view src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp @ 2035:0fa27f37d4d4

6977804: G1: remove the zero-filling thread Summary: This changeset removes the zero-filling thread from G1 and collapses the two free region lists we had before (the "free" and "unclean" lists) into one. The new free list uses the new heap region sets / lists abstractions that we'll ultimately use it to keep track of all regions in the heap. A heap region set was also introduced for the humongous regions. Finally, this change increases the concurrency between the thread that completes freeing regions (after a cleanup pause) and the rest of the system (before we'd have to wait for said thread to complete before allocating a new region). The changest also includes a lot of refactoring and code simplification. Reviewed-by: jcoomes, johnc
author tonyp
date Wed, 19 Jan 2011 19:30:42 -0500
parents 016a3628c885
children
line wrap: on
line source

/*
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentMark.hpp"
#include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1CollectorPolicy.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/shared/gcPolicyCounters.hpp"
#include "runtime/arguments.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "utilities/debug.hpp"

#define PREDICTIONS_VERBOSE 0

// <NEW PREDICTION>

// Different defaults for different number of GC threads
// They were chosen by running GCOld and SPECjbb on debris with different
//   numbers of GC threads and choosing them based on the results

// all the same
static double rs_length_diff_defaults[] = {
  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
};

static double cost_per_card_ms_defaults[] = {
  0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
};

// all the same
static double fully_young_cards_per_entry_ratio_defaults[] = {
  1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
};

static double cost_per_entry_ms_defaults[] = {
  0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
};

static double cost_per_byte_ms_defaults[] = {
  0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
};

// these should be pretty consistent
static double constant_other_time_ms_defaults[] = {
  5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
};


static double young_other_cost_per_region_ms_defaults[] = {
  0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
};

static double non_young_other_cost_per_region_ms_defaults[] = {
  1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
};

// </NEW PREDICTION>

G1CollectorPolicy::G1CollectorPolicy() :
  _parallel_gc_threads(G1CollectedHeap::use_parallel_gc_threads()
    ? ParallelGCThreads : 1),


  _n_pauses(0),
  _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _all_pause_times_ms(new NumberSeq()),
  _stop_world_start(0.0),
  _all_stop_world_times_ms(new NumberSeq()),
  _all_yield_times_ms(new NumberSeq()),

  _all_mod_union_times_ms(new NumberSeq()),

  _summary(new Summary()),

#ifndef PRODUCT
  _cur_clear_ct_time_ms(0.0),
  _min_clear_cc_time_ms(-1.0),
  _max_clear_cc_time_ms(-1.0),
  _cur_clear_cc_time_ms(0.0),
  _cum_clear_cc_time_ms(0.0),
  _num_cc_clears(0L),
#endif

  _region_num_young(0),
  _region_num_tenured(0),
  _prev_region_num_young(0),
  _prev_region_num_tenured(0),

  _aux_num(10),
  _all_aux_times_ms(new NumberSeq[_aux_num]),
  _cur_aux_start_times_ms(new double[_aux_num]),
  _cur_aux_times_ms(new double[_aux_num]),
  _cur_aux_times_set(new bool[_aux_num]),

  _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),

  // <NEW PREDICTION>

  _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _prev_collection_pause_end_ms(0.0),
  _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cards_per_entry_ratio_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
  _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  _non_young_other_cost_per_region_ms_seq(
                                         new TruncatedSeq(TruncatedSeqLength)),

  _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
  _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),

  _pause_time_target_ms((double) MaxGCPauseMillis),

  // </NEW PREDICTION>

  _in_young_gc_mode(false),
  _full_young_gcs(true),
  _full_young_pause_num(0),
  _partial_young_pause_num(0),

  _during_marking(false),
  _in_marking_window(false),
  _in_marking_window_im(false),

  _known_garbage_ratio(0.0),
  _known_garbage_bytes(0),

  _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),

   _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
  _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),

  _recent_avg_pause_time_ratio(0.0),
  _num_markings(0),
  _n_marks(0),
  _n_pauses_at_mark_end(0),

  _all_full_gc_times_ms(new NumberSeq()),

  // G1PausesBtwnConcMark defaults to -1
  // so the hack is to do the cast  QQQ FIXME
  _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
  _n_marks_since_last_pause(0),
  _initiate_conc_mark_if_possible(false),
  _during_initial_mark_pause(false),
  _should_revert_to_full_young_gcs(false),
  _last_full_young_gc(false),

  _prev_collection_pause_used_at_end_bytes(0),

  _collection_set(NULL),
  _collection_set_size(0),
  _collection_set_bytes_used_before(0),

  // Incremental CSet attributes
  _inc_cset_build_state(Inactive),
  _inc_cset_head(NULL),
  _inc_cset_tail(NULL),
  _inc_cset_size(0),
  _inc_cset_young_index(0),
  _inc_cset_bytes_used_before(0),
  _inc_cset_max_finger(NULL),
  _inc_cset_recorded_young_bytes(0),
  _inc_cset_recorded_rs_lengths(0),
  _inc_cset_predicted_elapsed_time_ms(0.0),
  _inc_cset_predicted_bytes_to_copy(0),

#ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER

  _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
                                                 G1YoungSurvRateNumRegionsSummary)),
  _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
                                              G1YoungSurvRateNumRegionsSummary)),
  // add here any more surv rate groups
  _recorded_survivor_regions(0),
  _recorded_survivor_head(NULL),
  _recorded_survivor_tail(NULL),
  _survivors_age_table(true),

  _gc_overhead_perc(0.0)

{
  // Set up the region size and associated fields. Given that the
  // policy is created before the heap, we have to set this up here,
  // so it's done as soon as possible.
  HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
  HeapRegionRemSet::setup_remset_size();

  // Verify PLAB sizes
  const uint region_size = HeapRegion::GrainWords;
  if (YoungPLABSize > region_size || OldPLABSize > region_size) {
    char buffer[128];
    jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
                 OldPLABSize > region_size ? "Old" : "Young", region_size);
    vm_exit_during_initialization(buffer);
  }

  _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
  _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;

  _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
  _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
  _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];

  _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
  _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];

  _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];

  _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];

  _par_last_termination_times_ms = new double[_parallel_gc_threads];
  _par_last_termination_attempts = new double[_parallel_gc_threads];
  _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];

  // start conservatively
  _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;

  // <NEW PREDICTION>

  int index;
  if (ParallelGCThreads == 0)
    index = 0;
  else if (ParallelGCThreads > 8)
    index = 7;
  else
    index = ParallelGCThreads - 1;

  _pending_card_diff_seq->add(0.0);
  _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
  _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
  _fully_young_cards_per_entry_ratio_seq->add(
                            fully_young_cards_per_entry_ratio_defaults[index]);
  _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
  _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
  _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
  _young_other_cost_per_region_ms_seq->add(
                               young_other_cost_per_region_ms_defaults[index]);
  _non_young_other_cost_per_region_ms_seq->add(
                           non_young_other_cost_per_region_ms_defaults[index]);

  // </NEW PREDICTION>

  // Below, we might need to calculate the pause time target based on
  // the pause interval. When we do so we are going to give G1 maximum
  // flexibility and allow it to do pauses when it needs to. So, we'll
  // arrange that the pause interval to be pause time target + 1 to
  // ensure that a) the pause time target is maximized with respect to
  // the pause interval and b) we maintain the invariant that pause
  // time target < pause interval. If the user does not want this
  // maximum flexibility, they will have to set the pause interval
  // explicitly.

  // First make sure that, if either parameter is set, its value is
  // reasonable.
  if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (MaxGCPauseMillis < 1) {
      vm_exit_during_initialization("MaxGCPauseMillis should be "
                                    "greater than 0");
    }
  }
  if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    if (GCPauseIntervalMillis < 1) {
      vm_exit_during_initialization("GCPauseIntervalMillis should be "
                                    "greater than 0");
    }
  }

  // Then, if the pause time target parameter was not set, set it to
  // the default value.
  if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
    if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
      // The default pause time target in G1 is 200ms
      FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
    } else {
      // We do not allow the pause interval to be set without the
      // pause time target
      vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
                                    "without setting MaxGCPauseMillis");
    }
  }

  // Then, if the interval parameter was not set, set it according to
  // the pause time target (this will also deal with the case when the
  // pause time target is the default value).
  if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
    FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
  }

  // Finally, make sure that the two parameters are consistent.
  if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
    char buffer[256];
    jio_snprintf(buffer, 256,
                 "MaxGCPauseMillis (%u) should be less than "
                 "GCPauseIntervalMillis (%u)",
                 MaxGCPauseMillis, GCPauseIntervalMillis);
    vm_exit_during_initialization(buffer);
  }

  double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
  double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
  _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
  _sigma = (double) G1ConfidencePercent / 100.0;

  // start conservatively (around 50ms is about right)
  _concurrent_mark_init_times_ms->add(0.05);
  _concurrent_mark_remark_times_ms->add(0.05);
  _concurrent_mark_cleanup_times_ms->add(0.20);
  _tenuring_threshold = MaxTenuringThreshold;

  // if G1FixedSurvivorSpaceSize is 0 which means the size is not
  // fixed, then _max_survivor_regions will be calculated at
  // calculate_young_list_target_length during initialization
  _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;

  assert(GCTimeRatio > 0,
         "we should have set it to a default value set_g1_gc_flags() "
         "if a user set it to 0");
  _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));

  initialize_all();
}

// Increment "i", mod "len"
static void inc_mod(int& i, int len) {
  i++; if (i == len) i = 0;
}

void G1CollectorPolicy::initialize_flags() {
  set_min_alignment(HeapRegion::GrainBytes);
  set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
  if (SurvivorRatio < 1) {
    vm_exit_during_initialization("Invalid survivor ratio specified");
  }
  CollectorPolicy::initialize_flags();
}

// The easiest way to deal with the parsing of the NewSize /
// MaxNewSize / etc. parameteres is to re-use the code in the
// TwoGenerationCollectorPolicy class. This is similar to what
// ParallelScavenge does with its GenerationSizer class (see
// ParallelScavengeHeap::initialize()). We might change this in the
// future, but it's a good start.
class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
  size_t size_to_region_num(size_t byte_size) {
    return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
  }

public:
  G1YoungGenSizer() {
    initialize_flags();
    initialize_size_info();
  }

  size_t min_young_region_num() {
    return size_to_region_num(_min_gen0_size);
  }
  size_t initial_young_region_num() {
    return size_to_region_num(_initial_gen0_size);
  }
  size_t max_young_region_num() {
    return size_to_region_num(_max_gen0_size);
  }
};

void G1CollectorPolicy::init() {
  // Set aside an initial future to_space.
  _g1 = G1CollectedHeap::heap();

  assert(Heap_lock->owned_by_self(), "Locking discipline.");

  initialize_gc_policy_counters();

  if (G1Gen) {
    _in_young_gc_mode = true;

    G1YoungGenSizer sizer;
    size_t initial_region_num = sizer.initial_young_region_num();

    if (UseAdaptiveSizePolicy) {
      set_adaptive_young_list_length(true);
      _young_list_fixed_length = 0;
    } else {
      set_adaptive_young_list_length(false);
      _young_list_fixed_length = initial_region_num;
    }
    _free_regions_at_end_of_collection = _g1->free_regions();
    calculate_young_list_min_length();
    guarantee( _young_list_min_length == 0, "invariant, not enough info" );
    calculate_young_list_target_length();
  } else {
     _young_list_fixed_length = 0;
    _in_young_gc_mode = false;
  }

  // We may immediately start allocating regions and placing them on the
  // collection set list. Initialize the per-collection set info
  start_incremental_cset_building();
}

// Create the jstat counters for the policy.
void G1CollectorPolicy::initialize_gc_policy_counters()
{
  _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
}

void G1CollectorPolicy::calculate_young_list_min_length() {
  _young_list_min_length = 0;

  if (!adaptive_young_list_length())
    return;

  if (_alloc_rate_ms_seq->num() > 3) {
    double now_sec = os::elapsedTime();
    double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
    double alloc_rate_ms = predict_alloc_rate_ms();
    size_t min_regions = (size_t) ceil(alloc_rate_ms * when_ms);
    size_t current_region_num = _g1->young_list()->length();
    _young_list_min_length = min_regions + current_region_num;
  }
}

void G1CollectorPolicy::calculate_young_list_target_length() {
  if (adaptive_young_list_length()) {
    size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
    calculate_young_list_target_length(rs_lengths);
  } else {
    if (full_young_gcs())
      _young_list_target_length = _young_list_fixed_length;
    else
      _young_list_target_length = _young_list_fixed_length / 2;
  }

  // Make sure we allow the application to allocate at least one
  // region before we need to do a collection again.
  size_t min_length = _g1->young_list()->length() + 1;
  _young_list_target_length = MAX2(_young_list_target_length, min_length);
  calculate_max_gc_locker_expansion();
  calculate_survivors_policy();
}

void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
  guarantee( adaptive_young_list_length(), "pre-condition" );
  guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );

  double start_time_sec = os::elapsedTime();
  size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
  min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
  size_t reserve_regions =
    (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);

  if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
    // we are in fully-young mode and there are free regions in the heap

    double survivor_regions_evac_time =
        predict_survivor_regions_evac_time();

    double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
    size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
    size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
    size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
    double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
                          + survivor_regions_evac_time;

    // the result
    size_t final_young_length = 0;

    size_t init_free_regions =
      MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);

    // if we're still under the pause target...
    if (base_time_ms <= target_pause_time_ms) {
      // We make sure that the shortest young length that makes sense
      // fits within the target pause time.
      size_t min_young_length = 1;

      if (predict_will_fit(min_young_length, base_time_ms,
                                     init_free_regions, target_pause_time_ms)) {
        // The shortest young length will fit within the target pause time;
        // we'll now check whether the absolute maximum number of young
        // regions will fit in the target pause time. If not, we'll do
        // a binary search between min_young_length and max_young_length
        size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
        size_t max_young_length = abs_max_young_length;

        if (max_young_length > min_young_length) {
          // Let's check if the initial max young length will fit within the
          // target pause. If so then there is no need to search for a maximal
          // young length - we'll return the initial maximum

          if (predict_will_fit(max_young_length, base_time_ms,
                                init_free_regions, target_pause_time_ms)) {
            // The maximum young length will satisfy the target pause time.
            // We are done so set min young length to this maximum length.
            // The code after the loop will then set final_young_length using
            // the value cached in the minimum length.
            min_young_length = max_young_length;
          } else {
            // The maximum possible number of young regions will not fit within
            // the target pause time so let's search....

            size_t diff = (max_young_length - min_young_length) / 2;
            max_young_length = min_young_length + diff;

            while (max_young_length > min_young_length) {
              if (predict_will_fit(max_young_length, base_time_ms,
                                        init_free_regions, target_pause_time_ms)) {

                // The current max young length will fit within the target
                // pause time. Note we do not exit the loop here. By setting
                // min = max, and then increasing the max below means that
                // we will continue searching for an upper bound in the
                // range [max..max+diff]
                min_young_length = max_young_length;
              }
              diff = (max_young_length - min_young_length) / 2;
              max_young_length = min_young_length + diff;
            }
            // the above loop found a maximal young length that will fit
            // within the target pause time.
          }
          assert(min_young_length <= abs_max_young_length, "just checking");
        }
        final_young_length = min_young_length;
      }
    }
    // and we're done!

    // we should have at least one region in the target young length
    _young_list_target_length =
                              final_young_length + _recorded_survivor_regions;

    // let's keep an eye of how long we spend on this calculation
    // right now, I assume that we'll print it when we need it; we
    // should really adde it to the breakdown of a pause
    double end_time_sec = os::elapsedTime();
    double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;

#ifdef TRACE_CALC_YOUNG_LENGTH
    // leave this in for debugging, just in case
    gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
                           "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
                           target_pause_time_ms,
                           _young_list_target_length
                           elapsed_time_ms,
                           full_young_gcs() ? "full" : "partial",
                           during_initial_mark_pause() ? " i-m" : "",
                           _in_marking_window,
                           _in_marking_window_im);
#endif // TRACE_CALC_YOUNG_LENGTH

    if (_young_list_target_length < _young_list_min_length) {
      // bummer; this means that, if we do a pause when the maximal
      // length dictates, we'll violate the pause spacing target (the
      // min length was calculate based on the application's current
      // alloc rate);

      // so, we have to bite the bullet, and allocate the minimum
      // number. We'll violate our target, but we just can't meet it.

#ifdef TRACE_CALC_YOUNG_LENGTH
      // leave this in for debugging, just in case
      gclog_or_tty->print_cr("adjusted target length from "
                             SIZE_FORMAT " to " SIZE_FORMAT,
                             _young_list_target_length, _young_list_min_length);
#endif // TRACE_CALC_YOUNG_LENGTH

      _young_list_target_length = _young_list_min_length;
    }
  } else {
    // we are in a partially-young mode or we've run out of regions (due
    // to evacuation failure)

#ifdef TRACE_CALC_YOUNG_LENGTH
    // leave this in for debugging, just in case
    gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
                           _young_list_min_length);
#endif // TRACE_CALC_YOUNG_LENGTH
    // we'll do the pause as soon as possible by choosing the minimum
    _young_list_target_length = _young_list_min_length;
  }

  _rs_lengths_prediction = rs_lengths;
}

// This is used by: calculate_young_list_target_length(rs_length). It
// returns true iff:
//   the predicted pause time for the given young list will not overflow
//   the target pause time
// and:
//   the predicted amount of surviving data will not overflow the
//   the amount of free space available for survivor regions.
//
bool
G1CollectorPolicy::predict_will_fit(size_t young_length,
                                    double base_time_ms,
                                    size_t init_free_regions,
                                    double target_pause_time_ms) {

  if (young_length >= init_free_regions)
    // end condition 1: not enough space for the young regions
    return false;

  double accum_surv_rate_adj = 0.0;
  double accum_surv_rate =
    accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;

  size_t bytes_to_copy =
    (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);

  double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);

  double young_other_time_ms =
                       predict_young_other_time_ms(young_length);

  double pause_time_ms =
                   base_time_ms + copy_time_ms + young_other_time_ms;

  if (pause_time_ms > target_pause_time_ms)
    // end condition 2: over the target pause time
    return false;

  size_t free_bytes =
                 (init_free_regions - young_length) * HeapRegion::GrainBytes;

  if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
    // end condition 3: out of to-space (conservatively)
    return false;

  // success!
  return true;
}

double G1CollectorPolicy::predict_survivor_regions_evac_time() {
  double survivor_regions_evac_time = 0.0;
  for (HeapRegion * r = _recorded_survivor_head;
       r != NULL && r != _recorded_survivor_tail->get_next_young_region();
       r = r->get_next_young_region()) {
    survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
  }
  return survivor_regions_evac_time;
}

void G1CollectorPolicy::check_prediction_validity() {
  guarantee( adaptive_young_list_length(), "should not call this otherwise" );

  size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
  if (rs_lengths > _rs_lengths_prediction) {
    // add 10% to avoid having to recalculate often
    size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
    calculate_young_list_target_length(rs_lengths_prediction);
  }
}

HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
                                               bool is_tlab,
                                               bool* gc_overhead_limit_was_exceeded) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}

// This method controls how a collector handles one or more
// of its generations being fully allocated.
HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
                                                       bool is_tlab) {
  guarantee(false, "Not using this policy feature yet.");
  return NULL;
}


#ifndef PRODUCT
bool G1CollectorPolicy::verify_young_ages() {
  HeapRegion* head = _g1->young_list()->first_region();
  return
    verify_young_ages(head, _short_lived_surv_rate_group);
  // also call verify_young_ages on any additional surv rate groups
}

bool
G1CollectorPolicy::verify_young_ages(HeapRegion* head,
                                     SurvRateGroup *surv_rate_group) {
  guarantee( surv_rate_group != NULL, "pre-condition" );

  const char* name = surv_rate_group->name();
  bool ret = true;
  int prev_age = -1;

  for (HeapRegion* curr = head;
       curr != NULL;
       curr = curr->get_next_young_region()) {
    SurvRateGroup* group = curr->surv_rate_group();
    if (group == NULL && !curr->is_survivor()) {
      gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
      ret = false;
    }

    if (surv_rate_group == group) {
      int age = curr->age_in_surv_rate_group();

      if (age < 0) {
        gclog_or_tty->print_cr("## %s: encountered negative age", name);
        ret = false;
      }

      if (age <= prev_age) {
        gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
                               "(%d, %d)", name, age, prev_age);
        ret = false;
      }
      prev_age = age;
    }
  }

  return ret;
}
#endif // PRODUCT

void G1CollectorPolicy::record_full_collection_start() {
  _cur_collection_start_sec = os::elapsedTime();
  // Release the future to-space so that it is available for compaction into.
  _g1->set_full_collection();
}

void G1CollectorPolicy::record_full_collection_end() {
  // Consider this like a collection pause for the purposes of allocation
  // since last pause.
  double end_sec = os::elapsedTime();
  double full_gc_time_sec = end_sec - _cur_collection_start_sec;
  double full_gc_time_ms = full_gc_time_sec * 1000.0;

  _all_full_gc_times_ms->add(full_gc_time_ms);

  update_recent_gc_times(end_sec, full_gc_time_ms);

  _g1->clear_full_collection();

  // "Nuke" the heuristics that control the fully/partially young GC
  // transitions and make sure we start with fully young GCs after the
  // Full GC.
  set_full_young_gcs(true);
  _last_full_young_gc = false;
  _should_revert_to_full_young_gcs = false;
  clear_initiate_conc_mark_if_possible();
  clear_during_initial_mark_pause();
  _known_garbage_bytes = 0;
  _known_garbage_ratio = 0.0;
  _in_marking_window = false;
  _in_marking_window_im = false;

  _short_lived_surv_rate_group->start_adding_regions();
  // also call this on any additional surv rate groups

  record_survivor_regions(0, NULL, NULL);

  _prev_region_num_young   = _region_num_young;
  _prev_region_num_tenured = _region_num_tenured;

  _free_regions_at_end_of_collection = _g1->free_regions();
  // Reset survivors SurvRateGroup.
  _survivor_surv_rate_group->reset();
  calculate_young_list_min_length();
  calculate_young_list_target_length();
}

void G1CollectorPolicy::record_before_bytes(size_t bytes) {
  _bytes_in_to_space_before_gc += bytes;
}

void G1CollectorPolicy::record_after_bytes(size_t bytes) {
  _bytes_in_to_space_after_gc += bytes;
}

void G1CollectorPolicy::record_stop_world_start() {
  _stop_world_start = os::elapsedTime();
}

void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
                                                      size_t start_used) {
  if (PrintGCDetails) {
    gclog_or_tty->stamp(PrintGCTimeStamps);
    gclog_or_tty->print("[GC pause");
    if (in_young_gc_mode())
      gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
  }

  assert(_g1->used() == _g1->recalculate_used(),
         err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
                 _g1->used(), _g1->recalculate_used()));

  double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
  _all_stop_world_times_ms->add(s_w_t_ms);
  _stop_world_start = 0.0;

  _cur_collection_start_sec = start_time_sec;
  _cur_collection_pause_used_at_start_bytes = start_used;
  _cur_collection_pause_used_regions_at_start = _g1->used_regions();
  _pending_cards = _g1->pending_card_num();
  _max_pending_cards = _g1->max_pending_card_num();

  _bytes_in_to_space_before_gc = 0;
  _bytes_in_to_space_after_gc = 0;
  _bytes_in_collection_set_before_gc = 0;

#ifdef DEBUG
  // initialise these to something well known so that we can spot
  // if they are not set properly

  for (int i = 0; i < _parallel_gc_threads; ++i) {
    _par_last_gc_worker_start_times_ms[i] = -1234.0;
    _par_last_ext_root_scan_times_ms[i] = -1234.0;
    _par_last_mark_stack_scan_times_ms[i] = -1234.0;
    _par_last_update_rs_times_ms[i] = -1234.0;
    _par_last_update_rs_processed_buffers[i] = -1234.0;
    _par_last_scan_rs_times_ms[i] = -1234.0;
    _par_last_obj_copy_times_ms[i] = -1234.0;
    _par_last_termination_times_ms[i] = -1234.0;
    _par_last_termination_attempts[i] = -1234.0;
    _par_last_gc_worker_end_times_ms[i] = -1234.0;
  }
#endif

  for (int i = 0; i < _aux_num; ++i) {
    _cur_aux_times_ms[i] = 0.0;
    _cur_aux_times_set[i] = false;
  }

  _satb_drain_time_set = false;
  _last_satb_drain_processed_buffers = -1;

  if (in_young_gc_mode())
    _last_young_gc_full = false;

  // do that for any other surv rate groups
  _short_lived_surv_rate_group->stop_adding_regions();
  _survivors_age_table.clear();

  assert( verify_young_ages(), "region age verification" );
}

void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
  _mark_closure_time_ms = mark_closure_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_init_start() {
  _mark_init_start_sec = os::elapsedTime();
  guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
}

void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
                                                   mark_init_elapsed_time_ms) {
  _during_marking = true;
  assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
  clear_during_initial_mark_pause();
  _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
}

void G1CollectorPolicy::record_concurrent_mark_init_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
  _concurrent_mark_init_times_ms->add(elapsed_time_ms);
  record_concurrent_mark_init_end_pre(elapsed_time_ms);

  _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_remark_start() {
  _mark_remark_start_sec = os::elapsedTime();
  _during_marking = false;
}

void G1CollectorPolicy::record_concurrent_mark_remark_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
  _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
}

void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
  _mark_cleanup_start_sec = os::elapsedTime();
}

void
G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                                      size_t max_live_bytes) {
  record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  record_concurrent_mark_cleanup_end_work2();
}

void
G1CollectorPolicy::
record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
                                         size_t max_live_bytes) {
  if (_n_marks < 2) _n_marks++;
  if (G1PolicyVerbose > 0)
    gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
                           " (of " SIZE_FORMAT " MB heap).",
                           max_live_bytes/M, _g1->capacity()/M);
}

// The important thing about this is that it includes "os::elapsedTime".
void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
  double end_time_sec = os::elapsedTime();
  double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
  _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
  _cur_mark_stop_world_time_ms += elapsed_time_ms;
  _prev_collection_pause_end_ms += elapsed_time_ms;

  _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);

  _num_markings++;

  // We did a marking, so reset the "since_last_mark" variables.
  double considerConcMarkCost = 1.0;
  // If there are available processors, concurrent activity is free...
  if (Threads::number_of_non_daemon_threads() * 2 <
      os::active_processor_count()) {
    considerConcMarkCost = 0.0;
  }
  _n_pauses_at_mark_end = _n_pauses;
  _n_marks_since_last_pause++;
}

void
G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
  if (in_young_gc_mode()) {
    _should_revert_to_full_young_gcs = false;
    _last_full_young_gc = true;
    _in_marking_window = false;
    if (adaptive_young_list_length())
      calculate_young_list_target_length();
  }
}

void G1CollectorPolicy::record_concurrent_pause() {
  if (_stop_world_start > 0.0) {
    double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
    _all_yield_times_ms->add(yield_ms);
  }
}

void G1CollectorPolicy::record_concurrent_pause_end() {
}

void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
  _cur_CH_strong_roots_end_sec = os::elapsedTime();
  _cur_CH_strong_roots_dur_ms =
    (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
}

void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
  _cur_G1_strong_roots_end_sec = os::elapsedTime();
  _cur_G1_strong_roots_dur_ms =
    (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
}

template<class T>
T sum_of(T* sum_arr, int start, int n, int N) {
  T sum = (T)0;
  for (int i = 0; i < n; i++) {
    int j = (start + i) % N;
    sum += sum_arr[j];
  }
  return sum;
}

void G1CollectorPolicy::print_par_stats(int level,
                                        const char* str,
                                        double* data,
                                         bool summary) {
  double min = data[0], max = data[0];
  double total = 0.0;
  int j;
  for (j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print("[%s (ms):", str);
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
    gclog_or_tty->print("  %3.1lf", val);
  }
  if (summary) {
    gclog_or_tty->print_cr("");
    double avg = total / (double) ParallelGCThreads;
    gclog_or_tty->print(" ");
    for (j = 0; j < level; ++j)
      gclog_or_tty->print("   ");
    gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
                        avg, min, max);
  }
  gclog_or_tty->print_cr("]");
}

void G1CollectorPolicy::print_par_sizes(int level,
                                        const char* str,
                                        double* data,
                                        bool summary) {
  double min = data[0], max = data[0];
  double total = 0.0;
  int j;
  for (j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print("[%s :", str);
  for (uint i = 0; i < ParallelGCThreads; ++i) {
    double val = data[i];
    if (val < min)
      min = val;
    if (val > max)
      max = val;
    total += val;
    gclog_or_tty->print(" %d", (int) val);
  }
  if (summary) {
    gclog_or_tty->print_cr("");
    double avg = total / (double) ParallelGCThreads;
    gclog_or_tty->print(" ");
    for (j = 0; j < level; ++j)
      gclog_or_tty->print("   ");
    gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
               (int)total, (int)avg, (int)min, (int)max);
  }
  gclog_or_tty->print_cr("]");
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     double value) {
  for (int j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
}

void G1CollectorPolicy::print_stats (int level,
                                     const char* str,
                                     int value) {
  for (int j = 0; j < level; ++j)
    gclog_or_tty->print("   ");
  gclog_or_tty->print_cr("[%s: %d]", str, value);
}

double G1CollectorPolicy::avg_value (double* data) {
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    double ret = 0.0;
    for (uint i = 0; i < ParallelGCThreads; ++i)
      ret += data[i];
    return ret / (double) ParallelGCThreads;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_value (double* data) {
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    double ret = data[0];
    for (uint i = 1; i < ParallelGCThreads; ++i)
      if (data[i] > ret)
        ret = data[i];
    return ret;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::sum_of_values (double* data) {
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    double sum = 0.0;
    for (uint i = 0; i < ParallelGCThreads; i++)
      sum += data[i];
    return sum;
  } else {
    return data[0];
  }
}

double G1CollectorPolicy::max_sum (double* data1,
                                   double* data2) {
  double ret = data1[0] + data2[0];

  if (G1CollectedHeap::use_parallel_gc_threads()) {
    for (uint i = 1; i < ParallelGCThreads; ++i) {
      double data = data1[i] + data2[i];
      if (data > ret)
        ret = data;
    }
  }
  return ret;
}

// Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001

void G1CollectorPolicy::record_collection_pause_end() {
  double end_time_sec = os::elapsedTime();
  double elapsed_ms = _last_pause_time_ms;
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  size_t rs_size =
    _cur_collection_pause_used_regions_at_start - collection_set_size();
  size_t cur_used_bytes = _g1->used();
  assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  bool last_pause_included_initial_mark = false;
  bool update_stats = !_g1->evacuation_failed();

#ifndef PRODUCT
  if (G1YoungSurvRateVerbose) {
    gclog_or_tty->print_cr("");
    _short_lived_surv_rate_group->print();
    // do that for any other surv rate groups too
  }
#endif // PRODUCT

  if (in_young_gc_mode()) {
    last_pause_included_initial_mark = during_initial_mark_pause();
    if (last_pause_included_initial_mark)
      record_concurrent_mark_init_end_pre(0.0);

    size_t min_used_targ =
      (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;


    if (!_g1->mark_in_progress() && !_last_full_young_gc) {
      assert(!last_pause_included_initial_mark, "invariant");
      if (cur_used_bytes > min_used_targ &&
          cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
        assert(!during_initial_mark_pause(), "we should not see this here");

        // Note: this might have already been set, if during the last
        // pause we decided to start a cycle but at the beginning of
        // this pause we decided to postpone it. That's OK.
        set_initiate_conc_mark_if_possible();
      }
    }

    _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  }

  _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
                          end_time_sec, false);

  guarantee(_cur_collection_pause_used_regions_at_start >=
            collection_set_size(),
            "Negative RS size?");

  // This assert is exempted when we're doing parallel collection pauses,
  // because the fragmentation caused by the parallel GC allocation buffers
  // can lead to more memory being used during collection than was used
  // before. Best leave this out until the fragmentation problem is fixed.
  // Pauses in which evacuation failed can also lead to negative
  // collections, since no space is reclaimed from a region containing an
  // object whose evacuation failed.
  // Further, we're now always doing parallel collection.  But I'm still
  // leaving this here as a placeholder for a more precise assertion later.
  // (DLD, 10/05.)
  assert((true || parallel) // Always using GC LABs now.
         || _g1->evacuation_failed()
         || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
         "Negative collection");

  size_t freed_bytes =
    _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;

  double survival_fraction =
    (double)surviving_bytes/
    (double)_collection_set_bytes_used_before;

  _n_pauses++;

  if (update_stats) {
    _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
    _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
    _recent_evac_times_ms->add(evac_ms);
    _recent_pause_times_ms->add(elapsed_ms);

    _recent_rs_sizes->add(rs_size);

    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.  Same with evac
    // failure.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.
    assert((true || parallel)
           || _g1->evacuation_failed()
           || surviving_bytes <= _collection_set_bytes_used_before,
           "Or else negative collection!");
    _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
    _recent_CS_bytes_surviving->add(surviving_bytes);

    // this is where we update the allocation rate of the application
    double app_time_ms =
      (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
    if (app_time_ms < MIN_TIMER_GRANULARITY) {
      // This usually happens due to the timer not having the required
      // granularity. Some Linuxes are the usual culprits.
      // We'll just set it to something (arbitrarily) small.
      app_time_ms = 1.0;
    }
    size_t regions_allocated =
      (_region_num_young - _prev_region_num_young) +
      (_region_num_tenured - _prev_region_num_tenured);
    double alloc_rate_ms = (double) regions_allocated / app_time_ms;
    _alloc_rate_ms_seq->add(alloc_rate_ms);
    _prev_region_num_young   = _region_num_young;
    _prev_region_num_tenured = _region_num_tenured;

    double interval_ms =
      (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
    update_recent_gc_times(end_time_sec, elapsed_ms);
    _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
    if (recent_avg_pause_time_ratio() < 0.0 ||
        (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
#ifndef PRODUCT
      // Dump info to allow post-facto debugging
      gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
      gclog_or_tty->print_cr("-------------------------------------------");
      gclog_or_tty->print_cr("Recent GC Times (ms):");
      _recent_gc_times_ms->dump();
      gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
      _recent_prev_end_times_for_all_gcs_sec->dump();
      gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
                             _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
      // In debug mode, terminate the JVM if the user wants to debug at this point.
      assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
#endif  // !PRODUCT
      // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
      // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
      if (_recent_avg_pause_time_ratio < 0.0) {
        _recent_avg_pause_time_ratio = 0.0;
      } else {
        assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
        _recent_avg_pause_time_ratio = 1.0;
      }
    }
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  }

  PauseSummary* summary = _summary;

  double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  double update_rs_processed_buffers =
    sum_of_values(_par_last_update_rs_processed_buffers);
  double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  double termination_time = avg_value(_par_last_termination_times_ms);

  double parallel_other_time = _cur_collection_par_time_ms -
    (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
     scan_rs_time + obj_copy_time + termination_time);
  if (update_stats) {
    MainBodySummary* body_summary = summary->main_body_summary();
    guarantee(body_summary != NULL, "should not be null!");

    if (_satb_drain_time_set)
      body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
    else
      body_summary->record_satb_drain_time_ms(0.0);
    body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
    body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
    body_summary->record_update_rs_time_ms(update_rs_time);
    body_summary->record_scan_rs_time_ms(scan_rs_time);
    body_summary->record_obj_copy_time_ms(obj_copy_time);
    if (parallel) {
      body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
      body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
      body_summary->record_termination_time_ms(termination_time);
      body_summary->record_parallel_other_time_ms(parallel_other_time);
    }
    body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  }

  if (G1PolicyVerbose > 1) {
    gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
                           "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
                           "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
                           "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
                           "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
                           "      |RS|: " SIZE_FORMAT,
                           elapsed_ms, recent_avg_time_for_pauses_ms(),
                           _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
                           _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
                           evac_ms, recent_avg_time_for_evac_ms(),
                           scan_rs_time,
                           recent_avg_time_for_pauses_ms() -
                           recent_avg_time_for_G1_strong_ms(),
                           rs_size);

    gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
                           "       At end " SIZE_FORMAT "K\n"
                           "       garbage      : " SIZE_FORMAT "K"
                           "       of     " SIZE_FORMAT "K\n"
                           "       survival     : %6.2f%%  (%6.2f%% avg)",
                           _cur_collection_pause_used_at_start_bytes/K,
                           _g1->used()/K, freed_bytes/K,
                           _collection_set_bytes_used_before/K,
                           survival_fraction*100.0,
                           recent_avg_survival_fraction()*100.0);
    gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
                           recent_avg_pause_time_ratio() * 100.0);
  }

  double other_time_ms = elapsed_ms;

  if (_satb_drain_time_set) {
    other_time_ms -= _cur_satb_drain_time_ms;
  }

  if (parallel) {
    other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  } else {
    other_time_ms -=
      update_rs_time +
      ext_root_scan_time + mark_stack_scan_time +
      scan_rs_time + obj_copy_time;
  }

  if (PrintGCDetails) {
    gclog_or_tty->print_cr("%s, %1.8lf secs]",
                           (last_pause_included_initial_mark) ? " (initial-mark)" : "",
                           elapsed_ms / 1000.0);

    if (_satb_drain_time_set) {
      print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
    }
    if (_last_satb_drain_processed_buffers >= 0) {
      print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
    }
    if (parallel) {
      print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
      print_par_stats(2, "GC Worker Start Time",
                      _par_last_gc_worker_start_times_ms, false);
      print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
      print_par_sizes(3, "Processed Buffers",
                      _par_last_update_rs_processed_buffers, true);
      print_par_stats(2, "Ext Root Scanning",
                      _par_last_ext_root_scan_times_ms);
      print_par_stats(2, "Mark Stack Scanning",
                      _par_last_mark_stack_scan_times_ms);
      print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
      print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
      print_par_stats(2, "Termination", _par_last_termination_times_ms);
      print_par_sizes(3, "Termination Attempts",
                      _par_last_termination_attempts, true);
      print_par_stats(2, "GC Worker End Time",
                      _par_last_gc_worker_end_times_ms, false);
      print_stats(2, "Other", parallel_other_time);
      print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
    } else {
      print_stats(1, "Update RS", update_rs_time);
      print_stats(2, "Processed Buffers",
                  (int)update_rs_processed_buffers);
      print_stats(1, "Ext Root Scanning", ext_root_scan_time);
      print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
      print_stats(1, "Scan RS", scan_rs_time);
      print_stats(1, "Object Copying", obj_copy_time);
    }
#ifndef PRODUCT
    print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
    print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
    print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
    print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
    if (_num_cc_clears > 0) {
      print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
    }
#endif
    print_stats(1, "Other", other_time_ms);
    print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);

    for (int i = 0; i < _aux_num; ++i) {
      if (_cur_aux_times_set[i]) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_stats(1, buffer, _cur_aux_times_ms[i]);
      }
    }
  }
  if (PrintGCDetails)
    gclog_or_tty->print("   [");
  if (PrintGC || PrintGCDetails)
    _g1->print_size_transition(gclog_or_tty,
                               _cur_collection_pause_used_at_start_bytes,
                               _g1->used(), _g1->capacity());
  if (PrintGCDetails)
    gclog_or_tty->print_cr("]");

  _all_pause_times_ms->add(elapsed_ms);
  if (update_stats) {
    summary->record_total_time_ms(elapsed_ms);
    summary->record_other_time_ms(other_time_ms);
  }
  for (int i = 0; i < _aux_num; ++i)
    if (_cur_aux_times_set[i])
      _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);

  // Reset marks-between-pauses counter.
  _n_marks_since_last_pause = 0;

  // Update the efficiency-since-mark vars.
  double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  if (elapsed_ms < MIN_TIMER_GRANULARITY) {
    // This usually happens due to the timer not having the required
    // granularity. Some Linuxes are the usual culprits.
    // We'll just set it to something (arbitrarily) small.
    proc_ms = 1.0;
  }
  double cur_efficiency = (double) freed_bytes / proc_ms;

  bool new_in_marking_window = _in_marking_window;
  bool new_in_marking_window_im = false;
  if (during_initial_mark_pause()) {
    new_in_marking_window = true;
    new_in_marking_window_im = true;
  }

  if (in_young_gc_mode()) {
    if (_last_full_young_gc) {
      set_full_young_gcs(false);
      _last_full_young_gc = false;
    }

    if ( !_last_young_gc_full ) {
      if ( _should_revert_to_full_young_gcs ||
           _known_garbage_ratio < 0.05 ||
           (adaptive_young_list_length() &&
           (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
        set_full_young_gcs(true);
      }
    }
    _should_revert_to_full_young_gcs = false;

    if (_last_young_gc_full && !_during_marking)
      _young_gc_eff_seq->add(cur_efficiency);
  }

  _short_lived_surv_rate_group->start_adding_regions();
  // do that for any other surv rate groupsx

  // <NEW PREDICTION>

  if (update_stats) {
    double pause_time_ms = elapsed_ms;

    size_t diff = 0;
    if (_max_pending_cards >= _pending_cards)
      diff = _max_pending_cards - _pending_cards;
    _pending_card_diff_seq->add((double) diff);

    double cost_per_card_ms = 0.0;
    if (_pending_cards > 0) {
      cost_per_card_ms = update_rs_time / (double) _pending_cards;
      _cost_per_card_ms_seq->add(cost_per_card_ms);
    }

    size_t cards_scanned = _g1->cards_scanned();

    double cost_per_entry_ms = 0.0;
    if (cards_scanned > 10) {
      cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
      if (_last_young_gc_full)
        _cost_per_entry_ms_seq->add(cost_per_entry_ms);
      else
        _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
    }

    if (_max_rs_lengths > 0) {
      double cards_per_entry_ratio =
        (double) cards_scanned / (double) _max_rs_lengths;
      if (_last_young_gc_full)
        _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
      else
        _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
    }

    size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
    if (rs_length_diff >= 0)
      _rs_length_diff_seq->add((double) rs_length_diff);

    size_t copied_bytes = surviving_bytes;
    double cost_per_byte_ms = 0.0;
    if (copied_bytes > 0) {
      cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
      if (_in_marking_window)
        _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
      else
        _cost_per_byte_ms_seq->add(cost_per_byte_ms);
    }

    double all_other_time_ms = pause_time_ms -
      (update_rs_time + scan_rs_time + obj_copy_time +
       _mark_closure_time_ms + termination_time);

    double young_other_time_ms = 0.0;
    if (_recorded_young_regions > 0) {
      young_other_time_ms =
        _recorded_young_cset_choice_time_ms +
        _recorded_young_free_cset_time_ms;
      _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
                                             (double) _recorded_young_regions);
    }
    double non_young_other_time_ms = 0.0;
    if (_recorded_non_young_regions > 0) {
      non_young_other_time_ms =
        _recorded_non_young_cset_choice_time_ms +
        _recorded_non_young_free_cset_time_ms;

      _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
                                         (double) _recorded_non_young_regions);
    }

    double constant_other_time_ms = all_other_time_ms -
      (young_other_time_ms + non_young_other_time_ms);
    _constant_other_time_ms_seq->add(constant_other_time_ms);

    double survival_ratio = 0.0;
    if (_bytes_in_collection_set_before_gc > 0) {
      survival_ratio = (double) bytes_in_to_space_during_gc() /
        (double) _bytes_in_collection_set_before_gc;
    }

    _pending_cards_seq->add((double) _pending_cards);
    _scanned_cards_seq->add((double) cards_scanned);
    _rs_lengths_seq->add((double) _max_rs_lengths);

    double expensive_region_limit_ms =
      (double) MaxGCPauseMillis - predict_constant_other_time_ms();
    if (expensive_region_limit_ms < 0.0) {
      // this means that the other time was predicted to be longer than
      // than the max pause time
      expensive_region_limit_ms = (double) MaxGCPauseMillis;
    }
    _expensive_region_limit_ms = expensive_region_limit_ms;

    if (PREDICTIONS_VERBOSE) {
      gclog_or_tty->print_cr("");
      gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
                    "REGIONS %d %d %d "
                    "PENDING_CARDS %d %d "
                    "CARDS_SCANNED %d %d "
                    "RS_LENGTHS %d %d "
                    "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
                    "SURVIVAL_RATIO %1.6lf %1.6lf "
                    "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
                    "OTHER_YOUNG %1.6lf %1.6lf "
                    "OTHER_NON_YOUNG %1.6lf %1.6lf "
                    "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
                    "ELAPSED %1.6lf %1.6lf ",
                    _cur_collection_start_sec,
                    (!_last_young_gc_full) ? 2 :
                    (last_pause_included_initial_mark) ? 1 : 0,
                    _recorded_region_num,
                    _recorded_young_regions,
                    _recorded_non_young_regions,
                    _predicted_pending_cards, _pending_cards,
                    _predicted_cards_scanned, cards_scanned,
                    _predicted_rs_lengths, _max_rs_lengths,
                    _predicted_rs_update_time_ms, update_rs_time,
                    _predicted_rs_scan_time_ms, scan_rs_time,
                    _predicted_survival_ratio, survival_ratio,
                    _predicted_object_copy_time_ms, obj_copy_time,
                    _predicted_constant_other_time_ms, constant_other_time_ms,
                    _predicted_young_other_time_ms, young_other_time_ms,
                    _predicted_non_young_other_time_ms,
                    non_young_other_time_ms,
                    _vtime_diff_ms, termination_time,
                    _predicted_pause_time_ms, elapsed_ms);
    }

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
                    _predicted_pause_time_ms,
                    (_within_target) ? "within" : "outside",
                    elapsed_ms);
    }

  }

  _in_marking_window = new_in_marking_window;
  _in_marking_window_im = new_in_marking_window_im;
  _free_regions_at_end_of_collection = _g1->free_regions();
  calculate_young_list_min_length();
  calculate_young_list_target_length();

  // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  // </NEW PREDICTION>
}

// <NEW PREDICTION>

void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
                                                     double update_rs_processed_buffers,
                                                     double goal_ms) {
  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();

  if (G1UseAdaptiveConcRefinement) {
    const int k_gy = 3, k_gr = 6;
    const double inc_k = 1.1, dec_k = 0.9;

    int g = cg1r->green_zone();
    if (update_rs_time > goal_ms) {
      g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
    } else {
      if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
        g = (int)MAX2(g * inc_k, g + 1.0);
      }
    }
    // Change the refinement threads params
    cg1r->set_green_zone(g);
    cg1r->set_yellow_zone(g * k_gy);
    cg1r->set_red_zone(g * k_gr);
    cg1r->reinitialize_threads();

    int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
    int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
                                    cg1r->yellow_zone());
    // Change the barrier params
    dcqs.set_process_completed_threshold(processing_threshold);
    dcqs.set_max_completed_queue(cg1r->red_zone());
  }

  int curr_queue_size = dcqs.completed_buffers_num();
  if (curr_queue_size >= cg1r->yellow_zone()) {
    dcqs.set_completed_queue_padding(curr_queue_size);
  } else {
    dcqs.set_completed_queue_padding(0);
  }
  dcqs.notify_if_necessary();
}

double
G1CollectorPolicy::
predict_young_collection_elapsed_time_ms(size_t adjustment) {
  guarantee( adjustment == 0 || adjustment == 1, "invariant" );

  G1CollectedHeap* g1h = G1CollectedHeap::heap();
  size_t young_num = g1h->young_list()->length();
  if (young_num == 0)
    return 0.0;

  young_num += adjustment;
  size_t pending_cards = predict_pending_cards();
  size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
                      predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_lengths);
  else
    card_num = predict_non_young_card_num(rs_lengths);
  size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  double accum_yg_surv_rate =
    _short_lived_surv_rate_group->accum_surv_rate(adjustment);

  size_t bytes_to_copy =
    (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);

  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy) +
    predict_young_other_time_ms(young_num) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  size_t rs_length = predict_rs_length_diff();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  return predict_base_elapsed_time_ms(pending_cards, card_num);
}

double
G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
                                                size_t scanned_cards) {
  return
    predict_rs_update_time_ms(pending_cards) +
    predict_rs_scan_time_ms(scanned_cards) +
    predict_constant_other_time_ms();
}

double
G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
                                                  bool young) {
  size_t rs_length = hr->rem_set()->occupied();
  size_t card_num;
  if (full_young_gcs())
    card_num = predict_young_card_num(rs_length);
  else
    card_num = predict_non_young_card_num(rs_length);
  size_t bytes_to_copy = predict_bytes_to_copy(hr);

  double region_elapsed_time_ms =
    predict_rs_scan_time_ms(card_num) +
    predict_object_copy_time_ms(bytes_to_copy);

  if (young)
    region_elapsed_time_ms += predict_young_other_time_ms(1);
  else
    region_elapsed_time_ms += predict_non_young_other_time_ms(1);

  return region_elapsed_time_ms;
}

size_t
G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  size_t bytes_to_copy;
  if (hr->is_marked())
    bytes_to_copy = hr->max_live_bytes();
  else {
    guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
               "invariant" );
    int age = hr->age_in_surv_rate_group();
    double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
    bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  }

  return bytes_to_copy;
}

void
G1CollectorPolicy::start_recording_regions() {
  _recorded_rs_lengths            = 0;
  _recorded_young_regions         = 0;
  _recorded_non_young_regions     = 0;

#if PREDICTIONS_VERBOSE
  _recorded_marked_bytes          = 0;
  _recorded_young_bytes           = 0;
  _predicted_bytes_to_copy        = 0;
  _predicted_rs_lengths           = 0;
  _predicted_cards_scanned        = 0;
#endif // PREDICTIONS_VERBOSE
}

void
G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
#if PREDICTIONS_VERBOSE
  if (!young) {
    _recorded_marked_bytes += hr->max_live_bytes();
  }
  _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
#endif // PREDICTIONS_VERBOSE

  size_t rs_length = hr->rem_set()->occupied();
  _recorded_rs_lengths += rs_length;
}

void
G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  assert(!hr->is_young(), "should not call this");
  ++_recorded_non_young_regions;
  record_cset_region_info(hr, false);
}

void
G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  _recorded_young_regions = n_regions;
}

void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
#if PREDICTIONS_VERBOSE
  _recorded_young_bytes = bytes;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  _recorded_rs_lengths = rs_lengths;
}

void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  _predicted_bytes_to_copy = bytes;
}

void
G1CollectorPolicy::end_recording_regions() {
  // The _predicted_pause_time_ms field is referenced in code
  // not under PREDICTIONS_VERBOSE. Let's initialize it.
  _predicted_pause_time_ms = -1.0;

#if PREDICTIONS_VERBOSE
  _predicted_pending_cards = predict_pending_cards();
  _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  if (full_young_gcs())
    _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  else
    _predicted_cards_scanned +=
      predict_non_young_card_num(_predicted_rs_lengths);
  _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;

  _predicted_rs_update_time_ms =
    predict_rs_update_time_ms(_g1->pending_card_num());
  _predicted_rs_scan_time_ms =
    predict_rs_scan_time_ms(_predicted_cards_scanned);
  _predicted_object_copy_time_ms =
    predict_object_copy_time_ms(_predicted_bytes_to_copy);
  _predicted_constant_other_time_ms =
    predict_constant_other_time_ms();
  _predicted_young_other_time_ms =
    predict_young_other_time_ms(_recorded_young_regions);
  _predicted_non_young_other_time_ms =
    predict_non_young_other_time_ms(_recorded_non_young_regions);

  _predicted_pause_time_ms =
    _predicted_rs_update_time_ms +
    _predicted_rs_scan_time_ms +
    _predicted_object_copy_time_ms +
    _predicted_constant_other_time_ms +
    _predicted_young_other_time_ms +
    _predicted_non_young_other_time_ms;
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::check_if_region_is_too_expensive(double
                                                           predicted_time_ms) {
  // I don't think we need to do this when in young GC mode since
  // marking will be initiated next time we hit the soft limit anyway...
  if (predicted_time_ms > _expensive_region_limit_ms) {
    if (!in_young_gc_mode()) {
        set_full_young_gcs(true);
        // We might want to do something different here. However,
        // right now we don't support the non-generational G1 mode
        // (and in fact we are planning to remove the associated code,
        // see CR 6814390). So, let's leave it as is and this will be
        // removed some time in the future
        ShouldNotReachHere();
        set_during_initial_mark_pause();
    } else
      // no point in doing another partial one
      _should_revert_to_full_young_gcs = true;
  }
}

// </NEW PREDICTION>


void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
                                               double elapsed_ms) {
  _recent_gc_times_ms->add(elapsed_ms);
  _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  _prev_collection_pause_end_ms = end_time_sec * 1000.0;
}

double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  else return _recent_pause_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  if (_recent_CH_strong_roots_times_ms->num() == 0)
    return (double)MaxGCPauseMillis/3.0;
  else return _recent_CH_strong_roots_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  if (_recent_G1_strong_roots_times_ms->num() == 0)
    return (double)MaxGCPauseMillis/3.0;
  else return _recent_G1_strong_roots_times_ms->avg();
}

double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  else return _recent_evac_times_ms->avg();
}

int G1CollectorPolicy::number_of_recent_gcs() {
  assert(_recent_CH_strong_roots_times_ms->num() ==
         _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  assert(_recent_G1_strong_roots_times_ms->num() ==
         _recent_evac_times_ms->num(), "Sequence out of sync");
  assert(_recent_evac_times_ms->num() ==
         _recent_pause_times_ms->num(), "Sequence out of sync");
  assert(_recent_pause_times_ms->num() ==
         _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  assert(_recent_CS_bytes_used_before->num() ==
         _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  return _recent_pause_times_ms->num();
}

double G1CollectorPolicy::recent_avg_survival_fraction() {
  return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
                                           _recent_CS_bytes_used_before);
}

double G1CollectorPolicy::last_survival_fraction() {
  return last_survival_fraction_work(_recent_CS_bytes_surviving,
                                     _recent_CS_bytes_used_before);
}

double
G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
                                                     TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (before->sum() > 0.0) {
      double recent_survival_rate = surviving->sum() / before->sum();
      // We exempt parallel collection from this check because Alloc Buffer
      // fragmentation can produce negative collections.
      // Further, we're now always doing parallel collection.  But I'm still
      // leaving this here as a placeholder for a more precise assertion later.
      // (DLD, 10/05.)
      assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
             _g1->evacuation_failed() ||
             recent_survival_rate <= 1.0, "Or bad frac");
      return recent_survival_rate;
  } else {
    return 1.0; // Be conservative.
  }
}

double
G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
                                               TruncatedSeq* before) {
  assert(surviving->num() == before->num(), "Sequence out of sync");
  if (surviving->num() > 0 && before->last() > 0.0) {
    double last_survival_rate = surviving->last() / before->last();
    // We exempt parallel collection from this check because Alloc Buffer
    // fragmentation can produce negative collections.
    // Further, we're now always doing parallel collection.  But I'm still
    // leaving this here as a placeholder for a more precise assertion later.
    // (DLD, 10/05.)
    assert((true || G1CollectedHeap::use_parallel_gc_threads()) ||
           last_survival_rate <= 1.0, "Or bad frac");
    return last_survival_rate;
  } else {
    return 1.0;
  }
}

static const int survival_min_obs = 5;
static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
static const double min_survival_rate = 0.1;

double
G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
                                                           double latest) {
  double res = avg;
  if (number_of_recent_gcs() < survival_min_obs) {
    res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  }
  res = MAX2(res, latest);
  res = MAX2(res, min_survival_rate);
  // In the parallel case, LAB fragmentation can produce "negative
  // collections"; so can evac failure.  Cap at 1.0
  res = MIN2(res, 1.0);
  return res;
}

size_t G1CollectorPolicy::expansion_amount() {
  if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
    // We will double the existing space, or take
    // G1ExpandByPercentOfAvailable % of the available expansion
    // space, whichever is smaller, bounded below by a minimum
    // expansion (unless that's all that's left.)
    const size_t min_expand_bytes = 1*M;
    size_t reserved_bytes = _g1->g1_reserved_obj_bytes();
    size_t committed_bytes = _g1->capacity();
    size_t uncommitted_bytes = reserved_bytes - committed_bytes;
    size_t expand_bytes;
    size_t expand_bytes_via_pct =
      uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
    expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
    expand_bytes = MAX2(expand_bytes, min_expand_bytes);
    expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
    if (G1PolicyVerbose > 1) {
      gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
                 "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
                 "                   Answer = %d.\n",
                 recent_avg_pause_time_ratio(),
                 byte_size_in_proper_unit(committed_bytes),
                 proper_unit_for_byte_size(committed_bytes),
                 byte_size_in_proper_unit(uncommitted_bytes),
                 proper_unit_for_byte_size(uncommitted_bytes),
                 byte_size_in_proper_unit(expand_bytes_via_pct),
                 proper_unit_for_byte_size(expand_bytes_via_pct),
                 byte_size_in_proper_unit(expand_bytes),
                 proper_unit_for_byte_size(expand_bytes));
    }
    return expand_bytes;
  } else {
    return 0;
  }
}

void G1CollectorPolicy::note_start_of_mark_thread() {
  _mark_thread_startup_sec = os::elapsedTime();
}

class CountCSClosure: public HeapRegionClosure {
  G1CollectorPolicy* _g1_policy;
public:
  CountCSClosure(G1CollectorPolicy* g1_policy) :
    _g1_policy(g1_policy) {}
  bool doHeapRegion(HeapRegion* r) {
    _g1_policy->_bytes_in_collection_set_before_gc += r->used();
    return false;
  }
};

void G1CollectorPolicy::count_CS_bytes_used() {
  CountCSClosure cs_closure(this);
  _g1->collection_set_iterate(&cs_closure);
}

static void print_indent(int level) {
  for (int j = 0; j < level+1; ++j)
    gclog_or_tty->print("   ");
}

void G1CollectorPolicy::print_summary (int level,
                                       const char* str,
                                       NumberSeq* seq) const {
  double sum = seq->sum();
  print_indent(level);
  gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
                str, sum / 1000.0, seq->avg());
}

void G1CollectorPolicy::print_summary_sd (int level,
                                          const char* str,
                                          NumberSeq* seq) const {
  print_summary(level, str, seq);
  print_indent(level + 5);
  gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
                seq->num(), seq->sd(), seq->maximum());
}

void G1CollectorPolicy::check_other_times(int level,
                                        NumberSeq* other_times_ms,
                                        NumberSeq* calc_other_times_ms) const {
  bool should_print = false;

  double max_sum = MAX2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double min_sum = MIN2(fabs(other_times_ms->sum()),
                        fabs(calc_other_times_ms->sum()));
  double sum_ratio = max_sum / min_sum;
  if (sum_ratio > 1.1) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  }

  double max_avg = MAX2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double min_avg = MIN2(fabs(other_times_ms->avg()),
                        fabs(calc_other_times_ms->avg()));
  double avg_ratio = max_avg / min_avg;
  if (avg_ratio > 1.1) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  }

  if (other_times_ms->sum() < -0.01) {
    print_indent(level + 1);
    gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  }

  if (other_times_ms->avg() < -0.01) {
    print_indent(level + 1);
    gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  }

  if (calc_other_times_ms->sum() < -0.01) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  }

  if (calc_other_times_ms->avg() < -0.01) {
    should_print = true;
    print_indent(level + 1);
    gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  }

  if (should_print)
    print_summary(level, "Other(Calc)", calc_other_times_ms);
}

void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  bool parallel = G1CollectedHeap::use_parallel_gc_threads();
  MainBodySummary*    body_summary = summary->main_body_summary();
  if (summary->get_total_seq()->num() > 0) {
    print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
    if (body_summary != NULL) {
      print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
      if (parallel) {
        print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
        print_summary(2, "Update RS", body_summary->get_update_rs_seq());
        print_summary(2, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(2, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
        print_summary(2, "Termination", body_summary->get_termination_seq());
        print_summary(2, "Other", body_summary->get_parallel_other_seq());
        {
          NumberSeq* other_parts[] = {
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq(),
            body_summary->get_termination_seq()
          };
          NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
                                        6, other_parts);
          check_other_times(2, body_summary->get_parallel_other_seq(),
                            &calc_other_times_ms);
        }
        print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
        print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
      } else {
        print_summary(1, "Update RS", body_summary->get_update_rs_seq());
        print_summary(1, "Ext Root Scanning",
                      body_summary->get_ext_root_scan_seq());
        print_summary(1, "Mark Stack Scanning",
                      body_summary->get_mark_stack_scan_seq());
        print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
        print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
      }
    }
    print_summary(1, "Other", summary->get_other_seq());
    {
      if (body_summary != NULL) {
        NumberSeq calc_other_times_ms;
        if (parallel) {
          // parallel
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_parallel_seq(),
            body_summary->get_clear_ct_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                3, other_parts);
        } else {
          // serial
          NumberSeq* other_parts[] = {
            body_summary->get_satb_drain_seq(),
            body_summary->get_update_rs_seq(),
            body_summary->get_ext_root_scan_seq(),
            body_summary->get_mark_stack_scan_seq(),
            body_summary->get_scan_rs_seq(),
            body_summary->get_obj_copy_seq()
          };
          calc_other_times_ms = NumberSeq(summary->get_total_seq(),
                                                6, other_parts);
        }
        check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
      }
    }
  } else {
    print_indent(0);
    gclog_or_tty->print_cr("none");
  }
  gclog_or_tty->print_cr("");
}

void G1CollectorPolicy::print_tracing_info() const {
  if (TraceGen0Time) {
    gclog_or_tty->print_cr("ALL PAUSES");
    print_summary_sd(0, "Total", _all_pause_times_ms);
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("");
    gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
    gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
    gclog_or_tty->print_cr("");

    gclog_or_tty->print_cr("EVACUATION PAUSES");
    print_summary(_summary);

    gclog_or_tty->print_cr("MISC");
    print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
    print_summary_sd(0, "Yields", _all_yield_times_ms);
    for (int i = 0; i < _aux_num; ++i) {
      if (_all_aux_times_ms[i].num() > 0) {
        char buffer[96];
        sprintf(buffer, "Aux%d", i);
        print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
      }
    }

    size_t all_region_num = _region_num_young + _region_num_tenured;
    gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
               "Tenured %8d (%6.2lf%%)",
               all_region_num,
               _region_num_young,
               (double) _region_num_young / (double) all_region_num * 100.0,
               _region_num_tenured,
               (double) _region_num_tenured / (double) all_region_num * 100.0);
  }
  if (TraceGen1Time) {
    if (_all_full_gc_times_ms->num() > 0) {
      gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
                 _all_full_gc_times_ms->num(),
                 _all_full_gc_times_ms->sum() / 1000.0);
      gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
      gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
                    _all_full_gc_times_ms->sd(),
                    _all_full_gc_times_ms->maximum());
    }
  }
}

void G1CollectorPolicy::print_yg_surv_rate_info() const {
#ifndef PRODUCT
  _short_lived_surv_rate_group->print_surv_rate_summary();
  // add this call for any other surv rate groups
#endif // PRODUCT
}

void
G1CollectorPolicy::update_region_num(bool young) {
  if (young) {
    ++_region_num_young;
  } else {
    ++_region_num_tenured;
  }
}

#ifndef PRODUCT
// for debugging, bit of a hack...
static char*
region_num_to_mbs(int length) {
  static char buffer[64];
  double bytes = (double) (length * HeapRegion::GrainBytes);
  double mbs = bytes / (double) (1024 * 1024);
  sprintf(buffer, "%7.2lfMB", mbs);
  return buffer;
}
#endif // PRODUCT

size_t G1CollectorPolicy::max_regions(int purpose) {
  switch (purpose) {
    case GCAllocForSurvived:
      return _max_survivor_regions;
    case GCAllocForTenured:
      return REGIONS_UNLIMITED;
    default:
      ShouldNotReachHere();
      return REGIONS_UNLIMITED;
  };
}

void G1CollectorPolicy::calculate_max_gc_locker_expansion() {
  size_t expansion_region_num = 0;
  if (GCLockerEdenExpansionPercent > 0) {
    double perc = (double) GCLockerEdenExpansionPercent / 100.0;
    double expansion_region_num_d = perc * (double) _young_list_target_length;
    // We use ceiling so that if expansion_region_num_d is > 0.0 (but
    // less than 1.0) we'll get 1.
    expansion_region_num = (size_t) ceil(expansion_region_num_d);
  } else {
    assert(expansion_region_num == 0, "sanity");
  }
  _young_list_max_length = _young_list_target_length + expansion_region_num;
  assert(_young_list_target_length <= _young_list_max_length, "post-condition");
}

// Calculates survivor space parameters.
void G1CollectorPolicy::calculate_survivors_policy()
{
  if (G1FixedSurvivorSpaceSize == 0) {
    _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  } else {
    _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  }

  if (G1FixedTenuringThreshold) {
    _tenuring_threshold = MaxTenuringThreshold;
  } else {
    _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
        HeapRegion::GrainWords * _max_survivor_regions);
  }
}

#ifndef PRODUCT
class HRSortIndexIsOKClosure: public HeapRegionClosure {
  CollectionSetChooser* _chooser;
public:
  HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
    _chooser(chooser) {}

  bool doHeapRegion(HeapRegion* r) {
    if (!r->continuesHumongous()) {
      assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
    }
    return false;
  }
};

bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  HRSortIndexIsOKClosure cl(_collectionSetChooser);
  _g1->heap_region_iterate(&cl);
  return true;
}
#endif

bool
G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  if (!during_cycle) {
    set_initiate_conc_mark_if_possible();
    return true;
  } else {
    return false;
  }
}

void
G1CollectorPolicy::decide_on_conc_mark_initiation() {
  // We are about to decide on whether this pause will be an
  // initial-mark pause.

  // First, during_initial_mark_pause() should not be already set. We
  // will set it here if we have to. However, it should be cleared by
  // the end of the pause (it's only set for the duration of an
  // initial-mark pause).
  assert(!during_initial_mark_pause(), "pre-condition");

  if (initiate_conc_mark_if_possible()) {
    // We had noticed on a previous pause that the heap occupancy has
    // gone over the initiating threshold and we should start a
    // concurrent marking cycle. So we might initiate one.

    bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
    if (!during_cycle) {
      // The concurrent marking thread is not "during a cycle", i.e.,
      // it has completed the last one. So we can go ahead and
      // initiate a new cycle.

      set_during_initial_mark_pause();

      // And we can now clear initiate_conc_mark_if_possible() as
      // we've already acted on it.
      clear_initiate_conc_mark_if_possible();
    } else {
      // The concurrent marking thread is still finishing up the
      // previous cycle. If we start one right now the two cycles
      // overlap. In particular, the concurrent marking thread might
      // be in the process of clearing the next marking bitmap (which
      // we will use for the next cycle if we start one). Starting a
      // cycle now will be bad given that parts of the marking
      // information might get cleared by the marking thread. And we
      // cannot wait for the marking thread to finish the cycle as it
      // periodically yields while clearing the next marking bitmap
      // and, if it's in a yield point, it's waiting for us to
      // finish. So, at this point we will not start a cycle and we'll
      // let the concurrent marking thread complete the last one.
    }
  }
}

void
G1CollectorPolicy_BestRegionsFirst::
record_collection_pause_start(double start_time_sec, size_t start_used) {
  G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
}

class NextNonCSElemFinder: public HeapRegionClosure {
  HeapRegion* _res;
public:
  NextNonCSElemFinder(): _res(NULL) {}
  bool doHeapRegion(HeapRegion* r) {
    if (!r->in_collection_set()) {
      _res = r;
      return true;
    } else {
      return false;
    }
  }
  HeapRegion* res() { return _res; }
};

class KnownGarbageClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;

public:
  KnownGarbageClosure(CollectionSetChooser* hrSorted) :
    _hrSorted(hrSorted)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.  We also don't include young regions because we *must*
      // include them in the next collection pause.
      if (!r->isHumongous() && !r->is_young()) {
        _hrSorted->addMarkedHeapRegion(r);
      }
    }
    return false;
  }
};

class ParKnownGarbageHRClosure: public HeapRegionClosure {
  CollectionSetChooser* _hrSorted;
  jint _marked_regions_added;
  jint _chunk_size;
  jint _cur_chunk_idx;
  jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  int _worker;
  int _invokes;

  void get_new_chunk() {
    _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
    _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  }
  void add_region(HeapRegion* r) {
    if (_cur_chunk_idx == _cur_chunk_end) {
      get_new_chunk();
    }
    assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
    _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
    _marked_regions_added++;
    _cur_chunk_idx++;
  }

public:
  ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
                           jint chunk_size,
                           int worker) :
    _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
    _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
    _invokes(0)
  {}

  bool doHeapRegion(HeapRegion* r) {
    // We only include humongous regions in collection
    // sets when concurrent mark shows that their contained object is
    // unreachable.
    _invokes++;

    // Do we have any marking information for this region?
    if (r->is_marked()) {
      // We don't include humongous regions in collection
      // sets because we collect them immediately at the end of a marking
      // cycle.
      // We also do not include young regions in collection sets
      if (!r->isHumongous() && !r->is_young()) {
        add_region(r);
      }
    }
    return false;
  }
  jint marked_regions_added() { return _marked_regions_added; }
  int invokes() { return _invokes; }
};

class ParKnownGarbageTask: public AbstractGangTask {
  CollectionSetChooser* _hrSorted;
  jint _chunk_size;
  G1CollectedHeap* _g1;
public:
  ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
    AbstractGangTask("ParKnownGarbageTask"),
    _hrSorted(hrSorted), _chunk_size(chunk_size),
    _g1(G1CollectedHeap::heap())
  {}

  void work(int i) {
    ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
    // Back to zero for the claim value.
    _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
                                         HeapRegion::InitialClaimValue);
    jint regions_added = parKnownGarbageCl.marked_regions_added();
    _hrSorted->incNumMarkedHeapRegions(regions_added);
    if (G1PrintParCleanupStats) {
      gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
                 i, parKnownGarbageCl.invokes(), regions_added);
    }
  }
};

void
G1CollectorPolicy_BestRegionsFirst::
record_concurrent_mark_cleanup_end(size_t freed_bytes,
                                   size_t max_live_bytes) {
  double start;
  if (G1PrintParCleanupStats) start = os::elapsedTime();
  record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);

  _collectionSetChooser->clearMarkedHeapRegions();
  double clear_marked_end;
  if (G1PrintParCleanupStats) {
    clear_marked_end = os::elapsedTime();
    gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
                  (clear_marked_end - start)*1000.0);
  }
  if (G1CollectedHeap::use_parallel_gc_threads()) {
    const size_t OverpartitionFactor = 4;
    const size_t MinWorkUnit = 8;
    const size_t WorkUnit =
      MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
           MinWorkUnit);
    _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
                                                             WorkUnit);
    ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
                                            (int) WorkUnit);
    _g1->workers()->run_task(&parKnownGarbageTask);

    assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
           "sanity check");
  } else {
    KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
    _g1->heap_region_iterate(&knownGarbagecl);
  }
  double known_garbage_end;
  if (G1PrintParCleanupStats) {
    known_garbage_end = os::elapsedTime();
    gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
                  (known_garbage_end - clear_marked_end)*1000.0);
  }
  _collectionSetChooser->sortMarkedHeapRegions();
  double sort_end;
  if (G1PrintParCleanupStats) {
    sort_end = os::elapsedTime();
    gclog_or_tty->print_cr("  sorting: %8.3f ms.",
                  (sort_end - known_garbage_end)*1000.0);
  }

  record_concurrent_mark_cleanup_end_work2();
  double work2_end;
  if (G1PrintParCleanupStats) {
    work2_end = os::elapsedTime();
    gclog_or_tty->print_cr("  work2: %8.3f ms.",
                  (work2_end - sort_end)*1000.0);
  }
}

// Add the heap region at the head of the non-incremental collection set
void G1CollectorPolicy::
add_to_collection_set(HeapRegion* hr) {
  assert(_inc_cset_build_state == Active, "Precondition");
  assert(!hr->is_young(), "non-incremental add of young region");

  if (G1PrintHeapRegions) {
    gclog_or_tty->print_cr("added region to cset "
                           "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                           "top "PTR_FORMAT", %s",
                           hr->hrs_index(), hr->bottom(), hr->end(),
                           hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
  }

  if (_g1->mark_in_progress())
    _g1->concurrent_mark()->registerCSetRegion(hr);

  assert(!hr->in_collection_set(), "should not already be in the CSet");
  hr->set_in_collection_set(true);
  hr->set_next_in_collection_set(_collection_set);
  _collection_set = hr;
  _collection_set_size++;
  _collection_set_bytes_used_before += hr->used();
  _g1->register_region_with_in_cset_fast_test(hr);
}

// Initialize the per-collection-set information
void G1CollectorPolicy::start_incremental_cset_building() {
  assert(_inc_cset_build_state == Inactive, "Precondition");

  _inc_cset_head = NULL;
  _inc_cset_tail = NULL;
  _inc_cset_size = 0;
  _inc_cset_bytes_used_before = 0;

  if (in_young_gc_mode()) {
    _inc_cset_young_index = 0;
  }

  _inc_cset_max_finger = 0;
  _inc_cset_recorded_young_bytes = 0;
  _inc_cset_recorded_rs_lengths = 0;
  _inc_cset_predicted_elapsed_time_ms = 0;
  _inc_cset_predicted_bytes_to_copy = 0;
  _inc_cset_build_state = Active;
}

void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  // This routine is used when:
  // * adding survivor regions to the incremental cset at the end of an
  //   evacuation pause,
  // * adding the current allocation region to the incremental cset
  //   when it is retired, and
  // * updating existing policy information for a region in the
  //   incremental cset via young list RSet sampling.
  // Therefore this routine may be called at a safepoint by the
  // VM thread, or in-between safepoints by mutator threads (when
  // retiring the current allocation region) or a concurrent
  // refine thread (RSet sampling).

  double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  size_t used_bytes = hr->used();

  _inc_cset_recorded_rs_lengths += rs_length;
  _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;

  _inc_cset_bytes_used_before += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_recorded_rs_length(rs_length);
  hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);

#if PREDICTIONS_VERBOSE
  size_t bytes_to_copy = predict_bytes_to_copy(hr);
  _inc_cset_predicted_bytes_to_copy += bytes_to_copy;

  // Record the number of bytes used in this region
  _inc_cset_recorded_young_bytes += used_bytes;

  // Cache the values we have added to the aggregated informtion
  // in the heap region in case we have to remove this region from
  // the incremental collection set, or it is updated by the
  // rset sampling code
  hr->set_predicted_bytes_to_copy(bytes_to_copy);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  // This routine is currently only called as part of the updating of
  // existing policy information for regions in the incremental cset that
  // is performed by the concurrent refine thread(s) as part of young list
  // RSet sampling. Therefore we should not be at a safepoint.

  assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  assert(hr->is_young(), "it should be");

  size_t used_bytes = hr->used();
  size_t old_rs_length = hr->recorded_rs_length();
  double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();

  // Subtract the old recorded/predicted policy information for
  // the given heap region from the collection set info.
  _inc_cset_recorded_rs_lengths -= old_rs_length;
  _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;

  _inc_cset_bytes_used_before -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_recorded_rs_length(0);
  hr->set_predicted_elapsed_time_ms(0);

#if PREDICTIONS_VERBOSE
  size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;

  // Subtract the number of bytes used in this region
  _inc_cset_recorded_young_bytes -= used_bytes;

  // Clear the values cached in the heap region
  hr->set_predicted_bytes_to_copy(0);
#endif // PREDICTIONS_VERBOSE
}

void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  // Update the collection set information that is dependent on the new RS length
  assert(hr->is_young(), "Precondition");

  remove_from_incremental_cset_info(hr);
  add_to_incremental_cset_info(hr, new_rs_length);
}

void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  assert( hr->is_young(), "invariant");
  assert( hr->young_index_in_cset() == -1, "invariant" );
  assert(_inc_cset_build_state == Active, "Precondition");

  // We need to clear and set the cached recorded/cached collection set
  // information in the heap region here (before the region gets added
  // to the collection set). An individual heap region's cached values
  // are calculated, aggregated with the policy collection set info,
  // and cached in the heap region here (initially) and (subsequently)
  // by the Young List sampling code.

  size_t rs_length = hr->rem_set()->occupied();
  add_to_incremental_cset_info(hr, rs_length);

  HeapWord* hr_end = hr->end();
  _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);

  assert(!hr->in_collection_set(), "invariant");
  hr->set_in_collection_set(true);
  assert( hr->next_in_collection_set() == NULL, "invariant");

  _inc_cset_size++;
  _g1->register_region_with_in_cset_fast_test(hr);

  hr->set_young_index_in_cset((int) _inc_cset_young_index);
  ++_inc_cset_young_index;
}

// Add the region at the RHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  // We should only ever be appending survivors at the end of a pause
  assert( hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Now add the region at the right hand side
  if (_inc_cset_tail == NULL) {
    assert(_inc_cset_head == NULL, "invariant");
    _inc_cset_head = hr;
  } else {
    _inc_cset_tail->set_next_in_collection_set(hr);
  }
  _inc_cset_tail = hr;

  if (G1PrintHeapRegions) {
    gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
                  "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                  "top "PTR_FORMAT", young %s",
                  hr->hrs_index(), hr->bottom(), hr->end(),
                  hr->top(), (hr->is_young()) ? "YES" : "NO");
  }
}

// Add the region to the LHS of the incremental cset
void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  // Survivors should be added to the RHS at the end of a pause
  assert(!hr->is_survivor(), "Logic");

  // Do the 'common' stuff
  add_region_to_incremental_cset_common(hr);

  // Add the region at the left hand side
  hr->set_next_in_collection_set(_inc_cset_head);
  if (_inc_cset_head == NULL) {
    assert(_inc_cset_tail == NULL, "Invariant");
    _inc_cset_tail = hr;
  }
  _inc_cset_head = hr;

  if (G1PrintHeapRegions) {
    gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
                  "%d:["PTR_FORMAT", "PTR_FORMAT"], "
                  "top "PTR_FORMAT", young %s",
                  hr->hrs_index(), hr->bottom(), hr->end(),
                  hr->top(), (hr->is_young()) ? "YES" : "NO");
  }
}

#ifndef PRODUCT
void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");

  st->print_cr("\nCollection_set:");
  HeapRegion* csr = list_head;
  while (csr != NULL) {
    HeapRegion* next = csr->next_in_collection_set();
    assert(csr->in_collection_set(), "bad CS");
    st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
                 "age: %4d, y: %d, surv: %d",
                        csr->bottom(), csr->end(),
                        csr->top(),
                        csr->prev_top_at_mark_start(),
                        csr->next_top_at_mark_start(),
                        csr->top_at_conc_mark_count(),
                        csr->age_in_surv_rate_group_cond(),
                        csr->is_young(),
                        csr->is_survivor());
    csr = next;
  }
}
#endif // !PRODUCT

void
G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
                                                  double target_pause_time_ms) {
  // Set this here - in case we're not doing young collections.
  double non_young_start_time_sec = os::elapsedTime();

  start_recording_regions();

  guarantee(target_pause_time_ms > 0.0,
            err_msg("target_pause_time_ms = %1.6lf should be positive",
                    target_pause_time_ms));
  guarantee(_collection_set == NULL, "Precondition");

  double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  double predicted_pause_time_ms = base_time_ms;

  double time_remaining_ms = target_pause_time_ms - base_time_ms;

  // the 10% and 50% values are arbitrary...
  if (time_remaining_ms < 0.10 * target_pause_time_ms) {
    time_remaining_ms = 0.50 * target_pause_time_ms;
    _within_target = false;
  } else {
    _within_target = true;
  }

  // We figure out the number of bytes available for future to-space.
  // For new regions without marking information, we must assume the
  // worst-case of complete survival.  If we have marking information for a
  // region, we can bound the amount of live data.  We can add a number of
  // such regions, as long as the sum of the live data bounds does not
  // exceed the available evacuation space.
  size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;

  size_t expansion_bytes =
    _g1->expansion_regions() * HeapRegion::GrainBytes;

  _collection_set_bytes_used_before = 0;
  _collection_set_size = 0;

  // Adjust for expansion and slop.
  max_live_bytes = max_live_bytes + expansion_bytes;

  HeapRegion* hr;
  if (in_young_gc_mode()) {
    double young_start_time_sec = os::elapsedTime();

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("Adding %d young regions to the CSet",
                    _g1->young_list()->length());
    }

    _young_cset_length  = 0;
    _last_young_gc_full = full_young_gcs() ? true : false;

    if (_last_young_gc_full)
      ++_full_young_pause_num;
    else
      ++_partial_young_pause_num;

    // The young list is laid with the survivor regions from the previous
    // pause are appended to the RHS of the young list, i.e.
    //   [Newly Young Regions ++ Survivors from last pause].

    hr = _g1->young_list()->first_survivor_region();
    while (hr != NULL) {
      assert(hr->is_survivor(), "badly formed young list");
      hr->set_young();
      hr = hr->get_next_young_region();
    }

    // Clear the fields that point to the survivor list - they are
    // all young now.
    _g1->young_list()->clear_survivors();

    if (_g1->mark_in_progress())
      _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);

    _young_cset_length = _inc_cset_young_index;
    _collection_set = _inc_cset_head;
    _collection_set_size = _inc_cset_size;
    _collection_set_bytes_used_before = _inc_cset_bytes_used_before;

    // For young regions in the collection set, we assume the worst
    // case of complete survival
    max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;

    time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
    predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;

    // The number of recorded young regions is the incremental
    // collection set's current size
    set_recorded_young_regions(_inc_cset_size);
    set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
    set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
#if PREDICTIONS_VERBOSE
    set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
#endif // PREDICTIONS_VERBOSE

    if (G1PolicyVerbose > 0) {
      gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
                             _inc_cset_size);
      gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
                            max_live_bytes/K);
    }

    assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");

    double young_end_time_sec = os::elapsedTime();
    _recorded_young_cset_choice_time_ms =
      (young_end_time_sec - young_start_time_sec) * 1000.0;

    // We are doing young collections so reset this.
    non_young_start_time_sec = young_end_time_sec;

    // Note we can use either _collection_set_size or
    // _young_cset_length here
    if (_collection_set_size > 0 && _last_young_gc_full) {
      // don't bother adding more regions...
      goto choose_collection_set_end;
    }
  }

  if (!in_young_gc_mode() || !full_young_gcs()) {
    bool should_continue = true;
    NumberSeq seq;
    double avg_prediction = 100000000000000000.0; // something very large

    do {
      hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
                                                      avg_prediction);
      if (hr != NULL) {
        double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
        time_remaining_ms -= predicted_time_ms;
        predicted_pause_time_ms += predicted_time_ms;
        add_to_collection_set(hr);
        record_non_young_cset_region(hr);
        max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
        if (G1PolicyVerbose > 0) {
          gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
                        max_live_bytes/K);
        }
        seq.add(predicted_time_ms);
        avg_prediction = seq.avg() + seq.sd();
      }
      should_continue =
        ( hr != NULL) &&
        ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
          : _collection_set_size < _young_list_fixed_length );
    } while (should_continue);

    if (!adaptive_young_list_length() &&
        _collection_set_size < _young_list_fixed_length)
      _should_revert_to_full_young_gcs  = true;
  }

choose_collection_set_end:
  stop_incremental_cset_building();

  count_CS_bytes_used();

  end_recording_regions();

  double non_young_end_time_sec = os::elapsedTime();
  _recorded_non_young_cset_choice_time_ms =
    (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
}

void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  G1CollectorPolicy::record_full_collection_end();
  _collectionSetChooser->updateAfterFullCollection();
}

void G1CollectorPolicy_BestRegionsFirst::
expand_if_possible(size_t numRegions) {
  size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  _g1->expand(expansion_bytes);
}

void G1CollectorPolicy_BestRegionsFirst::
record_collection_pause_end() {
  G1CollectorPolicy::record_collection_pause_end();
  assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
}