view src/share/classes/com/sun/crypto/provider/CipherCore.java @ 10988:814e82e7b5af

8074865: General crypto resilience changes Reviewed-by: mullan, xuelei
author valeriep
date Fri, 10 Apr 2015 07:23:55 -0700
parents 93826827e8b4
children e1182f36c0fd
line wrap: on
line source

/*
 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package com.sun.crypto.provider;

import java.util.Arrays;
import java.util.Locale;

import java.security.*;
import java.security.spec.*;
import javax.crypto.*;
import javax.crypto.spec.*;
import javax.crypto.BadPaddingException;

/**
 * This class represents the symmetric algorithms in its various modes
 * (<code>ECB</code>, <code>CFB</code>, <code>OFB</code>, <code>CBC</code>,
 * <code>PCBC</code>, <code>CTR</code>, and <code>CTS</code>) and
 * padding schemes (<code>PKCS5Padding</code>, <code>NoPadding</code>,
 * <code>ISO10126Padding</code>).
 *
 * @author Gigi Ankeny
 * @author Jan Luehe
 * @see ElectronicCodeBook
 * @see CipherFeedback
 * @see OutputFeedback
 * @see CipherBlockChaining
 * @see PCBC
 * @see CounterMode
 * @see CipherTextStealing
 */

final class CipherCore {

    /*
     * internal buffer
     */
    private byte[] buffer = null;

    /*
     * block size of cipher in bytes
     */
    private int blockSize = 0;

    /*
     * unit size (number of input bytes that can be processed at a time)
     */
    private int unitBytes = 0;

    /*
     * index of the content size left in the buffer
     */
    private int buffered = 0;

    /*
     * minimum number of bytes in the buffer required for
     * FeedbackCipher.encryptFinal()/decryptFinal() call.
     * update() must buffer this many bytes before starting
     * to encrypt/decrypt data.
     * currently, only the following cases have non-zero values:
     * 1) CTS mode - due to its special handling on the last two blocks
     * (the last one may be incomplete).
     * 2) GCM mode + decryption - due to its trailing tag bytes
     */
    private int minBytes = 0;

    /*
     * number of bytes needed to make the total input length a multiple
     * of the blocksize (this is used in feedback mode, when the number of
     * input bytes that are processed at a time is different from the block
     * size)
     */
    private int diffBlocksize = 0;

    /*
     * padding class
     */
    private Padding padding = null;

    /*
     * internal cipher engine
     */
    private FeedbackCipher cipher = null;

    /*
     * the cipher mode
     */
    private int cipherMode = ECB_MODE;

    /*
     * are we encrypting or decrypting?
     */
    private boolean decrypting = false;

    /*
     * Block Mode constants
     */
    private static final int ECB_MODE = 0;
    private static final int CBC_MODE = 1;
    private static final int CFB_MODE = 2;
    private static final int OFB_MODE = 3;
    private static final int PCBC_MODE = 4;
    private static final int CTR_MODE = 5;
    private static final int CTS_MODE = 6;
    private static final int GCM_MODE = 7;

    /*
     * variables used for performing the GCM (key+iv) uniqueness check.
     * To use GCM mode safely, the cipher object must be re-initialized
     * with a different combination of key + iv values for each
     * encryption operation. However, checking all past key + iv values
     * isn't feasible. Thus, we only do a per-instance check of the
     * key + iv values used in previous encryption.
     * For decryption operations, no checking is necessary.
     * NOTE: this key+iv check have to be done inside CipherCore class
     * since CipherCore class buffers potential tag bytes in GCM mode
     * and may not call GaloisCounterMode when there isn't sufficient
     * input to process.
     */
    private boolean requireReinit = false;
    private byte[] lastEncKey = null;
    private byte[] lastEncIv = null;

    /**
     * Creates an instance of CipherCore with default ECB mode and
     * PKCS5Padding.
     */
    CipherCore(SymmetricCipher impl, int blkSize) {
        blockSize = blkSize;
        unitBytes = blkSize;
        diffBlocksize = blkSize;

        /*
         * The buffer should be usable for all cipher mode and padding
         * schemes. Thus, it has to be at least (blockSize+1) for CTS.
         * In decryption mode, it also hold the possible padding block.
         */
        buffer = new byte[blockSize*2];

        // set mode and padding
        cipher = new ElectronicCodeBook(impl);
        padding = new PKCS5Padding(blockSize);
    }

    /**
     * Sets the mode of this cipher.
     *
     * @param mode the cipher mode
     *
     * @exception NoSuchAlgorithmException if the requested cipher mode does
     * not exist for this cipher
     */
    void setMode(String mode) throws NoSuchAlgorithmException {
        if (mode == null)
            throw new NoSuchAlgorithmException("null mode");

        String modeUpperCase = mode.toUpperCase(Locale.ENGLISH);

        if (modeUpperCase.equals("ECB")) {
            return;
        }

        SymmetricCipher rawImpl = cipher.getEmbeddedCipher();
        if (modeUpperCase.equals("CBC")) {
            cipherMode = CBC_MODE;
            cipher = new CipherBlockChaining(rawImpl);
        } else if (modeUpperCase.equals("CTS")) {
            cipherMode = CTS_MODE;
            cipher = new CipherTextStealing(rawImpl);
            minBytes = blockSize+1;
            padding = null;
        } else if (modeUpperCase.equals("CTR")) {
            cipherMode = CTR_MODE;
            cipher = new CounterMode(rawImpl);
            unitBytes = 1;
            padding = null;
        }  else if (modeUpperCase.startsWith("GCM")) {
            // can only be used for block ciphers w/ 128-bit block size
            if (blockSize != 16) {
                throw new NoSuchAlgorithmException
                    ("GCM mode can only be used for AES cipher");
            }
            cipherMode = GCM_MODE;
            cipher = new GaloisCounterMode(rawImpl);
            padding = null;
        } else if (modeUpperCase.startsWith("CFB")) {
            cipherMode = CFB_MODE;
            unitBytes = getNumOfUnit(mode, "CFB".length(), blockSize);
            cipher = new CipherFeedback(rawImpl, unitBytes);
        } else if (modeUpperCase.startsWith("OFB")) {
            cipherMode = OFB_MODE;
            unitBytes = getNumOfUnit(mode, "OFB".length(), blockSize);
            cipher = new OutputFeedback(rawImpl, unitBytes);
        } else if (modeUpperCase.equals("PCBC")) {
            cipherMode = PCBC_MODE;
            cipher = new PCBC(rawImpl);
        }
        else {
            throw new NoSuchAlgorithmException("Cipher mode: " + mode
                                               + " not found");
        }
    }

    private static int getNumOfUnit(String mode, int offset, int blockSize)
        throws NoSuchAlgorithmException {
        int result = blockSize; // use blockSize as default value
        if (mode.length() > offset) {
            int numInt;
            try {
                Integer num = Integer.valueOf(mode.substring(offset));
                numInt = num.intValue();
                result = numInt >> 3;
            } catch (NumberFormatException e) {
                throw new NoSuchAlgorithmException
                    ("Algorithm mode: " + mode + " not implemented");
            }
            if ((numInt % 8 != 0) || (result > blockSize)) {
                throw new NoSuchAlgorithmException
                    ("Invalid algorithm mode: " + mode);
            }
        }
        return result;
    }


    /**
     * Sets the padding mechanism of this cipher.
     *
     * @param padding the padding mechanism
     *
     * @exception NoSuchPaddingException if the requested padding mechanism
     * does not exist
     */
    void setPadding(String paddingScheme)
        throws NoSuchPaddingException
    {
        if (paddingScheme == null) {
            throw new NoSuchPaddingException("null padding");
        }
        if (paddingScheme.equalsIgnoreCase("NoPadding")) {
            padding = null;
        } else if (paddingScheme.equalsIgnoreCase("ISO10126Padding")) {
            padding = new ISO10126Padding(blockSize);
        } else if (!paddingScheme.equalsIgnoreCase("PKCS5Padding")) {
            throw new NoSuchPaddingException("Padding: " + paddingScheme
                                             + " not implemented");
        }
        if ((padding != null) &&
            ((cipherMode == CTR_MODE) || (cipherMode == CTS_MODE)
             || (cipherMode == GCM_MODE))) {
            padding = null;
            String modeStr = null;
            switch (cipherMode) {
            case CTR_MODE:
                modeStr = "CTR";
                break;
            case GCM_MODE:
                modeStr = "GCM";
                break;
            case CTS_MODE:
                modeStr = "CTS";
                break;
            default:
                // should never happen
            }
            if (modeStr != null) {
                throw new NoSuchPaddingException
                    (modeStr + " mode must be used with NoPadding");
            }
        }
    }

    /**
     * Returns the length in bytes that an output buffer would need to be in
     * order to hold the result of the next <code>update</code> or
     * <code>doFinal</code> operation, given the input length
     * <code>inputLen</code> (in bytes).
     *
     * <p>This call takes into account any unprocessed (buffered) data from a
     * previous <code>update</code> call, padding, and AEAD tagging.
     *
     * <p>The actual output length of the next <code>update</code> or
     * <code>doFinal</code> call may be smaller than the length returned by
     * this method.
     *
     * @param inputLen the input length (in bytes)
     *
     * @return the required output buffer size (in bytes)
     */
    int getOutputSize(int inputLen) {
        // estimate based on the maximum
        return getOutputSizeByOperation(inputLen, true);
    }

    private int getOutputSizeByOperation(int inputLen, boolean isDoFinal) {
        int totalLen = buffered + inputLen + cipher.getBufferedLength();
        switch (cipherMode) {
        case GCM_MODE:
            if (isDoFinal) {
                int tagLen = ((GaloisCounterMode) cipher).getTagLen();
                if (!decrypting) {
                    totalLen += tagLen;
                } else {
                    totalLen -= tagLen;
                }
            }
            if (totalLen < 0) {
                totalLen = 0;
            }
            break;
        default:
            if (padding != null && !decrypting) {
                if (unitBytes != blockSize) {
                    if (totalLen < diffBlocksize) {
                        totalLen = diffBlocksize;
                    } else {
                        int residue = (totalLen - diffBlocksize) % blockSize;
                        totalLen += (blockSize - residue);
                    }
                } else {
                    totalLen += padding.padLength(totalLen);
                }
            }
            break;
        }
        return totalLen;
    }

    /**
     * Returns the initialization vector (IV) in a new buffer.
     *
     * <p>This is useful in the case where a random IV has been created
     * (see <a href = "#init">init</a>),
     * or in the context of password-based encryption or
     * decryption, where the IV is derived from a user-provided password.
     *
     * @return the initialization vector in a new buffer, or null if the
     * underlying algorithm does not use an IV, or if the IV has not yet
     * been set.
     */
    byte[] getIV() {
        byte[] iv = cipher.getIV();
        return (iv == null) ? null : iv.clone();
    }

    /**
     * Returns the parameters used with this cipher.
     *
     * <p>The returned parameters may be the same that were used to initialize
     * this cipher, or may contain the default set of parameters or a set of
     * randomly generated parameters used by the underlying cipher
     * implementation (provided that the underlying cipher implementation
     * uses a default set of parameters or creates new parameters if it needs
     * parameters but was not initialized with any).
     *
     * @return the parameters used with this cipher, or null if this cipher
     * does not use any parameters.
     */
    AlgorithmParameters getParameters(String algName) {
        if (cipherMode == ECB_MODE) {
            return null;
        }
        AlgorithmParameters params = null;
        AlgorithmParameterSpec spec;
        byte[] iv = getIV();
        if (iv == null) {
            // generate spec using default value
            if (cipherMode == GCM_MODE) {
                iv = new byte[GaloisCounterMode.DEFAULT_IV_LEN];
            } else {
                iv = new byte[blockSize];
            }
            SunJCE.getRandom().nextBytes(iv);
        }
        if (cipherMode == GCM_MODE) {
            algName = "GCM";
            spec = new GCMParameterSpec
                (((GaloisCounterMode) cipher).getTagLen()*8, iv);
        } else {
           if (algName.equals("RC2")) {
               RC2Crypt rawImpl = (RC2Crypt) cipher.getEmbeddedCipher();
               spec = new RC2ParameterSpec
                   (rawImpl.getEffectiveKeyBits(), iv);
           } else {
               spec = new IvParameterSpec(iv);
           }
        }
        try {
            params = AlgorithmParameters.getInstance(algName,
                    SunJCE.getInstance());
            params.init(spec);
        } catch (NoSuchAlgorithmException nsae) {
            // should never happen
            throw new RuntimeException("Cannot find " + algName +
                " AlgorithmParameters implementation in SunJCE provider");
        } catch (InvalidParameterSpecException ipse) {
            // should never happen
            throw new RuntimeException(spec.getClass() + " not supported");
        }
        return params;
    }

    /**
     * Initializes this cipher with a key and a source of randomness.
     *
     * <p>The cipher is initialized for one of the following four operations:
     * encryption, decryption, key wrapping or key unwrapping, depending on
     * the value of <code>opmode</code>.
     *
     * <p>If this cipher requires an initialization vector (IV), it will get
     * it from <code>random</code>.
     * This behaviour should only be used in encryption or key wrapping
     * mode, however.
     * When initializing a cipher that requires an IV for decryption or
     * key unwrapping, the IV
     * (same IV that was used for encryption or key wrapping) must be provided
     * explicitly as a
     * parameter, in order to get the correct result.
     *
     * <p>This method also cleans existing buffer and other related state
     * information.
     *
     * @param opmode the operation mode of this cipher (this is one of
     * the following:
     * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>,
     * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>)
     * @param key the secret key
     * @param random the source of randomness
     *
     * @exception InvalidKeyException if the given key is inappropriate for
     * initializing this cipher
     */
    void init(int opmode, Key key, SecureRandom random)
            throws InvalidKeyException {
        try {
            init(opmode, key, (AlgorithmParameterSpec)null, random);
        } catch (InvalidAlgorithmParameterException e) {
            throw new InvalidKeyException(e.getMessage());
        }
    }

    /**
     * Initializes this cipher with a key, a set of
     * algorithm parameters, and a source of randomness.
     *
     * <p>The cipher is initialized for one of the following four operations:
     * encryption, decryption, key wrapping or key unwrapping, depending on
     * the value of <code>opmode</code>.
     *
     * <p>If this cipher (including its underlying feedback or padding scheme)
     * requires any random bytes, it will get them from <code>random</code>.
     *
     * @param opmode the operation mode of this cipher (this is one of
     * the following:
     * <code>ENCRYPT_MODE</code>, <code>DECRYPT_MODE</code>,
     * <code>WRAP_MODE</code> or <code>UNWRAP_MODE</code>)
     * @param key the encryption key
     * @param params the algorithm parameters
     * @param random the source of randomness
     *
     * @exception InvalidKeyException if the given key is inappropriate for
     * initializing this cipher
     * @exception InvalidAlgorithmParameterException if the given algorithm
     * parameters are inappropriate for this cipher
     */
    void init(int opmode, Key key, AlgorithmParameterSpec params,
            SecureRandom random)
            throws InvalidKeyException, InvalidAlgorithmParameterException {
        decrypting = (opmode == Cipher.DECRYPT_MODE)
                  || (opmode == Cipher.UNWRAP_MODE);

        byte[] keyBytes = getKeyBytes(key);
        int tagLen = -1;
        byte[] ivBytes = null;
        if (params != null) {
            if (cipherMode == GCM_MODE) {
                if (params instanceof GCMParameterSpec) {
                    tagLen = ((GCMParameterSpec)params).getTLen();
                    if (tagLen < 96 || tagLen > 128 || ((tagLen & 0x07) != 0)) {
                        throw new InvalidAlgorithmParameterException
                            ("Unsupported TLen value; must be one of " +
                             "{128, 120, 112, 104, 96}");
                    }
                    tagLen = tagLen >> 3;
                    ivBytes = ((GCMParameterSpec)params).getIV();
                } else {
                    throw new InvalidAlgorithmParameterException
                        ("Unsupported parameter: " + params);
               }
            } else {
                if (params instanceof IvParameterSpec) {
                    ivBytes = ((IvParameterSpec)params).getIV();
                    if ((ivBytes == null) || (ivBytes.length != blockSize)) {
                        throw new InvalidAlgorithmParameterException
                            ("Wrong IV length: must be " + blockSize +
                             " bytes long");
                    }
                } else if (params instanceof RC2ParameterSpec) {
                    ivBytes = ((RC2ParameterSpec)params).getIV();
                    if ((ivBytes != null) && (ivBytes.length != blockSize)) {
                        throw new InvalidAlgorithmParameterException
                            ("Wrong IV length: must be " + blockSize +
                             " bytes long");
                    }
                } else {
                    throw new InvalidAlgorithmParameterException
                        ("Unsupported parameter: " + params);
                }
            }
        }
        if (cipherMode == ECB_MODE) {
            if (ivBytes != null) {
                throw new InvalidAlgorithmParameterException
                                                ("ECB mode cannot use IV");
            }
        } else if (ivBytes == null)  {
            if (decrypting) {
                throw new InvalidAlgorithmParameterException("Parameters "
                                                             + "missing");
            }

            if (random == null) {
                random = SunJCE.getRandom();
            }
            if (cipherMode == GCM_MODE) {
                ivBytes = new byte[GaloisCounterMode.DEFAULT_IV_LEN];
            } else {
                ivBytes = new byte[blockSize];
            }
            random.nextBytes(ivBytes);
        }

        buffered = 0;
        diffBlocksize = blockSize;

        String algorithm = key.getAlgorithm();

        // GCM mode needs additional handling
        if (cipherMode == GCM_MODE) {
            if(tagLen == -1) {
                tagLen = GaloisCounterMode.DEFAULT_TAG_LEN;
            }
            if (decrypting) {
                minBytes = tagLen;
            } else {
                // check key+iv for encryption in GCM mode
                requireReinit =
                    Arrays.equals(ivBytes, lastEncIv) &&
                    MessageDigest.isEqual(keyBytes, lastEncKey);
                if (requireReinit) {
                    throw new InvalidAlgorithmParameterException
                        ("Cannot reuse iv for GCM encryption");
                }
                lastEncIv = ivBytes;
                lastEncKey = keyBytes;
            }
            ((GaloisCounterMode) cipher).init
                (decrypting, algorithm, keyBytes, ivBytes, tagLen);
        } else {
            cipher.init(decrypting, algorithm, keyBytes, ivBytes);
        }
        // skip checking key+iv from now on until after doFinal()
        requireReinit = false;
    }

    void init(int opmode, Key key, AlgorithmParameters params,
              SecureRandom random)
        throws InvalidKeyException, InvalidAlgorithmParameterException {
        AlgorithmParameterSpec spec = null;
        String paramType = null;
        if (params != null) {
            try {
                if (cipherMode == GCM_MODE) {
                    paramType = "GCM";
                    spec = params.getParameterSpec(GCMParameterSpec.class);
                } else {
                    // NOTE: RC2 parameters are always handled through
                    // init(..., AlgorithmParameterSpec,...) method, so
                    // we can assume IvParameterSpec type here.
                    paramType = "IV";
                    spec = params.getParameterSpec(IvParameterSpec.class);
                }
            } catch (InvalidParameterSpecException ipse) {
                throw new InvalidAlgorithmParameterException
                    ("Wrong parameter type: " + paramType + " expected");
            }
        }
        init(opmode, key, spec, random);
    }

    /**
     * Return the key bytes of the specified key. Throw an InvalidKeyException
     * if the key is not usable.
     */
    static byte[] getKeyBytes(Key key) throws InvalidKeyException {
        if (key == null) {
            throw new InvalidKeyException("No key given");
        }
        // note: key.getFormat() may return null
        if (!"RAW".equalsIgnoreCase(key.getFormat())) {
            throw new InvalidKeyException("Wrong format: RAW bytes needed");
        }
        byte[] keyBytes = key.getEncoded();
        if (keyBytes == null) {
            throw new InvalidKeyException("RAW key bytes missing");
        }
        return keyBytes;
    }


    /**
     * Continues a multiple-part encryption or decryption operation
     * (depending on how this cipher was initialized), processing another data
     * part.
     *
     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
     * buffer, starting at <code>inputOffset</code>, are processed, and the
     * result is stored in a new buffer.
     *
     * @param input the input buffer
     * @param inputOffset the offset in <code>input</code> where the input
     * starts
     * @param inputLen the input length
     *
     * @return the new buffer with the result
     *
     * @exception IllegalStateException if this cipher is in a wrong state
     * (e.g., has not been initialized)
     */
    byte[] update(byte[] input, int inputOffset, int inputLen) {
        if (requireReinit) {
            throw new IllegalStateException
                ("Must use either different key or iv for GCM encryption");
        }

        byte[] output = null;
        try {
            output = new byte[getOutputSizeByOperation(inputLen, false)];
            int len = update(input, inputOffset, inputLen, output,
                             0);
            if (len == output.length) {
                return output;
            } else {
                return Arrays.copyOf(output, len);
            }
        } catch (ShortBufferException e) {
            // should never happen
            throw new ProviderException("Unexpected exception", e);
        }
    }

    /**
     * Continues a multiple-part encryption or decryption operation
     * (depending on how this cipher was initialized), processing another data
     * part.
     *
     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
     * buffer, starting at <code>inputOffset</code>, are processed, and the
     * result is stored in the <code>output</code> buffer, starting at
     * <code>outputOffset</code>.
     *
     * @param input the input buffer
     * @param inputOffset the offset in <code>input</code> where the input
     * starts
     * @param inputLen the input length
     * @param output the buffer for the result
     * @param outputOffset the offset in <code>output</code> where the result
     * is stored
     *
     * @return the number of bytes stored in <code>output</code>
     *
     * @exception ShortBufferException if the given output buffer is too small
     * to hold the result
     */
    int update(byte[] input, int inputOffset, int inputLen, byte[] output,
               int outputOffset) throws ShortBufferException {
        if (requireReinit) {
            throw new IllegalStateException
                ("Must use either different key or iv for GCM encryption");
        }

        // figure out how much can be sent to crypto function
        int len = buffered + inputLen - minBytes;
        if (padding != null && decrypting) {
            // do not include the padding bytes when decrypting
            len -= blockSize;
        }
        // do not count the trailing bytes which do not make up a unit
        len = (len > 0 ? (len - (len%unitBytes)) : 0);

        // check output buffer capacity
        if ((output == null) ||
            ((output.length - outputOffset) < len)) {
            throw new ShortBufferException("Output buffer must be "
                                           + "(at least) " + len
                                           + " bytes long");
        }

        int outLen = 0;
        if (len != 0) { // there is some work to do
            if (len <= buffered) {
                // all to-be-processed data are from 'buffer'
                if (decrypting) {
                    outLen = cipher.decrypt(buffer, 0, len, output, outputOffset);
                } else {
                    outLen = cipher.encrypt(buffer, 0, len, output, outputOffset);
                }
                buffered -= len;
                if (buffered != 0) {
                    System.arraycopy(buffer, len, buffer, 0, buffered);
                }
            } else { // len > buffered
                if ((input != output) && (buffered == 0)) {
                    // all to-be-processed data are from 'input'
                    // however, note that if 'input' and 'output' are the same,
                    // then they can't be passed directly to the underlying cipher
                    // engine operations as data may be overwritten before they
                    // are read.
                    if (decrypting) {
                        outLen = cipher.decrypt(input, inputOffset, len, output, outputOffset);
                    } else {
                        outLen = cipher.encrypt(input, inputOffset, len, output, outputOffset);
                    }
                    inputOffset += len;
                    inputLen -= len;
                } else {
                    // assemble the data using both 'buffer' and 'input'
                    byte[] in = new byte[len];
                    int inConsumed = len - buffered;
                    if (buffered != 0) {
                        System.arraycopy(buffer, 0, in, 0, buffered);
                        buffered = 0;
                    }
                    if (inConsumed != 0) {
                        System.arraycopy(input, inputOffset, in, len - inConsumed, inConsumed);
                        inputOffset += inConsumed;
                        inputLen -= inConsumed;
                    }
                    if (decrypting) {
                        outLen = cipher.decrypt(in, 0, len, output, outputOffset);
                    } else {
                        outLen = cipher.encrypt(in, 0, len, output, outputOffset);
                    }
                }
            }
            // Let's keep track of how many bytes are needed to make
            // the total input length a multiple of blocksize when
            // padding is applied
            if (unitBytes != blockSize) {
                if (len < diffBlocksize) {
                    diffBlocksize -= len;
                } else {
                    diffBlocksize = blockSize -
                        ((len - diffBlocksize) % blockSize);
                }
            }
        }
        // Store remaining input into 'buffer' again
        if (inputLen > 0) {
            System.arraycopy(input, inputOffset, buffer, buffered,
                             inputLen);
            buffered += inputLen;
        }
        return outLen;
    }

    /**
     * Encrypts or decrypts data in a single-part operation,
     * or finishes a multiple-part operation.
     * The data is encrypted or decrypted, depending on how this cipher was
     * initialized.
     *
     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
     * buffer, starting at <code>inputOffset</code>, and any input bytes that
     * may have been buffered during a previous <code>update</code> operation,
     * are processed, with padding (if requested) being applied.
     * The result is stored in a new buffer.
     *
     * <p>The cipher is reset to its initial state (uninitialized) after this
     * call.
     *
     * @param input the input buffer
     * @param inputOffset the offset in <code>input</code> where the input
     * starts
     * @param inputLen the input length
     *
     * @return the new buffer with the result
     *
     * @exception IllegalBlockSizeException if this cipher is a block cipher,
     * no padding has been requested (only in encryption mode), and the total
     * input length of the data processed by this cipher is not a multiple of
     * block size
     * @exception BadPaddingException if this cipher is in decryption mode,
     * and (un)padding has been requested, but the decrypted data is not
     * bounded by the appropriate padding bytes
     */
    byte[] doFinal(byte[] input, int inputOffset, int inputLen)
        throws IllegalBlockSizeException, BadPaddingException {
        byte[] output = null;
        try {
            output = new byte[getOutputSizeByOperation(inputLen, true)];
            int len = doFinal(input, inputOffset, inputLen, output, 0);
            if (len < output.length) {
                return Arrays.copyOf(output, len);
            } else {
                return output;
            }
        } catch (ShortBufferException e) {
            // never thrown
            throw new ProviderException("Unexpected exception", e);
        }
    }

    /**
     * Encrypts or decrypts data in a single-part operation,
     * or finishes a multiple-part operation.
     * The data is encrypted or decrypted, depending on how this cipher was
     * initialized.
     *
     * <p>The first <code>inputLen</code> bytes in the <code>input</code>
     * buffer, starting at <code>inputOffset</code>, and any input bytes that
     * may have been buffered during a previous <code>update</code> operation,
     * are processed, with padding (if requested) being applied.
     * The result is stored in the <code>output</code> buffer, starting at
     * <code>outputOffset</code>.
     *
     * <p>The cipher is reset to its initial state (uninitialized) after this
     * call.
     *
     * @param input the input buffer
     * @param inputOffset the offset in <code>input</code> where the input
     * starts
     * @param inputLen the input length
     * @param output the buffer for the result
     * @param outputOffset the offset in <code>output</code> where the result
     * is stored
     *
     * @return the number of bytes stored in <code>output</code>
     *
     * @exception IllegalBlockSizeException if this cipher is a block cipher,
     * no padding has been requested (only in encryption mode), and the total
     * input length of the data processed by this cipher is not a multiple of
     * block size
     * @exception ShortBufferException if the given output buffer is too small
     * to hold the result
     * @exception BadPaddingException if this cipher is in decryption mode,
     * and (un)padding has been requested, but the decrypted data is not
     * bounded by the appropriate padding bytes
     */
    int doFinal(byte[] input, int inputOffset, int inputLen, byte[] output,
                int outputOffset)
        throws IllegalBlockSizeException, ShortBufferException,
               BadPaddingException {
        if (requireReinit) {
            throw new IllegalStateException
                ("Must use either different key or iv for GCM encryption");
        }

        int estOutSize = getOutputSizeByOperation(inputLen, true);
        // check output buffer capacity.
        // if we are decrypting with padding applied, we can perform this
        // check only after we have determined how many padding bytes there
        // are.
        int outputCapacity = output.length - outputOffset;
        int minOutSize = (decrypting? (estOutSize - blockSize):estOutSize);
        if ((output == null) || (outputCapacity < minOutSize)) {
            throw new ShortBufferException("Output buffer must be "
                + "(at least) " + minOutSize + " bytes long");
        }

        // calculate total input length
        int len = buffered + inputLen;

        // calculate padding length
        int totalLen = len + cipher.getBufferedLength();
        int paddingLen = 0;
        // will the total input length be a multiple of blockSize?
        if (unitBytes != blockSize) {
            if (totalLen < diffBlocksize) {
                paddingLen = diffBlocksize - totalLen;
            } else {
                paddingLen = blockSize -
                    ((totalLen - diffBlocksize) % blockSize);
            }
        } else if (padding != null) {
            paddingLen = padding.padLength(totalLen);
        }

        if (decrypting && (padding != null) &&
            (paddingLen > 0) && (paddingLen != blockSize)) {
            throw new IllegalBlockSizeException
                ("Input length must be multiple of " + blockSize +
                 " when decrypting with padded cipher");
        }

        /*
         * prepare the final input, assemble a new buffer if any
         * of the following is true:
         *  - 'input' and 'output' are the same buffer
         *  - there are internally buffered bytes
         *  - doing encryption and padding is needed
         */
        byte[] finalBuf = input;
        int finalOffset = inputOffset;
        int finalBufLen = inputLen;
        if ((input == output) || (buffered != 0) ||
            (!decrypting && padding != null)) {
            if (decrypting || padding == null) {
                paddingLen = 0;
            }
            finalBuf = new byte[len + paddingLen];
            finalOffset = 0;
            if (buffered != 0) {
                System.arraycopy(buffer, 0, finalBuf, 0, buffered);
            }
            if (inputLen != 0) {
                System.arraycopy(input, inputOffset, finalBuf,
                                 buffered, inputLen);
            }
            if (paddingLen != 0) {
                padding.padWithLen(finalBuf, (buffered+inputLen), paddingLen);
            }
            finalBufLen = finalBuf.length;
        }
        int outLen = 0;
        if (decrypting) {
            // if the size of specified output buffer is less than
            // the length of the cipher text, then the current
            // content of cipher has to be preserved in order for
            // users to retry the call with a larger buffer in the
            // case of ShortBufferException.
            if (outputCapacity < estOutSize) {
                cipher.save();
            }
            // create temporary output buffer so that only "real"
            // data bytes are passed to user's output buffer.
            byte[] outWithPadding = new byte[estOutSize];
            outLen = finalNoPadding(finalBuf, finalOffset, outWithPadding,
                                    0, finalBufLen);

            if (padding != null) {
                int padStart = padding.unpad(outWithPadding, 0, outLen);
                if (padStart < 0) {
                    throw new BadPaddingException("Given final block not "
                                                  + "properly padded");
                }
                outLen = padStart;
            }

            if (outputCapacity < outLen) {
                // restore so users can retry with a larger buffer
                cipher.restore();
                throw new ShortBufferException("Output buffer too short: "
                                               + (outputCapacity)
                                               + " bytes given, " + outLen
                                               + " bytes needed");
            }
            // copy the result into user-supplied output buffer
            System.arraycopy(outWithPadding, 0, output, outputOffset, outLen);
        } else { // encrypting
            try {
                outLen = finalNoPadding(finalBuf, finalOffset, output,
                                        outputOffset, finalBufLen);
            } finally {
                // reset after doFinal() for GCM encryption
                requireReinit = (cipherMode == GCM_MODE);
            }
        }

        buffered = 0;
        diffBlocksize = blockSize;
        if (cipherMode != ECB_MODE) {
            cipher.reset();
        }
        return outLen;
    }

    private int finalNoPadding(byte[] in, int inOfs, byte[] out, int outOfs,
                               int len)
        throws IllegalBlockSizeException, AEADBadTagException,
        ShortBufferException {

        if ((cipherMode != GCM_MODE) && (in == null || len == 0)) {
            return 0;
        }
        if ((cipherMode != CFB_MODE) && (cipherMode != OFB_MODE) &&
            (cipherMode != GCM_MODE) &&
            ((len % unitBytes) != 0) && (cipherMode != CTS_MODE)) {
                if (padding != null) {
                    throw new IllegalBlockSizeException
                        ("Input length (with padding) not multiple of " +
                         unitBytes + " bytes");
                } else {
                    throw new IllegalBlockSizeException
                        ("Input length not multiple of " + unitBytes
                         + " bytes");
                }
        }
        int outLen = 0;
        if (decrypting) {
            outLen = cipher.decryptFinal(in, inOfs, len, out, outOfs);
        } else {
            outLen = cipher.encryptFinal(in, inOfs, len, out, outOfs);
        }
        return outLen;
    }

    // Note: Wrap() and Unwrap() are the same in
    // each of SunJCE CipherSpi implementation classes.
    // They are duplicated due to export control requirements:
    // All CipherSpi implementation must be final.
    /**
     * Wrap a key.
     *
     * @param key the key to be wrapped.
     *
     * @return the wrapped key.
     *
     * @exception IllegalBlockSizeException if this cipher is a block
     * cipher, no padding has been requested, and the length of the
     * encoding of the key to be wrapped is not a
     * multiple of the block size.
     *
     * @exception InvalidKeyException if it is impossible or unsafe to
     * wrap the key with this cipher (e.g., a hardware protected key is
     * being passed to a software only cipher).
     */
    byte[] wrap(Key key)
        throws IllegalBlockSizeException, InvalidKeyException {
        byte[] result = null;

        try {
            byte[] encodedKey = key.getEncoded();
            if ((encodedKey == null) || (encodedKey.length == 0)) {
                throw new InvalidKeyException("Cannot get an encoding of " +
                                              "the key to be wrapped");
            }
            result = doFinal(encodedKey, 0, encodedKey.length);
        } catch (BadPaddingException e) {
            // Should never happen
        }
        return result;
    }

    /**
     * Unwrap a previously wrapped key.
     *
     * @param wrappedKey the key to be unwrapped.
     *
     * @param wrappedKeyAlgorithm the algorithm the wrapped key is for.
     *
     * @param wrappedKeyType the type of the wrapped key.
     * This is one of <code>Cipher.SECRET_KEY</code>,
     * <code>Cipher.PRIVATE_KEY</code>, or <code>Cipher.PUBLIC_KEY</code>.
     *
     * @return the unwrapped key.
     *
     * @exception NoSuchAlgorithmException if no installed providers
     * can create keys of type <code>wrappedKeyType</code> for the
     * <code>wrappedKeyAlgorithm</code>.
     *
     * @exception InvalidKeyException if <code>wrappedKey</code> does not
     * represent a wrapped key of type <code>wrappedKeyType</code> for
     * the <code>wrappedKeyAlgorithm</code>.
     */
    Key unwrap(byte[] wrappedKey, String wrappedKeyAlgorithm,
               int wrappedKeyType)
        throws InvalidKeyException, NoSuchAlgorithmException {
        byte[] encodedKey;
        try {
            encodedKey = doFinal(wrappedKey, 0, wrappedKey.length);
        } catch (BadPaddingException ePadding) {
            throw new InvalidKeyException("The wrapped key is not padded " +
                                          "correctly");
        } catch (IllegalBlockSizeException eBlockSize) {
            throw new InvalidKeyException("The wrapped key does not have " +
                                          "the correct length");
        }
        return ConstructKeys.constructKey(encodedKey, wrappedKeyAlgorithm,
                                          wrappedKeyType);
    }

    /**
     * Continues a multi-part update of the Additional Authentication
     * Data (AAD), using a subset of the provided buffer.
     * <p>
     * Calls to this method provide AAD to the cipher when operating in
     * modes such as AEAD (GCM/CCM).  If this cipher is operating in
     * either GCM or CCM mode, all AAD must be supplied before beginning
     * operations on the ciphertext (via the {@code update} and {@code
     * doFinal} methods).
     *
     * @param src the buffer containing the AAD
     * @param offset the offset in {@code src} where the AAD input starts
     * @param len the number of AAD bytes
     *
     * @throws IllegalStateException if this cipher is in a wrong state
     * (e.g., has not been initialized), does not accept AAD, or if
     * operating in either GCM or CCM mode and one of the {@code update}
     * methods has already been called for the active
     * encryption/decryption operation
     * @throws UnsupportedOperationException if this method
     * has not been overridden by an implementation
     *
     * @since 1.8
     */
    void updateAAD(byte[] src, int offset, int len) {
        if (requireReinit) {
            throw new IllegalStateException
                ("Must use either different key or iv for GCM encryption");
        }
        cipher.updateAAD(src, offset, len);
    }
}