view hotspot/src/cpu/mips/vm/c1_CodeStubs_mips.cpp @ 23:388ae1bd0bdd

Fix 2 bugs related to patching and make some codes more readable. 1. In MIPS, oops-table used by relocating must be updated accordingly when patching. 2. Allocate enough space for patching. 3. Make NativeInstructions more readable. NativeCall's size is 16 bytes instead of 12. If 12 is used, we must fix it by adding 4 explicitly.
author YANG Yongqiang <yangyongqiang@loongson.cn>
date Thu, 04 Nov 2010 11:15:53 +0800
parents 7a9f890eafef
children
line wrap: on
line source

/*
 * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * Copyright 2010 Lemote, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

#include "incls/_precompiled.incl"
#include "incls/_c1_CodeStubs_mips.cpp.incl"


#define __ ce->masm()->

float ConversionStub::float_zero = 0.0;
double ConversionStub::double_zero = 0.0;

void ConversionStub::emit_code(LIR_Assembler* ce) {
	__ bind(_entry);
	assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
}

#ifdef TIERED
void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
	__ bind(_entry);
	ce->store_parameter(_bci, 0);
	//__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
	__ call(Runtime1::entry_for(Runtime1::counter_overflow_id), relocInfo::runtime_call_type);
	ce->add_call_info_here(_info);
	ce->verify_oop_map(_info);

	//__ jmp(_continuation);
	__ b(_continuation);
	__ delayed()->nop();
}
#endif // TIERED



RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
		bool throw_index_out_of_bounds_exception)
	: _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception)
	  , _index(index)
{
	_info = info == NULL ? NULL : new CodeEmitInfo(info);
}


void RangeCheckStub::emit_code(LIR_Assembler* ce) {
#ifdef OPT_RANGECHECK
	if (_throw_pc != -1) {
		ce->compilation()->null_check_table()->append(_throw_pc, __ offset());
	}
#endif
	__ bind(_entry);
	//// Pass the array index in eax since the runtime stub will add register state to the stack
	// pass the array index on stack because all registers must be preserved

	if (_index->is_cpu_register()) {
		ce->store_parameter(_index->as_register(), 0);
	} else {
		ce->store_parameter(_index->as_jint(), 0);
	}

	if (_throw_index_out_of_bounds_exception) {
		__ call(Runtime1::entry_for(Runtime1::throw_index_exception_id), relocInfo::runtime_call_type);
	} else {
		__ call(Runtime1::entry_for(Runtime1::throw_range_check_failed_id), relocInfo::runtime_call_type);
	}
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	debug_only(__ should_not_reach_here());	
}


void DivByZeroStub::emit_code(LIR_Assembler* ce) {
	if (_offset != -1) {
		//		ce->compilation()->null_check_table()->append(_offset, __ offset());
		ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
	}
	__ bind(_entry);
	__ call(Runtime1::entry_for(Runtime1::throw_div0_exception_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	debug_only(__ should_not_reach_here());

}


// Implementation of NewInstanceStub

NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
	_result = result;
	_klass = klass;
	_klass_reg = klass_reg;
	_info = new CodeEmitInfo(info);
	assert(stub_id == Runtime1::new_instance_id                 ||
			stub_id == Runtime1::fast_new_instance_id            ||
			stub_id == Runtime1::fast_new_instance_init_check_id,
			"need new_instance id");
	_stub_id   = stub_id;
}

// i use T4 as klass register, V0 as result register. MUST accord with Runtime1::generate_code_for.
void NewInstanceStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");
	__ bind(_entry);
	//__ movptr(rdx, _klass_reg->as_register());
	//__ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
	assert(_klass_reg->as_register() == T4, "klass_reg must in T4");
	

	__ call(Runtime1::entry_for(_stub_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	ce->verify_oop_map(_info);
	assert(_result->as_register() == V0, "result must in V0,");
	__ b(_continuation);
	__ delayed()->nop();
}


// Implementation of NewTypeArrayStub

NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
	_klass_reg = klass_reg;
	_length = length;
	_result = result;
	_info = new CodeEmitInfo(info);
}

// i use T2 as length register, T4 as klass register, V0 as result register. 
// MUST accord with Runtime1::generate_code_for
void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");
	__ bind(_entry);
	assert(_length->as_register() == T2, "length must in T2,");
	assert(_klass_reg->as_register() == T4, "klass_reg must in T4");

	//__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
	__ call(Runtime1::entry_for(Runtime1::new_type_array_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	ce->verify_oop_map(_info);

	assert(_result->as_register() == V0, "result must in V0,");
	__ b(_continuation);
	__ delayed()->nop();
}


// Implementation of NewObjectArrayStub

NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
	_klass_reg = klass_reg;
	_result = result;
	_length = length;
	_info = new CodeEmitInfo(info);
}


void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");
	__ bind(_entry);
	//assert(_length->as_register() == rbx, "length must in rbx,");
	//assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
	//__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
	assert(_length->as_register() == T2, "length must in ebx");
	assert(_klass_reg->as_register() == T4, "klass_reg must in edx");
	__ call(Runtime1::entry_for(Runtime1::new_object_array_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	ce->verify_oop_map(_info);
	//assert(_result->as_register() == rax, "result must in rax,");
	//__ jmp(_continuation);
	assert(_result->as_register() == V0, "result must in eax");
	__ b(_continuation);
	__ delayed()->nop();
}


// Implementation of MonitorAccessStubs

MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
: MonitorAccessStub(obj_reg, lock_reg)
{
	_info = new CodeEmitInfo(info);
}


void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");
	__ bind(_entry);
	ce->store_parameter(_obj_reg->as_register(),  1);
	ce->store_parameter(_lock_reg->as_register(), 0);
	/*
	   Runtime1::StubID enter_id;
	   if (ce->compilation()->has_fpu_code()) {
	   enter_id = Runtime1::monitorenter_id;
	   } else {
	   enter_id = Runtime1::monitorenter_nofpu_id;
	   }
	   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
	 */
	if (ce->compilation()->has_fpu_code()) {
		__ call(Runtime1::entry_for(Runtime1::monitorenter_id), relocInfo::runtime_call_type);
	} else {
		__ call(Runtime1::entry_for(Runtime1::monitorenter_nofpu_id), relocInfo::runtime_call_type);
	}
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	ce->verify_oop_map(_info);
	//__ jmp(_continuation);
	__ b(_continuation);
	__ delayed()->nop();
}


void MonitorExitStub::emit_code(LIR_Assembler* ce) {
	__ bind(_entry);
	if (_compute_lock) {
		// lock_reg was destroyed by fast unlocking attempt => recompute it
		ce->monitor_address(_monitor_ix, _lock_reg);
	}
	ce->store_parameter(_lock_reg->as_register(), 0);
	// note: non-blocking leaf routine => no call info needed
	/*
	   Runtime1::StubID exit_id;
	   if (ce->compilation()->has_fpu_code()) {
	   exit_id = Runtime1::monitorexit_id;
	   } else {
	   exit_id = Runtime1::monitorexit_nofpu_id;
	   }
	   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
	   __ jmp(_continuation);
	 */
	if (ce->compilation()->has_fpu_code()) {
		__ call(Runtime1::entry_for(Runtime1::monitorexit_id), relocInfo::runtime_call_type);
	} else {
		__ call(Runtime1::entry_for(Runtime1::monitorexit_nofpu_id), relocInfo::runtime_call_type);
	}
	__ delayed()->nop();

	//__ jmp(_continuation);
	__ b(_continuation);
	__ delayed()->nop();
}


// Implementation of patching:
// - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
// - Replace original code with a call to the stub
// At Runtime:
// - call to stub, jump to runtime
// - in runtime: preserve all registers (especially objects, i.e., source and destination object)
// - in runtime: after initializing class, restore original code, reexecute instruction

//int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
int PatchingStub::_patch_info_offset = -NativeCall::instruction_size;

void PatchingStub::align_patch_site(MacroAssembler* masm) {
	// We're patching a 5-7 byte instruction on intel and we need to
	// make sure that we don't see a piece of the instruction.  It
	// appears mostly impossible on Intel to simply invalidate other
	// processors caches and since they may do aggressive prefetch it's
	// very hard to make a guess about what code might be in the icache.
	// Force the instruction to be double word aligned so that it
	// doesn't span a cache line.

	// the NativeJump is not finished, i am not sure what to do here. FIXME
	//masm->align(round_to(NativeGeneralJump::instruction_size, wordSize));
}

void PatchingStub::emit_code(LIR_Assembler* ce) {
	assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
	assert(_bytes_to_copy <= 0xFF, "not enough room for call");

	Label call_patch;

	// static field accesses have special semantics while the class
	// initializer is being run so we emit a test which can be used to
	// check that this code is being executed by the initializing
	// thread.
	address being_initialized_entry = __ pc();
	if (CommentedAssembly) {
		__ block_comment(" patch template");
	}
	if (_id == load_klass_id) {
		// produce a copy of the load klass instruction for use by the being initialized case
		address start = __ pc();
		jobject o = NULL;
		int oop_index = __ oop_recorder()->allocate_index(o);
		RelocationHolder rspec = oop_Relocation::spec(oop_index);
		__ relocate(rspec);
		__ lui(_obj, Assembler::split_high((int)o));
		__ addiu(_obj, _obj, Assembler::split_low((int)o));
    while ((intx)__ pc() - (intx)start < NativeCall::instruction_size) {
      __ nop();
    }
#ifdef ASSERT
		for (int i = 0; i < _bytes_to_copy; i++) {
			address ptr = (address)(_pc_start + i);
			int a_byte = (*ptr) & 0xFF;
			assert(a_byte == *start++, "should be the same code");
		}
#endif
	} else {

		// make a copy the code which is going to be patched.
		assert((_bytes_to_copy&3)==0, "change this code");
		address start = __ pc();
		for ( int i = 0; i < _bytes_to_copy; i+=4) {
			__ a_long (*(int*)(_pc_start + i));
			//make the site look like a nop, @jerome 
			*(int*)(_pc_start + i)=0;
		}
    while ((intx)__ pc() - (intx)start < NativeCall::instruction_size) {
      __ nop();
    }
	}

	address end_of_patch = __ pc();
	int bytes_to_skip = 0;
	if (_id == load_klass_id) {
		int offset = __ offset();
		if (CommentedAssembly) {
			__ block_comment(" being_initialized check");
		}
		/*   assert(_obj != noreg, "must be a valid register");
		     Register tmp = eax;
		     if (_obj == tmp) tmp = ebx;
		     __ pushl(tmp);
		     __ get_thread(tmp);
		     __ cmpl(tmp, Address(_obj, instanceKlass::init_thread_offset_in_bytes() 
		     + sizeof(klassOopDesc)));
		     __ popl(tmp);
		     __ jcc(Assembler::notEqual, call_patch);
		 */
		assert(_obj != NOREG, "must be a valid register");
#ifndef OPT_THREAD
		//FIXME, T8 need be saved ?
		Register thread = T8;
		__ get_thread(thread);
#else
		Register thread = TREG;
#endif
		__ lw(AT, _obj, instanceKlass::init_thread_offset_in_bytes() + sizeof(klassOopDesc));
		__ bne(thread, AT, call_patch);
		__ delayed()->nop();

		// access_field patches may execute the patched code before it's
		// copied back into place so we need to jump back into the main
		// code of the nmethod to continue execution.
		/*		address temppc = __ pc();
				__ b(_patch_site_continuation);
				__ delayed()->nop();
				bytes_to_skip += (__ pc() - temppc);
		 */ 
		__ b(_patch_site_continuation);
		__ delayed()->nop();
		bytes_to_skip += __ offset() - offset;

	}

	if (CommentedAssembly) {
		__ block_comment("patch data");
	}
	// Now emit the patch record telling the runtime how to find the
	// pieces of the patch.  We only need 3 bytes but for alignment, we 
	// need 4 bytes
	int sizeof_patch_record = 4;
	bytes_to_skip += sizeof_patch_record;

	// emit the offsets needed to find the code to patch
	int being_initialized_entry_offset = __ pc() - being_initialized_entry + patch_info_size;
	// patch_info_pc offset | size of b instruction(8)| patched code size
	assert((char)being_initialized_entry_offset==being_initialized_entry_offset, "just check");
	assert((char)bytes_to_skip==bytes_to_skip, "just check");
	assert((char)_bytes_to_copy==_bytes_to_copy, "just check");
	__ a_long(being_initialized_entry_offset<<8 | (bytes_to_skip<<16) | (_bytes_to_copy<<24) );

	address patch_info_pc = __ pc();
	assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");

	address entry = __ pc();
  NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
	address target = NULL;
	switch (_id) {
		case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
		case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); break;
		default: ShouldNotReachHere();
	}
	__ bind(call_patch);


	if (CommentedAssembly) {
		__ block_comment("patch entry point");
	}
	//__ call(RuntimeAddress(target));
	__ lui(T9, Assembler::split_high((int)target));
	__ addiu(T9, T9, Assembler::split_low((int)target));
	__ jalr(T9);
	__ delayed()->nop();
	assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
	ce->add_call_info_here(_info);
	int jmp_off = __ offset();
	__ b(_patch_site_entry);
	__ delayed()->nop();
	// Add enough nops so deoptimization can overwrite the jmp above with a call
	// and not destroy the world.
	for (int j = __ offset(); j < jmp_off + NativeCall::instruction_size; j += 4 ) {
		__ nop();
	}
	if (_id == load_klass_id) {
		CodeSection* cs = __ code_section();
    address pc = (address)_pc_start;  
		RelocIterator iter(cs, pc, pc + 1);
		relocInfo::change_reloc_info_for_address(&iter, pc, relocInfo::oop_type, relocInfo::none);
	}
}


void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
	ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
	__ bind(_entry);
	__ call(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	debug_only(__ should_not_reach_here());
}


// i dont know which register to use here, i just assume A1 here. FIXME
void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");

	__ bind(_entry);
	// pass the object on stack because all registers must be preserved
	if (_obj->is_cpu_register()) {
		ce->store_parameter(_obj->as_register(), 0);
	}
	__ call(Runtime1::entry_for(_stub), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	debug_only(__ should_not_reach_here());
}


ArrayStoreExceptionStub::ArrayStoreExceptionStub(CodeEmitInfo* info):
	_info(info) {
	}


void ArrayStoreExceptionStub::emit_code(LIR_Assembler* ce) {
	assert(__ sp_offset() == 0, "frame size should be fixed");
	__ bind(_entry);
	//__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_array_store_exception_id)));
	__ call(Runtime1::entry_for(Runtime1::throw_array_store_exception_id), relocInfo::runtime_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(_info);
	debug_only(__ should_not_reach_here());
}


void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
	//---------------slow case: call to native-----------------
	__ bind(_entry);
	// Figure out where the args should go
	// This should really convert the IntrinsicID to the methodOop and signature
	// but I don't know how to do that.
	//
	VMRegPair args[5];
	BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
	SharedRuntime::java_calling_convention(signature, args, 5, true);

	// push parameters
	// (src, src_pos, dest, destPos, length)
	Register r[5];
	r[0] = src()->as_register();
	r[1] = src_pos()->as_register();
	r[2] = dst()->as_register();
	r[3] = dst_pos()->as_register();
	r[4] = length()->as_register();

	// next registers will get stored on the stack
	for (int i = 0; i < 5 ; i++ ) {
		VMReg r_1 = args[i].first();
		if (r_1->is_stack()) {
			int st_off = r_1->reg2stack() * wordSize;
			//__ movptr (Address(rsp, st_off), r[i]);
			__ sw( r[i],  SP, st_off); 
		} else {
			assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
		}
	}

	ce->align_call(lir_static_call);

	ce->emit_static_call_stub();
	//AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
	//                       relocInfo::static_call_type);
	//__ call(resolve);
	__ call(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
	__ delayed()->nop();
	ce->add_call_info_here(info());

#ifndef PRODUCT
	//__ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
	__ lui(T8, Assembler::split_high((int)&Runtime1::_arraycopy_slowcase_cnt));
	__ lw(AT, T8, Assembler::split_low((int)&Runtime1::_arraycopy_slowcase_cnt));
	__ addiu(AT, AT, 1);
	__ sw(AT, T8, Assembler::split_low((int)&Runtime1::_arraycopy_slowcase_cnt));
#endif

	__ b(_continuation);
	__ delayed()->nop();
}

/////////////////////////////////////////////////////////////////////////////
#ifndef SERIALGC

void G1PreBarrierStub::emit_code(LIR_Assembler* ce) {
	Unimplemented();
}
/*
   jbyte* G1PostBarrierStub::_byte_map_base = NULL;

   jbyte* G1PostBarrierStub::byte_map_base_slow() {
   BarrierSet* bs = Universe::heap()->barrier_set();
   assert(bs->is_a(BarrierSet::G1SATBCTLogging),
   "Must be if we're using this.");
   return ((G1SATBCardTableModRefBS*)bs)->byte_map_base;
   }
 */
void G1PostBarrierStub::emit_code(LIR_Assembler* ce) {
	Unimplemented();
}

#endif // SERIALGC
/////////////////////////////////////////////////////////////////////////////

#undef __