdestroy)dlsym(handle, "jpeg_destroy");
++    if (jpegdestroy == NULL) {
++       dlclose(handle);
++    }
++
++    jpegfinishcompress = (fn_jpegfinishcompress)dlsym(handle, "jpeg_finish_compress");
++    if (jpegfinishcompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpeginputcomplete = (fn_jpeginputcomplete)dlsym(handle, "jpeg_input_complete");
++    if (jpeginputcomplete == NULL) {
++       dlclose(handle);
++    }
++
++    jpegsavemarkers = (fn_jpegsavemarkers)dlsym(handle, "jpeg_save_markers");
++    if (jpegsavemarkers == NULL) {
++       dlclose(handle);
++    }
++
++    jpegsetcolorspace = (fn_jpegsetcolorspace)dlsym(handle, "jpeg_set_colorspace");
++    if (jpegsetcolorspace == NULL) {
++       dlclose(handle);
++    }
++
++    jpegsetdefaults = (fn_jpegsetdefaults)dlsym(handle, "jpeg_set_defaults");
++    if (jpegsetdefaults == NULL) {
++       dlclose(handle);
++    }
++
++    jpegsimpleprogression = (fn_jpegsimpleprogression)dlsym(handle, "jpeg_simple_progression");
++    if (jpegsimpleprogression == NULL) {
++       dlclose(handle);
++    }
++
++    jpegstartcompress = (fn_jpegstartcompress)dlsym(handle, "jpeg_start_compress");
++    if (jpegstartcompress == NULL) {
++       dlclose(handle);
++    }
++
++    jpegsuppresstables = (fn_jpegsuppresstables)dlsym(handle, "jpeg_suppress_tables");
++    if (jpegsuppresstables == NULL) {
++       dlclose(handle);
++    }
++
++    jpegwritescanlines = (fn_jpegwritescanlines)dlsym(handle, "jpeg_write_scanlines");
++    if (jpegwritescanlines == NULL) {
++       dlclose(handle);
++    }
++
++    jpegwritetables = (fn_jpegwritetables)dlsym(handle, "jpeg_write_tables");
++    if (jpegwritetables == NULL) {
++       dlclose(handle);
++    }
++}
++
+ /********************** Writer JNI calls **********************/
+ 
+ 
+@@ -2284,6 +2479,8 @@
+      jclass qTableClass,
+      jclass huffClass) {
+ 
++    initIDs();
++
+     ImageOutputStream_writeID = (*env)->GetMethodID(env, 
+                                                     IOSClass,
+                                                     "write",
+@@ -2357,7 +2554,7 @@
+     }
+ 
+     /* We set up the normal JPEG error routines, then override error_exit. */
+-    cinfo->err = jpeg_std_error(&(jerr->pub));
++    cinfo->err = jpegstderror(&(jerr->pub));
+     jerr->pub.error_exit = sun_jpeg_error_exit;
+     /* We need to setup our own print routines */
+     jerr->pub.output_message = sun_jpeg_output_message;
+@@ -2374,7 +2571,7 @@
+     }
+ 
+     /* Perform library initialization */
+-    jpeg_create_compress(cinfo);
++    jpegcreatecompress(cinfo, JPEG_LIB_VERSION, (size_t) sizeof(struct jpeg_compress_struct));
+ 
+     /* Now set up the destination  */
+     dest = malloc(sizeof(struct jpeg_destination_mgr));
+@@ -2483,7 +2680,7 @@
+         return;
+     }
+     
+-    jpeg_suppress_tables(cinfo, TRUE);  // Suppress writing of any current
++    jpegsuppresstables(cinfo, TRUE);  // Suppress writing of any current
+ 
+     data->streamBuf.suspendable = FALSE;
+     if (qtables != NULL) {
+@@ -2498,7 +2695,7 @@
+                    DCHuffmanTables, ACHuffmanTables, TRUE);
+     }
+ 
+-    jpeg_write_tables(cinfo); // Flushes the buffer for you
++    jpegwritetables(cinfo); // Flushes the buffer for you
+     RELEASE_ARRAYS(env, data, NULL);
+ }
+ 
+@@ -2662,9 +2859,9 @@
+     cinfo->input_components = numBands;
+     cinfo->in_color_space = inCs;
+ 
+-    jpeg_set_defaults(cinfo);
++    jpegsetdefaults(cinfo);
+ 
+-    jpeg_set_colorspace(cinfo, outCs);
++    jpegsetcolorspace(cinfo, outCs);
+ 
+     cinfo->optimize_coding = optimize;
+ 
+@@ -2701,7 +2898,7 @@
+     (*env)->ReleaseIntArrayElements(env, QtableSelectors, 
+                                     qsels, JNI_ABORT);
+ 
+-    jpeg_suppress_tables(cinfo, TRUE);  // Disable writing any current
++    jpegsuppresstables(cinfo, TRUE);  // Disable writing any current
+ 
+     qlen = setQTables(env, (j_common_ptr) cinfo, qtables, writeDQT);
+ 
+@@ -2726,7 +2923,7 @@
+ 
+     if (progressive) {
+         if (numScans == 0) { // then use default scans
+-            jpeg_simple_progression(cinfo);
++            jpegsimpleprogression(cinfo);
+         } else {
+             cinfo->num_scans = numScans;
+             // Copy the scanInfo to a local array
+@@ -2768,7 +2965,7 @@
+ #endif    
+ 
+     // start the compressor; tables must already be set
+-    jpeg_start_compress(cinfo, FALSE); // Leaves sent_table alone
++    jpegstartcompress(cinfo, FALSE); // Leaves sent_table alone
+ 
+     if (haveMetadata) {
+         // Flush the buffer
+@@ -2829,7 +3026,7 @@
+             }
+         }
+         // write it out
+-        jpeg_write_scanlines(cinfo, (JSAMPARRAY)&scanLinePtr, 1);
++        jpegwritescanlines(cinfo, (JSAMPARRAY)&scanLinePtr, 1);
+         targetLine += stepY;
+     }    
+ 
+@@ -2838,9 +3035,9 @@
+      * so use jpeg_abort instead of jpeg_finish_compress.
+      */
+     if (cinfo->next_scanline == cinfo->image_height) {
+-        jpeg_finish_compress(cinfo);  // Flushes buffer with term_dest
++        jpegfinishcompress(cinfo);  // Flushes buffer with term_dest
+     } else {
+-        jpeg_abort((j_common_ptr)cinfo);
++        jpegabort((j_common_ptr)cinfo);
+     }
+ 
+     if (scale != NULL) {