# HG changeset patch # User Denis Lila # Date 1291925779 18000 # Node ID 8ee32987a1722353ead12d6aadc548055d9a0a85 # Parent 88ce3ba73a4bfec34d25023d1a0d9b51929d39a2 Backport of rendering engine. diff -r 88ce3ba73a4b -r 8ee32987a172 ChangeLog --- a/ChangeLog Thu Dec 09 10:53:26 2010 -0500 +++ b/ChangeLog Thu Dec 09 15:16:19 2010 -0500 @@ -1,3 +1,11 @@ +2010-12-09 Denis Lila + + * Makefile.am: + Apply backported patch. + * patches/openjdk/6967436-6976265-6967434-pisces.patch: + Backport of the openjdk7 rendering engine, which fixes + various bugs and includes performance improvements. + 2010-12-08 Denis Lila * Makefile.am: diff -r 88ce3ba73a4b -r 8ee32987a172 Makefile.am --- a/Makefile.am Thu Dec 09 10:53:26 2010 -0500 +++ b/Makefile.am Thu Dec 09 15:16:19 2010 -0500 @@ -375,7 +375,8 @@ patches/snmp.patch \ patches/getannotation-cast.patch \ patches/applet_hole.patch \ - patches/openjdk/7003777-bad-html-entity-parse.patch + patches/openjdk/7003777-bad-html-entity-parse.patch \ + patches/openjdk/6967436-6976265-6967434-pisces.patch if WITH_ALT_HSBUILD ICEDTEA_PATCHES += patches/hotspot/$(HSBUILD)/openjdk-6886353-ignore_deoptimizealot.patch \ diff -r 88ce3ba73a4b -r 8ee32987a172 NEWS --- a/NEWS Thu Dec 09 10:53:26 2010 -0500 +++ b/NEWS Thu Dec 09 15:16:19 2010 -0500 @@ -18,6 +18,10 @@ * Backports - S6853592: VM test nsk.regression.b4261880 fails with "X Error of failed request: BadWindow" inconsistently. + - S6967436, RH597227: lines longer than 2^15 can fill window. + - S6967433: dashed lines broken when using scaling transforms. + - S6976265: No STROKE_CONTROL + - S6967434, PR450, RH530642: Round joins/caps of scaled up lines have poor quality. * NetX - Do not prompt user multiple times for the same certificate. - PR592: NetX can create invalid desktop entry files @@ -50,6 +54,7 @@ - Provide font configuration for RHEL 6. - RH633510: OpenJDK should use NUMA even if glibc doesn't provide it - S7003777, RH647674: JTextPane produces incorrect content after parsing the html text + - RH661554: divide by zero at sun.java2d.pisces.Stroker.lineLength(Stroker.java:685) * Backports - S6539464, RH500077: Ensure java.lang.Math functions provide consistent results. - S6951319: enable solaris builds using Sun Studio 12 update 1 (fixes PR398). diff -r 88ce3ba73a4b -r 8ee32987a172 patches/openjdk/6967436-6976265-6967434-pisces.patch --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/patches/openjdk/6967436-6976265-6967434-pisces.patch Thu Dec 09 15:16:19 2010 -0500 @@ -0,0 +1,6298 @@ +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Curve.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Curve.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Curve.java 1969-12-31 19:00:00.000000000 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Curve.java 2010-12-09 14:28:42.432147546 -0500 +@@ -0,0 +1,294 @@ ++/* ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ++ * ++ * This code is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 only, as ++ * published by the Free Software Foundation. Oracle designates this ++ * particular file as subject to the "Classpath" exception as provided ++ * by Oracle in the LICENSE file that accompanied this code. ++ * ++ * This code is distributed in the hope that it will be useful, but WITHOUT ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++ * version 2 for more details (a copy is included in the LICENSE file that ++ * accompanied this code). ++ * ++ * You should have received a copy of the GNU General Public License version ++ * 2 along with this work; if not, write to the Free Software Foundation, ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ++ * ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. ++ */ ++ ++package sun.java2d.pisces; ++ ++import java.util.Iterator; ++ ++class Curve { ++ ++ float ax, ay, bx, by, cx, cy, dx, dy; ++ float dax, day, dbx, dby; ++ ++ Curve() { ++ } ++ ++ void set(float[] points, int type) { ++ switch(type) { ++ case 8: ++ set(points[0], points[1], ++ points[2], points[3], ++ points[4], points[5], ++ points[6], points[7]); ++ break; ++ case 6: ++ set(points[0], points[1], ++ points[2], points[3], ++ points[4], points[5]); ++ break; ++ default: ++ throw new InternalError("Curves can only be cubic or quadratic"); ++ } ++ } ++ ++ void set(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3, ++ float x4, float y4) ++ { ++ ax = 3 * (x2 - x3) + x4 - x1; ++ ay = 3 * (y2 - y3) + y4 - y1; ++ bx = 3 * (x1 - 2 * x2 + x3); ++ by = 3 * (y1 - 2 * y2 + y3); ++ cx = 3 * (x2 - x1); ++ cy = 3 * (y2 - y1); ++ dx = x1; ++ dy = y1; ++ dax = 3 * ax; day = 3 * ay; ++ dbx = 2 * bx; dby = 2 * by; ++ } ++ ++ void set(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ ax = ay = 0f; ++ ++ bx = x1 - 2 * x2 + x3; ++ by = y1 - 2 * y2 + y3; ++ cx = 2 * (x2 - x1); ++ cy = 2 * (y2 - y1); ++ dx = x1; ++ dy = y1; ++ dax = 0; day = 0; ++ dbx = 2 * bx; dby = 2 * by; ++ } ++ ++ float xat(float t) { ++ return t * (t * (t * ax + bx) + cx) + dx; ++ } ++ float yat(float t) { ++ return t * (t * (t * ay + by) + cy) + dy; ++ } ++ ++ float dxat(float t) { ++ return t * (t * dax + dbx) + cx; ++ } ++ ++ float dyat(float t) { ++ return t * (t * day + dby) + cy; ++ } ++ ++ private float ddxat(float t) { ++ return 2 * dax * t + dbx; ++ } ++ ++ private float ddyat(float t) { ++ return 2 * day * t + dby; ++ } ++ ++ int dxRoots(float[] roots, int off) { ++ return Helpers.quadraticRoots(dax, dbx, cx, roots, off); ++ } ++ ++ int dyRoots(float[] roots, int off) { ++ return Helpers.quadraticRoots(day, dby, cy, roots, off); ++ } ++ ++ int infPoints(float[] pts, int off) { ++ // inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0 ++ // Fortunately, this turns out to be quadratic, so there are at ++ // most 2 inflection points. ++ final float a = dax * dby - dbx * day; ++ final float b = 2 * (cy * dax - day * cx); ++ final float c = cy * dbx - cx * dby; ++ ++ return Helpers.quadraticRoots(a, b, c, pts, off); ++ } ++ ++ // finds points where the first and second derivative are ++ // perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where ++ // * is a dot product). Unfortunately, we have to solve a cubic. ++ private int perpendiculardfddf(float[] pts, int off, final float err) { ++ assert pts.length >= off + 4; ++ ++ // these are the coefficients of g(t): ++ final float a = 2*(dax*dax + day*day); ++ final float b = 3*(dax*dbx + day*dby); ++ final float c = 2*(dax*cx + day*cy) + dbx*dbx + dby*dby; ++ final float d = dbx*cx + dby*cy; ++ // TODO: We might want to divide the polynomial by a to make the ++ // coefficients smaller. This won't change the roots. ++ return Helpers.cubicRootsInAB(a, b, c, d, pts, off, err, 0f, 1f); ++ } ++ ++ // Tries to find the roots of the function ROC(t)-w in [0, 1). It uses ++ // a variant of the false position algorithm to find the roots. False ++ // position requires that 2 initial values x0,x1 be given, and that the ++ // function must have opposite signs at those values. To find such ++ // values, we need the local extrema of the ROC function, for which we ++ // need the roots of its derivative; however, it's harder to find the ++ // roots of the derivative in this case than it is to find the roots ++ // of the original function. So, we find all points where this curve's ++ // first and second derivative are perpendicular, and we pretend these ++ // are our local extrema. There are at most 3 of these, so we will check ++ // at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection ++ // points, so roc-w can have at least 6 roots. This shouldn't be a ++ // problem for what we're trying to do (draw a nice looking curve). ++ int rootsOfROCMinusW(float[] roots, int off, final float w, final float err) { ++ // no OOB exception, because by now off<=6, and roots.length >= 10 ++ assert off <= 6 && roots.length >= 10; ++ int ret = off; ++ int numPerpdfddf = perpendiculardfddf(roots, off, err); ++ float t0 = 0, ft0 = ROCsq(t0) - w*w; ++ roots[off + numPerpdfddf] = 1f; // always check interval end points ++ numPerpdfddf++; ++ for (int i = off; i < off + numPerpdfddf; i++) { ++ float t1 = roots[i], ft1 = ROCsq(t1) - w*w; ++ if (ft0 == 0f) { ++ roots[ret++] = t0; ++ } else if (ft1 * ft0 < 0f) { // have opposite signs ++ // (ROC(t)^2 == w^2) == (ROC(t) == w) is true because ++ // ROC(t) >= 0 for all t. ++ roots[ret++] = falsePositionROCsqMinusX(t0, t1, w*w, err); ++ } ++ t0 = t1; ++ ft0 = ft1; ++ } ++ ++ return ret - off; ++ } ++ ++ private static float eliminateInf(float x) { ++ return (x == Float.POSITIVE_INFINITY ? Float.MAX_VALUE : ++ (x == Float.NEGATIVE_INFINITY ? Float.MIN_VALUE : x)); ++ } ++ ++ // A slight modification of the false position algorithm on wikipedia. ++ // This only works for the ROCsq-x functions. It might be nice to have ++ // the function as an argument, but that would be awkward in java6. ++ // It is something to consider for java7, depending on how closures ++ // and function objects turn out. Same goes for the newton's method ++ // algorithm in Helpers.java ++ private float falsePositionROCsqMinusX(float x0, float x1, ++ final float x, final float err) ++ { ++ final int iterLimit = 100; ++ int side = 0; ++ float t = x1, ft = eliminateInf(ROCsq(t) - x); ++ float s = x0, fs = eliminateInf(ROCsq(s) - x); ++ float r = s, fr; ++ for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) { ++ r = (fs * t - ft * s) / (fs - ft); ++ fr = ROCsq(r) - x; ++ if (fr * ft > 0) {// have the same sign ++ ft = fr; t = r; ++ if (side < 0) { ++ fs /= (1 << (-side)); ++ side--; ++ } else { ++ side = -1; ++ } ++ } else if (fr * fs > 0) { ++ fs = fr; s = r; ++ if (side > 0) { ++ ft /= (1 << side); ++ side++; ++ } else { ++ side = 1; ++ } ++ } else { ++ break; ++ } ++ } ++ return r; ++ } ++ ++ // returns the radius of curvature squared at t of this curve ++ // see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications) ++ private float ROCsq(final float t) { ++ final float dx = dxat(t); ++ final float dy = dyat(t); ++ final float ddx = ddxat(t); ++ final float ddy = ddyat(t); ++ final float dx2dy2 = dx*dx + dy*dy; ++ final float ddx2ddy2 = ddx*ddx + ddy*ddy; ++ final float ddxdxddydy = ddx*dx + ddy*dy; ++ float ret = ((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy))*dx2dy2; ++ return ret; ++ } ++ ++ // curve to be broken should be in pts[0] ++ // this will change the contents of both pts and Ts ++ // TODO: There's no reason for Ts to be an array. All we need is a sequence ++ // of t values at which to subdivide. An array statisfies this condition, ++ // but is unnecessarily restrictive. Ts should be an Iterator instead. ++ // Doing this will also make dashing easier, since we could easily make ++ // LengthIterator an Iterator and feed it to this function to simplify ++ // the loop in Dasher.somethingTo. ++ static Iterator breakPtsAtTs(final float[][] pts, final int type, ++ final float[] Ts, final int numTs) ++ { ++ assert pts.length >= 2 && pts[0].length >= 8 && numTs <= Ts.length; ++ return new Iterator() { ++ int nextIdx = 0; ++ int nextCurveIdx = 0; ++ float prevT = 0; ++ ++ public boolean hasNext() { ++ return nextCurveIdx < numTs + 1; ++ } ++ ++ public float[] next() { ++ float[] ret; ++ if (nextCurveIdx < numTs) { ++ float curT = Ts[nextCurveIdx]; ++ float splitT = (curT - prevT) / (1 - prevT); ++ Helpers.subdivideAt(splitT, ++ pts[nextIdx], 0, ++ pts[nextIdx], 0, ++ pts[1-nextIdx], 0, type); ++ updateTs(Ts, Ts[nextCurveIdx], nextCurveIdx + 1, numTs - nextCurveIdx - 1); ++ ret = pts[nextIdx]; ++ nextIdx = 1 - nextIdx; ++ } else { ++ ret = pts[nextIdx]; ++ } ++ nextCurveIdx++; ++ return ret; ++ } ++ ++ public void remove() {} ++ }; ++ } ++ ++ // precondition: ts[off]...ts[off+len-1] must all be greater than t. ++ private static void updateTs(float[] ts, final float t, final int off, final int len) { ++ for (int i = off; i < off + len; i++) { ++ ts[i] = (ts[i] - t) / (1 - t); ++ } ++ } ++} ++ +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Dasher.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Dasher.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Dasher.java 2010-12-09 14:26:24.641147545 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Dasher.java 2010-12-09 14:28:42.433147616 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,13 +18,15 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + ++import sun.awt.geom.PathConsumer2D; ++ + /** + * The Dasher class takes a series of linear commands + * (moveTo, lineTo, close and +@@ -36,118 +38,68 @@ + * semantics are unclear. + * + */ +-public class Dasher extends LineSink { +- +- LineSink output; +- int[] dash; +- int startPhase; +- boolean startDashOn; +- int startIdx; +- +- int idx; +- boolean dashOn; +- int phase; +- +- int sx, sy; +- int x0, y0; +- +- int m00, m01; +- int m10, m11; +- +- Transform4 transform; ++public class Dasher implements sun.awt.geom.PathConsumer2D { + +- boolean symmetric; +- long ldet; ++ private final PathConsumer2D out; ++ private final float[] dash; ++ private final float startPhase; ++ private final boolean startDashOn; ++ private final int startIdx; ++ ++ private boolean starting; ++ private boolean needsMoveTo; ++ ++ private int idx; ++ private boolean dashOn; ++ private float phase; + +- boolean firstDashOn; +- boolean starting; +- int sx1, sy1; ++ private float sx, sy; ++ private float x0, y0; + +- /** +- * Empty constructor. setOutput and +- * setParameters must be called prior to calling any +- * other methods. +- */ +- public Dasher() {} ++ // temporary storage for the current curve ++ private float[] curCurvepts; + + /** + * Constructs a Dasher. + * +- * @param output an output LineSink. +- * @param dash an array of ints containing the dash +- * pattern in S15.16 format. +- * @param phase an int containing the dash phase in +- * S15.16 format. +- * @param transform a Transform4 object indicating +- * the transform that has been previously applied to all incoming +- * coordinates. This is required in order to compute dash lengths +- * properly. +- */ +- public Dasher(LineSink output, +- int[] dash, int phase, +- Transform4 transform) { +- setOutput(output); +- setParameters(dash, phase, transform); +- } +- +- /** +- * Sets the output LineSink of this +- * Dasher. +- * +- * @param output an output LineSink. +- */ +- public void setOutput(LineSink output) { +- this.output = output; +- } +- +- /** +- * Sets the parameters of this Dasher. +- * +- * @param dash an array of ints containing the dash +- * pattern in S15.16 format. +- * @param phase an int containing the dash phase in +- * S15.16 format. +- * @param transform a Transform4 object indicating +- * the transform that has been previously applied to all incoming +- * coordinates. This is required in order to compute dash lengths +- * properly. ++ * @param out an output PathConsumer2D. ++ * @param dash an array of floats containing the dash pattern ++ * @param phase a float containing the dash phase + */ +- public void setParameters(int[] dash, int phase, +- Transform4 transform) { ++ public Dasher(PathConsumer2D out, float[] dash, float phase) { + if (phase < 0) { + throw new IllegalArgumentException("phase < 0 !"); + } + ++ this.out = out; ++ + // Normalize so 0 <= phase < dash[0] + int idx = 0; + dashOn = true; +- int d; ++ float d; + while (phase >= (d = dash[idx])) { + phase -= d; + idx = (idx + 1) % dash.length; + dashOn = !dashOn; + } + +- this.dash = new int[dash.length]; +- for (int i = 0; i < dash.length; i++) { +- this.dash[i] = dash[i]; +- } ++ this.dash = dash; + this.startPhase = this.phase = phase; + this.startDashOn = dashOn; + this.startIdx = idx; ++ this.starting = true; + +- this.transform = transform; +- +- this.m00 = transform.m00; +- this.m01 = transform.m01; +- this.m10 = transform.m10; +- this.m11 = transform.m11; +- this.ldet = ((long)m00*m11 - (long)m01*m10) >> 16; +- this.symmetric = (m00 == m11 && m10 == -m01); ++ // we need curCurvepts to be able to contain 2 curves because when ++ // dashing curves, we need to subdivide it ++ curCurvepts = new float[8 * 2]; + } + +- public void moveTo(int x0, int y0) { +- output.moveTo(x0, y0); ++ public void moveTo(float x0, float y0) { ++ if (firstSegidx > 0) { ++ out.moveTo(sx, sy); ++ emitFirstSegments(); ++ } ++ needsMoveTo = true; + this.idx = startIdx; + this.dashOn = this.startDashOn; + this.phase = this.startPhase; +@@ -156,76 +108,108 @@ + this.starting = true; + } + +- public void lineJoin() { +- output.lineJoin(); ++ private void emitSeg(float[] buf, int off, int type) { ++ switch (type) { ++ case 8: ++ out.curveTo(buf[off+0], buf[off+1], ++ buf[off+2], buf[off+3], ++ buf[off+4], buf[off+5]); ++ break; ++ case 6: ++ out.quadTo(buf[off+0], buf[off+1], ++ buf[off+2], buf[off+3]); ++ break; ++ case 4: ++ out.lineTo(buf[off], buf[off+1]); ++ } + } + +- private void goTo(int x1, int y1) { ++ private void emitFirstSegments() { ++ for (int i = 0; i < firstSegidx; ) { ++ emitSeg(firstSegmentsBuffer, i+1, (int)firstSegmentsBuffer[i]); ++ i += (((int)firstSegmentsBuffer[i]) - 1); ++ } ++ firstSegidx = 0; ++ } ++ ++ // We don't emit the first dash right away. If we did, caps would be ++ // drawn on it, but we need joins to be drawn if there's a closePath() ++ // So, we store the path elements that make up the first dash in the ++ // buffer below. ++ private float[] firstSegmentsBuffer = new float[7]; ++ private int firstSegidx = 0; ++ // precondition: pts must be in relative coordinates (relative to x0,y0) ++ // fullCurve is true iff the curve in pts has not been split. ++ private void goTo(float[] pts, int off, final int type) { ++ float x = pts[off + type - 4]; ++ float y = pts[off + type - 3]; + if (dashOn) { + if (starting) { +- this.sx1 = x1; +- this.sy1 = y1; +- firstDashOn = true; +- starting = false; ++ firstSegmentsBuffer = Helpers.widenArray(firstSegmentsBuffer, ++ firstSegidx, type - 2); ++ firstSegmentsBuffer[firstSegidx++] = type; ++ System.arraycopy(pts, off, firstSegmentsBuffer, firstSegidx, type - 2); ++ firstSegidx += type - 2; ++ } else { ++ if (needsMoveTo) { ++ out.moveTo(x0, y0); ++ needsMoveTo = false; ++ } ++ emitSeg(pts, off, type); + } +- output.lineTo(x1, y1); + } else { +- if (starting) { +- firstDashOn = false; +- starting = false; +- } +- output.moveTo(x1, y1); ++ starting = false; ++ needsMoveTo = true; + } +- this.x0 = x1; +- this.y0 = y1; ++ this.x0 = x; ++ this.y0 = y; + } + +- public void lineTo(int x1, int y1) { +- while (true) { +- int d = dash[idx] - phase; +- int lx = x1 - x0; +- int ly = y1 - y0; +- +- // Compute segment length in the untransformed +- // coordinate system +- // IMPL NOTE - use fixed point +- +- int l; +- if (symmetric) { +- l = (int)((PiscesMath.hypot(lx, ly)*65536L)/ldet); +- } else{ +- long la = ((long)ly*m00 - (long)lx*m10)/ldet; +- long lb = ((long)ly*m01 - (long)lx*m11)/ldet; +- l = (int)PiscesMath.hypot(la, lb); +- } ++ public void lineTo(float x1, float y1) { ++ float dx = x1 - x0; ++ float dy = y1 - y0; ++ ++ float len = (float) Math.hypot(dx, dy); ++ ++ if (len == 0) { ++ return; ++ } ++ ++ // The scaling factors needed to get the dx and dy of the ++ // transformed dash segments. ++ float cx = dx / len; ++ float cy = dy / len; + +- if (l < d) { +- goTo(x1, y1); ++ while (true) { ++ float leftInThisDashSegment = dash[idx] - phase; ++ if (len <= leftInThisDashSegment) { ++ curCurvepts[0] = x1; ++ curCurvepts[1] = y1; ++ goTo(curCurvepts, 0, 4); + // Advance phase within current dash segment +- phase += l; ++ phase += len; ++ if (len == leftInThisDashSegment) { ++ phase = 0f; ++ idx = (idx + 1) % dash.length; ++ dashOn = !dashOn; ++ } + return; + } + +- long t; +- int xsplit, ysplit; +-// // For zero length dashses, SE appears to move 1/8 unit +-// // in device space +-// if (d == 0) { +-// double dlx = lx/65536.0; +-// double dly = ly/65536.0; +-// len = PiscesMath.hypot(dlx, dly); +-// double dt = 1.0/(8*len); +-// double dxsplit = (x0/65536.0) + dt*dlx; +-// double dysplit = (y0/65536.0) + dt*dly; +-// xsplit = (int)(dxsplit*65536.0); +-// ysplit = (int)(dysplit*65536.0); +-// } else { +- t = ((long)d << 16)/l; +- xsplit = x0 + (int)(t*(x1 - x0) >> 16); +- ysplit = y0 + (int)(t*(y1 - y0) >> 16); +-// } +- goTo(xsplit, ysplit); ++ float dashdx = dash[idx] * cx; ++ float dashdy = dash[idx] * cy; ++ if (phase == 0) { ++ curCurvepts[0] = x0 + dashdx; ++ curCurvepts[1] = y0 + dashdy; ++ } else { ++ float p = leftInThisDashSegment / dash[idx]; ++ curCurvepts[0] = x0 + p * dashdx; ++ curCurvepts[1] = y0 + p * dashdy; ++ } ++ ++ goTo(curCurvepts, 0, 4); + ++ len -= leftInThisDashSegment; + // Advance to next dash segment + idx = (idx + 1) % dash.length; + dashOn = !dashOn; +@@ -233,14 +217,289 @@ + } + } + +- public void close() { ++ private LengthIterator li = null; ++ ++ // preconditions: curCurvepts must be an array of length at least 2 * type, ++ // that contains the curve we want to dash in the first type elements ++ private void somethingTo(int type) { ++ if (pointCurve(curCurvepts, type)) { ++ return; ++ } ++ if (li == null) { ++ li = new LengthIterator(4, 0.0001f); ++ } ++ li.initializeIterationOnCurve(curCurvepts, type); ++ ++ int curCurveoff = 0; // initially the current curve is at curCurvepts[0...type] ++ float lastSplitT = 0; ++ float t = 0; ++ float leftInThisDashSegment = dash[idx] - phase; ++ while ((t = li.next(leftInThisDashSegment)) < 1) { ++ if (t != 0) { ++ Helpers.subdivideAt((t - lastSplitT) / (1 - lastSplitT), ++ curCurvepts, curCurveoff, ++ curCurvepts, 0, ++ curCurvepts, type, type); ++ lastSplitT = t; ++ goTo(curCurvepts, 2, type); ++ curCurveoff = type; ++ } ++ // Advance to next dash segment ++ idx = (idx + 1) % dash.length; ++ dashOn = !dashOn; ++ phase = 0; ++ leftInThisDashSegment = dash[idx]; ++ } ++ goTo(curCurvepts, curCurveoff+2, type); ++ phase += li.lastSegLen(); ++ if (phase >= dash[idx]) { ++ phase = 0f; ++ idx = (idx + 1) % dash.length; ++ dashOn = !dashOn; ++ } ++ } ++ ++ private static boolean pointCurve(float[] curve, int type) { ++ for (int i = 2; i < type; i++) { ++ if (curve[i] != curve[i-2]) { ++ return false; ++ } ++ } ++ return true; ++ } ++ ++ // Objects of this class are used to iterate through curves. They return ++ // t values where the left side of the curve has a specified length. ++ // It does this by subdividing the input curve until a certain error ++ // condition has been met. A recursive subdivision procedure would ++ // return as many as 1< 0) { ++ this.sides[0] = Side.LEFT; ++ this.done = false; ++ } else { ++ // the root of the tree is a leaf so we're done. ++ this.sides[0] = Side.RIGHT; ++ this.done = true; ++ } ++ this.lastSegLen = 0; ++ } ++ ++ // returns the t value where the remaining curve should be split in ++ // order for the left subdivided curve to have length len. If len ++ // is >= than the length of the uniterated curve, it returns 1. ++ public float next(float len) { ++ float targetLength = lenAtLastSplit + len; ++ while(lenAtNextT < targetLength) { ++ if (done) { ++ lastSegLen = lenAtNextT - lenAtLastSplit; ++ return 1; ++ } ++ goToNextLeaf(); ++ } ++ lenAtLastSplit = targetLength; ++ float t = binSearchForLen(lenAtLastSplit - lenAtLastT, ++ recCurveStack[recLevel], curveType, lenAtNextT - lenAtLastT, ERR); ++ // t is relative to the current leaf, so we must make it a valid parameter ++ // of the original curve. ++ t = t * (nextT - lastT) + lastT; ++ if (t >= 1) { ++ t = 1; ++ done = true; ++ } ++ // even if done = true, if we're here, that means targetLength ++ // is equal to, or very, very close to the total length of the ++ // curve, so lastSegLen won't be too high. In cases where len ++ // overshoots the curve, this method will exit in the while ++ // loop, and lastSegLen will still be set to the right value. ++ lastSegLen = len; ++ return t; ++ } ++ ++ public float lastSegLen() { ++ return lastSegLen; ++ } ++ ++ // Returns t such that if leaf is subdivided at t the left ++ // curve will have length len. leafLen must be the length of leaf. ++ private static Curve bsc = new Curve(); ++ private static float binSearchForLen(float len, float[] leaf, int type, ++ float leafLen, float err) ++ { ++ assert len <= leafLen; ++ bsc.set(leaf, type); ++ float errBound = err*len; ++ float left = 0, right = 1; ++ while (left < right) { ++ float m = (left + right) / 2; ++ if (m == left || m == right) { ++ return m; ++ } ++ float x = bsc.xat(m); ++ float y = bsc.yat(m); ++ float leftLen = Helpers.linelen(leaf[0], leaf[1], x, y); ++ if (Math.abs(leftLen - len) < errBound) { ++ return m; ++ } ++ if (leftLen < len) { ++ left = m; ++ } else { ++ right = m; ++ } ++ } ++ return left; ++ } ++ ++ // go to the next leaf (in an inorder traversal) in the recursion tree ++ // preconditions: must be on a leaf, and that leaf must not be the root. ++ private void goToNextLeaf() { ++ // We must go to the first ancestor node that has an unvisited ++ // right child. ++ recLevel--; ++ while(sides[recLevel] == Side.RIGHT) { ++ if (recLevel == 0) { ++ done = true; ++ return; ++ } ++ recLevel--; ++ } ++ ++ sides[recLevel] = Side.RIGHT; ++ System.arraycopy(recCurveStack[recLevel], 0, recCurveStack[recLevel+1], 0, curveType); ++ recLevel++; ++ goLeft(); ++ } ++ ++ // go to the leftmost node from the current node. Return its length. ++ private void goLeft() { ++ float len = onLeaf(); ++ if (len >= 0) { ++ lastT = nextT; ++ lenAtLastT = lenAtNextT; ++ nextT += (1 << (limit - recLevel)) * minTincrement; ++ lenAtNextT += len; ++ } else { ++ Helpers.subdivide(recCurveStack[recLevel], 0, ++ recCurveStack[recLevel+1], 0, ++ recCurveStack[recLevel], 0, curveType); ++ sides[recLevel] = Side.LEFT; ++ recLevel++; ++ goLeft(); ++ } ++ } ++ ++ // this is a bit of a hack. It returns -1 if we're not on a leaf, and ++ // the length of the leaf if we are on a leaf. ++ private float onLeaf() { ++ float polylen = Helpers.polyLineLength(recCurveStack[recLevel], 0, curveType); ++ float linelen = Helpers.linelen(recCurveStack[recLevel][0], recCurveStack[recLevel][1], ++ recCurveStack[recLevel][curveType - 2], recCurveStack[recLevel][curveType - 1]); ++ return (polylen - linelen < ERR || recLevel == limit) ? ++ (polylen + linelen)/2 : -1; ++ } ++ } ++ ++ ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ curCurvepts[0] = x0; curCurvepts[1] = y0; ++ curCurvepts[2] = x1; curCurvepts[3] = y1; ++ curCurvepts[4] = x2; curCurvepts[5] = y2; ++ curCurvepts[6] = x3; curCurvepts[7] = y3; ++ somethingTo(8); ++ } ++ ++ ++ public void quadTo(float x1, float y1, float x2, float y2) { ++ curCurvepts[0] = x0; curCurvepts[1] = y0; ++ curCurvepts[2] = x1; curCurvepts[3] = y1; ++ curCurvepts[4] = x2; curCurvepts[5] = y2; ++ somethingTo(6); ++ } ++ ++ public void closePath() { + lineTo(sx, sy); +- if (firstDashOn) { +- output.lineTo(sx1, sy1); ++ if (firstSegidx > 0) { ++ if (!dashOn || needsMoveTo) { ++ out.moveTo(sx, sy); ++ } ++ emitFirstSegments(); + } ++ moveTo(sx, sy); + } + +- public void end() { +- output.end(); ++ public void pathDone() { ++ if (firstSegidx > 0) { ++ out.moveTo(sx, sy); ++ emitFirstSegments(); ++ } ++ out.pathDone(); ++ } ++ ++ ++ public long getNativeConsumer() { ++ throw new InternalError("Dasher does not use a native consumer"); + } + } ++ +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Helpers.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Helpers.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Helpers.java 1969-12-31 19:00:00.000000000 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Helpers.java 2010-12-09 14:28:42.433147616 -0500 +@@ -0,0 +1,478 @@ ++/* ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ++ * ++ * This code is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 only, as ++ * published by the Free Software Foundation. Oracle designates this ++ * particular file as subject to the "Classpath" exception as provided ++ * by Oracle in the LICENSE file that accompanied this code. ++ * ++ * This code is distributed in the hope that it will be useful, but WITHOUT ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++ * version 2 for more details (a copy is included in the LICENSE file that ++ * accompanied this code). ++ * ++ * You should have received a copy of the GNU General Public License version ++ * 2 along with this work; if not, write to the Free Software Foundation, ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ++ * ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. ++ */ ++ ++package sun.java2d.pisces; ++ ++import java.util.Arrays; ++ ++final class Helpers { ++ private Helpers() { ++ throw new Error("This is a non instantiable class"); ++ } ++ ++ static boolean within(final float x, final float y, final float err) { ++ final float d = y - x; ++ return (d <= err && d >= -err); ++ } ++ ++ static boolean within(final double x, final double y, final double err) { ++ final double d = y - x; ++ return (d <= err && d >= -err); ++ } ++ ++ static int quadraticRoots(final float a, final float b, ++ final float c, float[] zeroes, final int off) ++ { ++ int ret = off; ++ float t; ++ if (a != 0f) { ++ final float dis = b*b - 4*a*c; ++ if (dis > 0) { ++ final float sqrtDis = (float)Math.sqrt(dis); ++ // depending on the sign of b we use a slightly different ++ // algorithm than the traditional one to find one of the roots ++ // so we can avoid adding numbers of different signs (which ++ // might result in loss of precision). ++ if (b >= 0) { ++ zeroes[ret++] = (2 * c) / (-b - sqrtDis); ++ zeroes[ret++] = (-b - sqrtDis) / (2 * a); ++ } else { ++ zeroes[ret++] = (-b + sqrtDis) / (2 * a); ++ zeroes[ret++] = (2 * c) / (-b + sqrtDis); ++ } ++ } else if (dis == 0f) { ++ t = (-b) / (2 * a); ++ zeroes[ret++] = t; ++ } ++ } else { ++ if (b != 0f) { ++ t = (-c) / b; ++ zeroes[ret++] = t; ++ } ++ } ++ return ret - off; ++ } ++ ++ // find the roots of g(t) = a*t^3 + b*t^2 + c*t + d in [A,B) ++ // We will not use Cardano's method, since it is complicated and ++ // involves too many square and cubic roots. We will use Newton's method. ++ // TODO: this should probably return ALL roots. Then the user can do ++ // his own filtering of roots outside [A,B). ++ static int cubicRootsInAB(final float a, final float b, ++ final float c, final float d, ++ float[] pts, final int off, final float E, ++ final float A, final float B) ++ { ++ if (a == 0) { ++ return quadraticRoots(b, c, d, pts, off); ++ } ++ // the coefficients of g'(t). no dc variable because dc=c ++ // we use these to get the critical points of g(t), which ++ // we then use to chose starting points for Newton's method. These ++ // should be very close to the actual roots. ++ final float da = 3 * a; ++ final float db = 2 * b; ++ int numCritPts = quadraticRoots(da, db, c, pts, off+1); ++ numCritPts = filterOutNotInAB(pts, off+1, numCritPts, A, B) - off - 1; ++ // need them sorted. ++ if (numCritPts == 2 && pts[off+1] > pts[off+2]) { ++ float tmp = pts[off+1]; ++ pts[off+1] = pts[off+2]; ++ pts[off+2] = tmp; ++ } ++ ++ int ret = off; ++ ++ // we don't actually care much about the extrema themselves. We ++ // only use them to ensure that g(t) is monotonic in each ++ // interval [pts[i],pts[i+1] (for i in off...off+numCritPts+1). ++ // This will allow us to determine intervals containing exactly ++ // one root. ++ // The end points of the interval are always local extrema. ++ pts[off] = A; ++ pts[off + numCritPts + 1] = B; ++ numCritPts += 2; ++ ++ float x0 = pts[off], fx0 = evalCubic(a, b, c, d, x0); ++ for (int i = off; i < off + numCritPts - 1; i++) { ++ float x1 = pts[i+1], fx1 = evalCubic(a, b, c, d, x1); ++ if (fx0 == 0f) { ++ pts[ret++] = x0; ++ } else if (fx1 * fx0 < 0f) { // have opposite signs ++ pts[ret++] = CubicNewton(a, b, c, d, ++ x0 + fx0 * (x1 - x0) / (fx0 - fx1), E); ++ } ++ x0 = x1; ++ fx0 = fx1; ++ } ++ return ret - off; ++ } ++ ++ // precondition: the polynomial to be evaluated must not be 0 at x0. ++ static float CubicNewton(final float a, final float b, ++ final float c, final float d, ++ float x0, final float err) ++ { ++ // considering how this function is used, 10 should be more than enough ++ final int itlimit = 10; ++ float fx0 = evalCubic(a, b, c, d, x0); ++ float x1; ++ int count = 0; ++ while(true) { ++ x1 = x0 - (fx0 / evalCubic(0, 3 * a, 2 * b, c, x0)); ++ if (Math.abs(x1 - x0) < err * Math.abs(x1 + x0) || count == itlimit) { ++ break; ++ } ++ x0 = x1; ++ fx0 = evalCubic(a, b, c, d, x0); ++ count++; ++ } ++ return x1; ++ } ++ ++ // fills the input array with numbers 0, INC, 2*INC, ... ++ static void fillWithIdxes(final float[] data, final int[] idxes) { ++ if (idxes.length > 0) { ++ idxes[0] = 0; ++ for (int i = 1; i < idxes.length; i++) { ++ idxes[i] = idxes[i-1] + (int)data[idxes[i-1]]; ++ } ++ } ++ } ++ ++ static void fillWithIdxes(final int[] idxes, final int inc) { ++ if (idxes.length > 0) { ++ idxes[0] = 0; ++ for (int i = 1; i < idxes.length; i++) { ++ idxes[i] = idxes[i-1] + inc; ++ } ++ } ++ } ++ ++ // These use a hardcoded factor of 2 for increasing sizes. Perhaps this ++ // should be provided as an argument. ++ static float[] widenArray(float[] in, final int cursize, final int numToAdd) { ++ if (in == null) { ++ return new float[5 * numToAdd]; ++ } ++ if (in.length >= cursize + numToAdd) { ++ return in; ++ } ++ return Arrays.copyOf(in, 2 * (cursize + numToAdd)); ++ } ++ static int[] widenArray(int[] in, final int cursize, final int numToAdd) { ++ if (in.length >= cursize + numToAdd) { ++ return in; ++ } ++ return Arrays.copyOf(in, 2 * (cursize + numToAdd)); ++ } ++ ++ static float evalCubic(final float a, final float b, ++ final float c, final float d, ++ final float t) ++ { ++ return t * (t * (t * a + b) + c) + d; ++ } ++ ++ static float evalQuad(final float a, final float b, ++ final float c, final float t) ++ { ++ return t * (t * a + b) + c; ++ } ++ ++ // returns the index 1 past the last valid element remaining after filtering ++ static int filterOutNotInAB(float[] nums, final int off, final int len, ++ final float a, final float b) ++ { ++ int ret = off; ++ for (int i = off; i < off + len; i++) { ++ if (nums[i] > a && nums[i] < b) { ++ nums[ret++] = nums[i]; ++ } ++ } ++ return ret; ++ } ++ ++ static float polyLineLength(float[] poly, final int off, final int nCoords) { ++ assert nCoords % 2 == 0 && poly.length >= off + nCoords : ""; ++ float acc = 0; ++ for (int i = off + 2; i < off + nCoords; i += 2) { ++ acc += linelen(poly[i], poly[i+1], poly[i-2], poly[i-1]); ++ } ++ return acc; ++ } ++ ++ static float linelen(float x1, float y1, float x2, float y2) { ++ return (float)Math.hypot(x2 - x1, y2 - y1); ++ } ++ ++ static void subdivide(float[] src, int srcoff, float[] left, int leftoff, ++ float[] right, int rightoff, int type) ++ { ++ switch(type) { ++ case 6: ++ Helpers.subdivideQuad(src, srcoff, left, leftoff, right, rightoff); ++ break; ++ case 8: ++ Helpers.subdivideCubic(src, srcoff, left, leftoff, right, rightoff); ++ break; ++ default: ++ throw new InternalError("Unsupported curve type"); ++ } ++ } ++ ++ static void isort(float[] a, int off, int len) { ++ for (int i = off + 1; i < off + len; i++) { ++ float ai = a[i]; ++ int j = i - 1; ++ for (; j >= off && a[j] > ai; j--) { ++ a[j+1] = a[j]; ++ } ++ a[j+1] = ai; ++ } ++ } ++ ++ // Most of these are copied from classes in java.awt.geom because we need ++ // float versions of these functions, and Line2D, CubicCurve2D, ++ // QuadCurve2D don't provide them. ++ /** ++ * Subdivides the cubic curve specified by the coordinates ++ * stored in the src array at indices srcoff ++ * through (srcoff + 7) and stores the ++ * resulting two subdivided curves into the two result arrays at the ++ * corresponding indices. ++ * Either or both of the left and right ++ * arrays may be null or a reference to the same array ++ * as the src array. ++ * Note that the last point in the first subdivided curve is the ++ * same as the first point in the second subdivided curve. Thus, ++ * it is possible to pass the same array for left ++ * and right and to use offsets, such as rightoff ++ * equals (leftoff + 6), in order ++ * to avoid allocating extra storage for this common point. ++ * @param src the array holding the coordinates for the source curve ++ * @param srcoff the offset into the array of the beginning of the ++ * the 6 source coordinates ++ * @param left the array for storing the coordinates for the first ++ * half of the subdivided curve ++ * @param leftoff the offset into the array of the beginning of the ++ * the 6 left coordinates ++ * @param right the array for storing the coordinates for the second ++ * half of the subdivided curve ++ * @param rightoff the offset into the array of the beginning of the ++ * the 6 right coordinates ++ * @since 1.7 ++ */ ++ static void subdivideCubic(float src[], int srcoff, ++ float left[], int leftoff, ++ float right[], int rightoff) ++ { ++ float x1 = src[srcoff + 0]; ++ float y1 = src[srcoff + 1]; ++ float ctrlx1 = src[srcoff + 2]; ++ float ctrly1 = src[srcoff + 3]; ++ float ctrlx2 = src[srcoff + 4]; ++ float ctrly2 = src[srcoff + 5]; ++ float x2 = src[srcoff + 6]; ++ float y2 = src[srcoff + 7]; ++ if (left != null) { ++ left[leftoff + 0] = x1; ++ left[leftoff + 1] = y1; ++ } ++ if (right != null) { ++ right[rightoff + 6] = x2; ++ right[rightoff + 7] = y2; ++ } ++ x1 = (x1 + ctrlx1) / 2.0f; ++ y1 = (y1 + ctrly1) / 2.0f; ++ x2 = (x2 + ctrlx2) / 2.0f; ++ y2 = (y2 + ctrly2) / 2.0f; ++ float centerx = (ctrlx1 + ctrlx2) / 2.0f; ++ float centery = (ctrly1 + ctrly2) / 2.0f; ++ ctrlx1 = (x1 + centerx) / 2.0f; ++ ctrly1 = (y1 + centery) / 2.0f; ++ ctrlx2 = (x2 + centerx) / 2.0f; ++ ctrly2 = (y2 + centery) / 2.0f; ++ centerx = (ctrlx1 + ctrlx2) / 2.0f; ++ centery = (ctrly1 + ctrly2) / 2.0f; ++ if (left != null) { ++ left[leftoff + 2] = x1; ++ left[leftoff + 3] = y1; ++ left[leftoff + 4] = ctrlx1; ++ left[leftoff + 5] = ctrly1; ++ left[leftoff + 6] = centerx; ++ left[leftoff + 7] = centery; ++ } ++ if (right != null) { ++ right[rightoff + 0] = centerx; ++ right[rightoff + 1] = centery; ++ right[rightoff + 2] = ctrlx2; ++ right[rightoff + 3] = ctrly2; ++ right[rightoff + 4] = x2; ++ right[rightoff + 5] = y2; ++ } ++ } ++ ++ ++ static void subdivideCubicAt(float t, float src[], int srcoff, ++ float left[], int leftoff, ++ float right[], int rightoff) ++ { ++ float x1 = src[srcoff + 0]; ++ float y1 = src[srcoff + 1]; ++ float ctrlx1 = src[srcoff + 2]; ++ float ctrly1 = src[srcoff + 3]; ++ float ctrlx2 = src[srcoff + 4]; ++ float ctrly2 = src[srcoff + 5]; ++ float x2 = src[srcoff + 6]; ++ float y2 = src[srcoff + 7]; ++ if (left != null) { ++ left[leftoff + 0] = x1; ++ left[leftoff + 1] = y1; ++ } ++ if (right != null) { ++ right[rightoff + 6] = x2; ++ right[rightoff + 7] = y2; ++ } ++ x1 = x1 + t * (ctrlx1 - x1); ++ y1 = y1 + t * (ctrly1 - y1); ++ x2 = ctrlx2 + t * (x2 - ctrlx2); ++ y2 = ctrly2 + t * (y2 - ctrly2); ++ float centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); ++ float centery = ctrly1 + t * (ctrly2 - ctrly1); ++ ctrlx1 = x1 + t * (centerx - x1); ++ ctrly1 = y1 + t * (centery - y1); ++ ctrlx2 = centerx + t * (x2 - centerx); ++ ctrly2 = centery + t * (y2 - centery); ++ centerx = ctrlx1 + t * (ctrlx2 - ctrlx1); ++ centery = ctrly1 + t * (ctrly2 - ctrly1); ++ if (left != null) { ++ left[leftoff + 2] = x1; ++ left[leftoff + 3] = y1; ++ left[leftoff + 4] = ctrlx1; ++ left[leftoff + 5] = ctrly1; ++ left[leftoff + 6] = centerx; ++ left[leftoff + 7] = centery; ++ } ++ if (right != null) { ++ right[rightoff + 0] = centerx; ++ right[rightoff + 1] = centery; ++ right[rightoff + 2] = ctrlx2; ++ right[rightoff + 3] = ctrly2; ++ right[rightoff + 4] = x2; ++ right[rightoff + 5] = y2; ++ } ++ } ++ ++ static void subdivideQuad(float src[], int srcoff, ++ float left[], int leftoff, ++ float right[], int rightoff) ++ { ++ float x1 = src[srcoff + 0]; ++ float y1 = src[srcoff + 1]; ++ float ctrlx = src[srcoff + 2]; ++ float ctrly = src[srcoff + 3]; ++ float x2 = src[srcoff + 4]; ++ float y2 = src[srcoff + 5]; ++ if (left != null) { ++ left[leftoff + 0] = x1; ++ left[leftoff + 1] = y1; ++ } ++ if (right != null) { ++ right[rightoff + 4] = x2; ++ right[rightoff + 5] = y2; ++ } ++ x1 = (x1 + ctrlx) / 2.0f; ++ y1 = (y1 + ctrly) / 2.0f; ++ x2 = (x2 + ctrlx) / 2.0f; ++ y2 = (y2 + ctrly) / 2.0f; ++ ctrlx = (x1 + x2) / 2.0f; ++ ctrly = (y1 + y2) / 2.0f; ++ if (left != null) { ++ left[leftoff + 2] = x1; ++ left[leftoff + 3] = y1; ++ left[leftoff + 4] = ctrlx; ++ left[leftoff + 5] = ctrly; ++ } ++ if (right != null) { ++ right[rightoff + 0] = ctrlx; ++ right[rightoff + 1] = ctrly; ++ right[rightoff + 2] = x2; ++ right[rightoff + 3] = y2; ++ } ++ } ++ ++ static void subdivideQuadAt(float t, float src[], int srcoff, ++ float left[], int leftoff, ++ float right[], int rightoff) ++ { ++ float x1 = src[srcoff + 0]; ++ float y1 = src[srcoff + 1]; ++ float ctrlx = src[srcoff + 2]; ++ float ctrly = src[srcoff + 3]; ++ float x2 = src[srcoff + 4]; ++ float y2 = src[srcoff + 5]; ++ if (left != null) { ++ left[leftoff + 0] = x1; ++ left[leftoff + 1] = y1; ++ } ++ if (right != null) { ++ right[rightoff + 4] = x2; ++ right[rightoff + 5] = y2; ++ } ++ x1 = x1 + t * (ctrlx - x1); ++ y1 = y1 + t * (ctrly - y1); ++ x2 = ctrlx + t * (x2 - ctrlx); ++ y2 = ctrly + t * (y2 - ctrly); ++ ctrlx = x1 + t * (x2 - x1); ++ ctrly = y1 + t * (y2 - y1); ++ if (left != null) { ++ left[leftoff + 2] = x1; ++ left[leftoff + 3] = y1; ++ left[leftoff + 4] = ctrlx; ++ left[leftoff + 5] = ctrly; ++ } ++ if (right != null) { ++ right[rightoff + 0] = ctrlx; ++ right[rightoff + 1] = ctrly; ++ right[rightoff + 2] = x2; ++ right[rightoff + 3] = y2; ++ } ++ } ++ ++ static void subdivideAt(float t, float src[], int srcoff, ++ float left[], int leftoff, ++ float right[], int rightoff, int size) ++ { ++ switch(size) { ++ case 8: ++ subdivideCubicAt(t, src, srcoff, left, leftoff, right, rightoff); ++ break; ++ case 6: ++ subdivideQuadAt(t, src, srcoff, left, leftoff, right, rightoff); ++ break; ++ } ++ } ++} +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/LineSink.java openjdk/jdk/src/share/classes/sun/java2d/pisces/LineSink.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/LineSink.java 2010-12-09 14:26:24.649147685 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/LineSink.java 1969-12-31 19:00:00.000000000 -0500 +@@ -1,93 +0,0 @@ +-/* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. +- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +- * +- * This code is free software; you can redistribute it and/or modify it +- * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this +- * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. +- * +- * This code is distributed in the hope that it will be useful, but WITHOUT +- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +- * version 2 for more details (a copy is included in the LICENSE file that +- * accompanied this code). +- * +- * You should have received a copy of the GNU General Public License version +- * 2 along with this work; if not, write to the Free Software Foundation, +- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +- * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. +- */ +- +-package sun.java2d.pisces; +- +-/** +- * The LineSink interface accepts a series of line +- * drawing commands: moveTo, lineTo, +- * close (equivalent to a lineTo command +- * with an argument equal to the argument of the last +- * moveTo command), and end. +- * +- *

A Flattener may be used to connect a general path +- * source to a LineSink. +- * +- *

The Renderer class implements the +- * LineSink interface. +- * +- */ +-public abstract class LineSink { +- +- /** +- * Moves the current drawing position to the point (x0, +- * y0). +- * +- * @param x0 the X coordinate in S15.16 format +- * @param y0 the Y coordinate in S15.16 format +- */ +- public abstract void moveTo(int x0, int y0); +- +- /** +- * Provides a hint that the current segment should be joined to +- * the following segment using an explicit miter or round join if +- * required. +- * +- *

An application-generated path will generally have no need +- * to contain calls to this method; they are typically introduced +- * by a Flattener to mark segment divisions that +- * appear in its input, and consumed by a Stroker +- * that is responsible for emitting the miter or round join +- * segments. +- * +- *

Other LineSink classes should simply pass this +- * hint to their output sink as needed. +- */ +- public abstract void lineJoin(); +- +- /** +- * Draws a line from the current drawing position to the point +- * (x1, y1) and sets the current drawing position to +- * (x1, y1). +- * +- * @param x1 the X coordinate in S15.16 format +- * @param y1 the Y coordinate in S15.16 format +- */ +- public abstract void lineTo(int x1, int y1); +- +- /** +- * Closes the current path by drawing a line from the current +- * drawing position to the point specified by the moset recent +- * moveTo command. +- */ +- public abstract void close(); +- +- /** +- * Ends the current path. It may be necessary to end a path in +- * order to allow end caps to be drawn. +- */ +- public abstract void end(); +- +-} +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java 2010-12-09 14:26:24.649147685 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesCache.java 2010-12-09 14:28:42.434147616 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,13 +18,15 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + ++import java.util.Arrays; ++ + /** + * An object used to cache pre-rendered complex paths. + * +@@ -32,115 +34,153 @@ + */ + public final class PiscesCache { + +- int bboxX0, bboxY0, bboxX1, bboxY1; +- +- byte[] rowAARLE; +- int alphaRLELength; ++ final int bboxX0, bboxY0, bboxX1, bboxY1; + +- int[] rowOffsetsRLE; +- int[] minTouched; +- int alphaRows; +- +- private PiscesCache() {} +- +- public static PiscesCache createInstance() { +- return new PiscesCache(); +- } +- +- private static final float ROWAA_RLE_FACTOR = 1.5f; +- private static final float TOUCHED_FACTOR = 1.5f; +- private static final int MIN_TOUCHED_LEN = 64; +- +- private void reallocRowAARLE(int newLength) { +- if (rowAARLE == null) { +- rowAARLE = new byte[newLength]; +- } else if (rowAARLE.length < newLength) { +- int len = Math.max(newLength, +- (int)(rowAARLE.length*ROWAA_RLE_FACTOR)); +- byte[] newRowAARLE = new byte[len]; +- System.arraycopy(rowAARLE, 0, newRowAARLE, 0, rowAARLE.length); +- rowAARLE = newRowAARLE; ++ // rowAARLE[i] holds the encoding of the pixel row with y = bboxY0+i. ++ // The format of each of the inner arrays is: rowAARLE[i][0,1] = (x0, n) ++ // where x0 is the first x in row i with nonzero alpha, and n is the ++ // number of RLE entries in this row. rowAARLE[i][j,j+1] for j>1 is ++ // (val,runlen) ++ final int[][] rowAARLE; ++ ++ // RLE encodings are added in increasing y rows and then in increasing ++ // x inside those rows. Therefore, at any one time there is a well ++ // defined position (x,y) where a run length is about to be added (or ++ // the row terminated). x0,y0 is this (x,y)-(bboxX0,bboxY0). They ++ // are used to get indices into the current tile. ++ private int x0 = Integer.MIN_VALUE, y0 = Integer.MIN_VALUE; ++ ++ // touchedTile[i][j] is the sum of all the alphas in the tile with ++ // y=i*TILE_SIZE+bboxY0 and x=j*TILE_SIZE+bboxX0. ++ private final int[][] touchedTile; ++ ++ static final int TILE_SIZE_LG = 5; ++ static final int TILE_SIZE = 1 << TILE_SIZE_LG; // 32 ++ private static final int INIT_ROW_SIZE = 8; // enough for 3 run lengths ++ ++ PiscesCache(int minx, int miny, int maxx, int maxy) { ++ assert maxy >= miny && maxx >= minx; ++ bboxX0 = minx; ++ bboxY0 = miny; ++ bboxX1 = maxx + 1; ++ bboxY1 = maxy + 1; ++ // we could just leave the inner arrays as null and allocate them ++ // lazily (which would be beneficial for shapes with gaps), but we ++ // assume there won't be too many of those so we allocate everything ++ // up front (which is better for other cases) ++ rowAARLE = new int[bboxY1 - bboxY0 + 1][INIT_ROW_SIZE]; ++ x0 = 0; ++ y0 = -1; // -1 makes the first assert in startRow succeed ++ // the ceiling of (maxy - miny + 1) / TILE_SIZE; ++ int nyTiles = (maxy - miny + TILE_SIZE) >> TILE_SIZE_LG; ++ int nxTiles = (maxx - minx + TILE_SIZE) >> TILE_SIZE_LG; ++ ++ touchedTile = new int[nyTiles][nxTiles]; ++ } ++ ++ void addRLERun(int val, int runLen) { ++ if (runLen > 0) { ++ addTupleToRow(y0, val, runLen); ++ if (val != 0) { ++ // the x and y of the current row, minus bboxX0, bboxY0 ++ int tx = x0 >> TILE_SIZE_LG; ++ int ty = y0 >> TILE_SIZE_LG; ++ int tx1 = (x0 + runLen - 1) >> TILE_SIZE_LG; ++ // while we forbid rows from starting before bboxx0, our users ++ // can still store rows that go beyond bboxx1 (although this ++ // shouldn't happen), so it's a good idea to check that i ++ // is not going out of bounds in touchedTile[ty] ++ if (tx1 >= touchedTile[ty].length) { ++ tx1 = touchedTile[ty].length - 1; ++ } ++ if (tx <= tx1) { ++ int nextTileXCoord = (tx + 1) << TILE_SIZE_LG; ++ if (nextTileXCoord > x0+runLen) { ++ touchedTile[ty][tx] += val * runLen; ++ } else { ++ touchedTile[ty][tx] += val * (nextTileXCoord - x0); ++ } ++ tx++; ++ } ++ // don't go all the way to tx1 - we need to handle the last ++ // tile as a special case (just like we did with the first ++ for (; tx < tx1; tx++) { ++// try { ++ touchedTile[ty][tx] += (val << TILE_SIZE_LG); ++// } catch (RuntimeException e) { ++// System.out.println("x0, y0: " + x0 + ", " + y0); ++// System.out.printf("tx, ty, tx1: %d, %d, %d %n", tx, ty, tx1); ++// System.out.printf("bboxX/Y0/1: %d, %d, %d, %d %n", ++// bboxX0, bboxY0, bboxX1, bboxY1); ++// throw e; ++// } ++ } ++ // they will be equal unless x0>>TILE_SIZE_LG == tx1 ++ if (tx == tx1) { ++ int lastXCoord = Math.min(x0 + runLen, (tx + 1) << TILE_SIZE_LG); ++ int txXCoord = tx << TILE_SIZE_LG; ++ touchedTile[ty][tx] += val * (lastXCoord - txXCoord); ++ } ++ } ++ x0 += runLen; + } + } + +- private void reallocRowInfo(int newHeight) { +- if (minTouched == null) { +- int len = Math.max(newHeight, MIN_TOUCHED_LEN); +- minTouched = new int[len]; +- rowOffsetsRLE = new int[len]; +- } else if (minTouched.length < newHeight) { +- int len = Math.max(newHeight, +- (int)(minTouched.length*TOUCHED_FACTOR)); +- int[] newMinTouched = new int[len]; +- int[] newRowOffsetsRLE = new int[len]; +- System.arraycopy(minTouched, 0, newMinTouched, 0, +- alphaRows); +- System.arraycopy(rowOffsetsRLE, 0, newRowOffsetsRLE, 0, +- alphaRows); +- minTouched = newMinTouched; +- rowOffsetsRLE = newRowOffsetsRLE; +- } +- } ++ void startRow(int y, int x) { ++ // rows are supposed to be added by increasing y. ++ assert y - bboxY0 > y0; ++ assert y <= bboxY1; // perhaps this should be < instead of <= + +- void addRLERun(byte val, int runLen) { +- reallocRowAARLE(alphaRLELength + 2); +- rowAARLE[alphaRLELength++] = val; +- rowAARLE[alphaRLELength++] = (byte)runLen; +- } +- +- void startRow(int y, int x0, int x1) { +- if (alphaRows == 0) { +- bboxY0 = y; +- bboxY1 = y+1; +- bboxX0 = x0; +- bboxX1 = x1+1; +- } else { +- if (bboxX0 > x0) bboxX0 = x0; +- if (bboxX1 < x1) bboxX1 = x1; +- while (bboxY1++ < y) { +- reallocRowInfo(alphaRows+1); +- minTouched[alphaRows] = 0; +- // Assuming last 2 entries in rowAARLE are 0,0 +- rowOffsetsRLE[alphaRows] = alphaRLELength-2; +- alphaRows++; +- } +- } +- reallocRowInfo(alphaRows+1); +- minTouched[alphaRows] = x0; +- rowOffsetsRLE[alphaRows] = alphaRLELength; +- alphaRows++; +- } ++ y0 = y - bboxY0; ++ // this should be a new, uninitialized row. ++ assert rowAARLE[y0][1] == 0; + +- public synchronized void dispose() { +- rowAARLE = null; +- alphaRLELength = 0; ++ x0 = x - bboxX0; ++ assert x0 >= 0 : "Input must not be to the left of bbox bounds"; + +- minTouched = null; +- rowOffsetsRLE = null; +- alphaRows = 0; ++ // the way addTupleToRow is implemented it would work for this but it's ++ // not a good idea to use it because it is meant for adding ++ // RLE tuples, not the first tuple (which is special). ++ rowAARLE[y0][0] = x; ++ rowAARLE[y0][1] = 2; ++ } + +- bboxX0 = bboxY0 = bboxX1 = bboxY1 = 0; ++ int alphaSumInTile(int x, int y) { ++ x -= bboxX0; ++ y -= bboxY0; ++ return touchedTile[y>>TILE_SIZE_LG][x>>TILE_SIZE_LG]; + } + +- public void print(java.io.PrintStream out) { +- synchronized (out) { +- out.println("bbox = ["+ +- bboxX0+", "+bboxY0+" => "+ +- bboxX1+", "+bboxY1+"]"); ++ int minTouched(int rowidx) { ++ return rowAARLE[rowidx][0]; ++ } + +- out.println("alphRLELength = "+alphaRLELength); ++ int rowLength(int rowidx) { ++ return rowAARLE[rowidx][1]; ++ } ++ ++ private void addTupleToRow(int row, int a, int b) { ++ int end = rowAARLE[row][1]; ++ rowAARLE[row] = Helpers.widenArray(rowAARLE[row], end, 2); ++ rowAARLE[row][end++] = a; ++ rowAARLE[row][end++] = b; ++ rowAARLE[row][1] = end; ++ } + +- for (int y = bboxY0; y < bboxY1; y++) { +- int i = y-bboxY0; +- out.println("row["+i+"] == {"+ +- "minX = "+minTouched[i]+ +- ", off = "+rowOffsetsRLE[i]+"}"); +- } + +- for (int i = 0; i < alphaRLELength; i += 2) { +- out.println("rle["+i+"] = "+ +- (rowAARLE[i+1]&0xff)+" of "+(rowAARLE[i]&0xff)); ++ public String toString() { ++ String ret = "bbox = ["+ ++ bboxX0+", "+bboxY0+" => "+ ++ bboxX1+", "+bboxY1+"]\n"; ++ for (int[] row : rowAARLE) { ++ if (row != null) { ++ ret += ("minTouchedX=" + row[0] + ++ "\tRLE Entries: " + Arrays.toString( ++ Arrays.copyOfRange(row, 2, row[1])) + "\n"); ++ } else { ++ ret += "[]\n"; ++ } + } +- } ++ return ret; + } + } +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesMath.java openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesMath.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesMath.java 2010-12-09 14:26:24.649147685 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesMath.java 1969-12-31 19:00:00.000000000 -0500 +@@ -1,155 +0,0 @@ +-/* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. +- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +- * +- * This code is free software; you can redistribute it and/or modify it +- * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this +- * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. +- * +- * This code is distributed in the hope that it will be useful, but WITHOUT +- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +- * version 2 for more details (a copy is included in the LICENSE file that +- * accompanied this code). +- * +- * You should have received a copy of the GNU General Public License version +- * 2 along with this work; if not, write to the Free Software Foundation, +- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +- * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. +- */ +- +-package sun.java2d.pisces; +- +-public class PiscesMath { +- +- private PiscesMath() {} +- +- private static final int SINTAB_LG_ENTRIES = 10; +- private static final int SINTAB_ENTRIES = 1 << SINTAB_LG_ENTRIES; +- private static int[] sintab; +- +- public static final int PI = (int)(Math.PI*65536.0); +- public static final int TWO_PI = (int)(2.0*Math.PI*65536.0); +- public static final int PI_OVER_TWO = (int)((Math.PI/2.0)*65536.0); +- public static final int SQRT_TWO = (int)(Math.sqrt(2.0)*65536.0); +- +- static { +- sintab = new int[SINTAB_ENTRIES + 1]; +- for (int i = 0; i < SINTAB_ENTRIES + 1; i++) { +- double theta = i*(Math.PI/2.0)/SINTAB_ENTRIES; +- sintab[i] = (int)(Math.sin(theta)*65536.0); +- } +- } +- +- public static int sin(int theta) { +- int sign = 1; +- if (theta < 0) { +- theta = -theta; +- sign = -1; +- } +- // 0 <= theta +- while (theta >= TWO_PI) { +- theta -= TWO_PI; +- } +- // 0 <= theta < 2*PI +- if (theta >= PI) { +- theta = TWO_PI - theta; +- sign = -sign; +- } +- // 0 <= theta < PI +- if (theta > PI_OVER_TWO) { +- theta = PI - theta; +- } +- // 0 <= theta <= PI/2 +- int itheta = (int)((long)theta*SINTAB_ENTRIES/(PI_OVER_TWO)); +- return sign*sintab[itheta]; +- } +- +- public static int cos(int theta) { +- return sin(PI_OVER_TWO - theta); +- } +- +-// public static double sqrt(double x) { +-// double dsqrt = Math.sqrt(x); +-// int ix = (int)(x*65536.0); +-// Int Isqrt = Isqrt(Ix); +- +-// Long Lx = (Long)(X*65536.0); +-// Long Lsqrt = Lsqrt(Lx); +- +-// System.Out.Println(); +-// System.Out.Println("X = " + X); +-// System.Out.Println("Dsqrt = " + Dsqrt); +- +-// System.Out.Println("Ix = " + Ix); +-// System.Out.Println("Isqrt = " + Isqrt/65536.0); +- +-// System.Out.Println("Lx = " + Lx); +-// System.Out.Println("Lsqrt = " + Lsqrt/65536.0); +- +-// Return Dsqrt; +-// } +- +- // From Ken Turkowski, _Fixed-Point Square Root_, In Graphics Gems V +- public static int isqrt(int x) { +- int fracbits = 16; +- +- int root = 0; +- int remHi = 0; +- int remLo = x; +- int count = 15 + fracbits/2; +- +- do { +- remHi = (remHi << 2) | (remLo >>> 30); // N.B. - unsigned shift R +- remLo <<= 2; +- root <<= 1; +- int testdiv = (root << 1) + 1; +- if (remHi >= testdiv) { +- remHi -= testdiv; +- root++; +- } +- } while (count-- != 0); +- +- return root; +- } +- +- public static long lsqrt(long x) { +- int fracbits = 16; +- +- long root = 0; +- long remHi = 0; +- long remLo = x; +- int count = 31 + fracbits/2; +- +- do { +- remHi = (remHi << 2) | (remLo >>> 62); // N.B. - unsigned shift R +- remLo <<= 2; +- root <<= 1; +- long testDiv = (root << 1) + 1; +- if (remHi >= testDiv) { +- remHi -= testDiv; +- root++; +- } +- } while (count-- != 0); +- +- return root; +- } +- +- public static double hypot(double x, double y) { +- // new RuntimeException().printStackTrace(); +- return Math.sqrt(x*x + y*y); +- } +- +- public static int hypot(int x, int y) { +- return (int)((lsqrt((long)x*x + (long)y*y) + 128) >> 8); +- } +- +- public static long hypot(long x, long y) { +- return (lsqrt(x*x + y*y) + 128) >> 8; +- } +-} +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java 2010-12-09 14:26:24.650147824 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesRenderingEngine.java 2010-12-09 14:28:42.434147616 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,15 +18,16 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + + import java.awt.Shape; + import java.awt.BasicStroke; ++import java.awt.geom.NoninvertibleTransformException; + import java.awt.geom.Path2D; + import java.awt.geom.AffineTransform; + import java.awt.geom.PathIterator; +@@ -37,23 +38,7 @@ + import sun.java2d.pipe.AATileGenerator; + + public class PiscesRenderingEngine extends RenderingEngine { +- public static Transform4 IdentT4 = new Transform4(); +- public static double defaultFlat = 0.1; +- +- static int FloatToS15_16(float flt) { +- flt = flt * 65536f + 0.5f; +- if (flt <= -(65536f * 65536f)) { +- return Integer.MIN_VALUE; +- } else if (flt >= (65536f * 65536f)) { +- return Integer.MAX_VALUE; +- } else { +- return (int) Math.floor(flt); +- } +- } +- +- static float S15_16ToFloat(int fix) { +- return (fix / 65536f); +- } ++ private static enum NormMode {OFF, ON_NO_AA, ON_WITH_AA} + + /** + * Create a widened path as specified by the parameters. +@@ -85,25 +70,35 @@ + strokeTo(src, + null, + width, ++ NormMode.OFF, + caps, + join, + miterlimit, + dashes, + dashphase, +- new LineSink() { +- public void moveTo(int x0, int y0) { +- p2d.moveTo(S15_16ToFloat(x0), S15_16ToFloat(y0)); ++ new PathConsumer2D() { ++ public void moveTo(float x0, float y0) { ++ p2d.moveTo(x0, y0); + } +- public void lineJoin() {} +- public void lineTo(int x1, int y1) { +- p2d.lineTo(S15_16ToFloat(x1), S15_16ToFloat(y1)); ++ public void lineTo(float x1, float y1) { ++ p2d.lineTo(x1, y1); + } +- public void close() { ++ public void closePath() { + p2d.closePath(); + } +- public void end() {} ++ public void pathDone() {} ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) { ++ p2d.curveTo(x1, y1, x2, y2, x3, y3); ++ } ++ public void quadTo(float x1, float y1, float x2, float y2) { ++ p2d.quadTo(x1, y1, x2, y2); ++ } ++ public long getNativeConsumer() { ++ throw new InternalError("Not using a native peer"); ++ } + }); +- + return p2d; + } + +@@ -142,38 +137,26 @@ + boolean antialias, + final PathConsumer2D consumer) + { +- strokeTo(src, at, bs, thin, normalize, antialias, +- new LineSink() { +- public void moveTo(int x0, int y0) { +- consumer.moveTo(S15_16ToFloat(x0), S15_16ToFloat(y0)); +- } +- public void lineJoin() {} +- public void lineTo(int x1, int y1) { +- consumer.lineTo(S15_16ToFloat(x1), S15_16ToFloat(y1)); +- } +- public void close() { +- consumer.closePath(); +- } +- public void end() { +- consumer.pathDone(); +- } +- }); ++ NormMode norm = (normalize) ? ++ ((antialias) ? NormMode.ON_WITH_AA : NormMode.ON_NO_AA) ++ : NormMode.OFF; ++ strokeTo(src, at, bs, thin, norm, antialias, consumer); + } + + void strokeTo(Shape src, + AffineTransform at, + BasicStroke bs, + boolean thin, +- boolean normalize, ++ NormMode normalize, + boolean antialias, +- LineSink lsink) ++ PathConsumer2D pc2d) + { + float lw; + if (thin) { + if (antialias) { +- lw = 0.5f; ++ lw = userSpaceLineWidth(at, 0.5f); + } else { +- lw = 1.0f; ++ lw = userSpaceLineWidth(at, 1.0f); + } + } else { + lw = bs.getLineWidth(); +@@ -181,79 +164,315 @@ + strokeTo(src, + at, + lw, ++ normalize, + bs.getEndCap(), + bs.getLineJoin(), + bs.getMiterLimit(), + bs.getDashArray(), + bs.getDashPhase(), +- lsink); ++ pc2d); ++ } ++ ++ private float userSpaceLineWidth(AffineTransform at, float lw) { ++ ++ double widthScale; ++ ++ if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM | ++ AffineTransform.TYPE_GENERAL_SCALE)) != 0) { ++ widthScale = Math.sqrt(at.getDeterminant()); ++ } else { ++ /* First calculate the "maximum scale" of this transform. */ ++ double A = at.getScaleX(); // m00 ++ double C = at.getShearX(); // m01 ++ double B = at.getShearY(); // m10 ++ double D = at.getScaleY(); // m11 ++ ++ /* ++ * Given a 2 x 2 affine matrix [ A B ] such that ++ * [ C D ] ++ * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to ++ * find the maximum magnitude (norm) of the vector v' ++ * with the constraint (x^2 + y^2 = 1). ++ * The equation to maximize is ++ * |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2) ++ * or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2). ++ * Since sqrt is monotonic we can maximize |v'|^2 ++ * instead and plug in the substitution y = sqrt(1 - x^2). ++ * Trigonometric equalities can then be used to get ++ * rid of most of the sqrt terms. ++ */ ++ ++ double EA = A*A + B*B; // x^2 coefficient ++ double EB = 2*(A*C + B*D); // xy coefficient ++ double EC = C*C + D*D; // y^2 coefficient ++ ++ /* ++ * There is a lot of calculus omitted here. ++ * ++ * Conceptually, in the interests of understanding the ++ * terms that the calculus produced we can consider ++ * that EA and EC end up providing the lengths along ++ * the major axes and the hypot term ends up being an ++ * adjustment for the additional length along the off-axis ++ * angle of rotated or sheared ellipses as well as an ++ * adjustment for the fact that the equation below ++ * averages the two major axis lengths. (Notice that ++ * the hypot term contains a part which resolves to the ++ * difference of these two axis lengths in the absence ++ * of rotation.) ++ * ++ * In the calculus, the ratio of the EB and (EA-EC) terms ++ * ends up being the tangent of 2*theta where theta is ++ * the angle that the long axis of the ellipse makes ++ * with the horizontal axis. Thus, this equation is ++ * calculating the length of the hypotenuse of a triangle ++ * along that axis. ++ */ ++ ++ double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC)); ++ /* sqrt omitted, compare to squared limits below. */ ++ double widthsquared = ((EA + EC + hypot)/2.0); ++ ++ widthScale = Math.sqrt(widthsquared); ++ } ++ ++ return (float) (lw / widthScale); + } + + void strokeTo(Shape src, + AffineTransform at, + float width, ++ NormMode normalize, + int caps, + int join, + float miterlimit, + float dashes[], + float dashphase, +- LineSink lsink) ++ PathConsumer2D pc2d) + { +- Transform4 t4; ++ // We use inat and outat so that in Stroker and Dasher we can work only ++ // with the pre-transformation coordinates. This will repeat a lot of ++ // computations done in the path iterator, but the alternative is to ++ // work with transformed paths and compute untransformed coordinates ++ // as needed. This would be faster but I do not think the complexity ++ // of working with both untransformed and transformed coordinates in ++ // the same code is worth it. ++ // However, if a path's width is constant after a transformation, ++ // we can skip all this untransforming. ++ ++ // If normalization is off we save some transformations by not ++ // transforming the input to pisces. Instead, we apply the ++ // transformation after the path processing has been done. ++ // We can't do this if normalization is on, because it isn't a good ++ // idea to normalize before the transformation is applied. ++ AffineTransform inat = null; ++ AffineTransform outat = null; ++ ++ PathIterator pi = null; ++ ++ if (at != null && !at.isIdentity()) { ++ final double a = at.getScaleX(); ++ final double b = at.getShearX(); ++ final double c = at.getShearY(); ++ final double d = at.getScaleY(); ++ final double det = a * d - c * b; ++ if (Math.abs(det) <= 2 * Float.MIN_VALUE) { ++ // this rendering engine takes one dimensional curves and turns ++ // them into 2D shapes by giving them width. ++ // However, if everything is to be passed through a singular ++ // transformation, these 2D shapes will be squashed down to 1D ++ // again so, nothing can be drawn. ++ ++ // Every path needs an initial moveTo and a pathDone. If these ++ // aren't there this causes a SIGSEV in libawt.so (at the time ++ // of writing of this comment (September 16, 2010)). Actually, ++ // I'm not sure if the moveTo is necessary to avoid the SIGSEV ++ // but the pathDone is definitely needed. ++ pc2d.moveTo(0, 0); ++ pc2d.pathDone(); ++ return; ++ } + +- if (at == null || at.isIdentity()) { +- t4 = IdentT4; ++ // If the transform is a constant multiple of an orthogonal transformation ++ // then every length is just multiplied by a constant, so we just ++ // need to transform input paths to stroker and tell stroker ++ // the scaled width. This condition is satisfied if ++ // a*b == -c*d && a*a+c*c == b*b+d*d. In the actual check below, we ++ // leave a bit of room for error. ++ if (nearZero(a*b + c*d, 2) && nearZero(a*a+c*c - (b*b+d*d), 2)) { ++ double scale = Math.sqrt(a*a + c*c); ++ if (dashes != null) { ++ dashes = java.util.Arrays.copyOf(dashes, dashes.length); ++ for (int i = 0; i < dashes.length; i++) { ++ dashes[i] = (float)(scale * dashes[i]); ++ } ++ dashphase = (float)(scale * dashphase); ++ } ++ width = (float)(scale * width); ++ pi = src.getPathIterator(at); ++ if (normalize != NormMode.OFF) { ++ pi = new NormalizingPathIterator(pi, normalize); ++ } ++ // leave inat and outat null. ++ } else { ++ // We only need the inverse if normalization is on. Otherwise ++ // we just don't transform the input paths, do all the stroking ++ // and then transform out output (instead of making PathIterator ++ // apply the transformation, us applying the inverse, and then ++ // us applying the transform again to our output). ++ outat = at; ++ if (normalize != NormMode.OFF) { ++ try { ++ inat = outat.createInverse(); ++ } catch (NoninvertibleTransformException e) { ++ // we made sure this can't happen ++ e.printStackTrace(); ++ } ++ pi = src.getPathIterator(at); ++ pi = new NormalizingPathIterator(pi, normalize); ++ } else { ++ pi = src.getPathIterator(null); ++ } ++ } + } else { +- t4 = new Transform4(FloatToS15_16((float) at.getScaleX()), +- FloatToS15_16((float) at.getShearX()), +- FloatToS15_16((float) at.getShearY()), +- FloatToS15_16((float) at.getScaleY())); ++ // either at is null or it's the identity. In either case ++ // we don't transform the path. ++ pi = src.getPathIterator(null); ++ if (normalize != NormMode.OFF) { ++ pi = new NormalizingPathIterator(pi, normalize); ++ } + } + +- lsink = new Stroker(lsink, +- FloatToS15_16(width), +- caps, +- join, +- FloatToS15_16(miterlimit), +- t4); ++ pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, outat); ++ pc2d = new Stroker(pc2d, width, caps, join, miterlimit); + if (dashes != null) { +- int fdashes[] = new int[dashes.length]; +- for (int i = 0; i < dashes.length; i++) { +- fdashes[i] = FloatToS15_16(dashes[i]); +- } +- lsink = new Dasher(lsink, +- fdashes, +- FloatToS15_16(dashphase), +- t4); ++ pc2d = new Dasher(pc2d, dashes, dashphase); + } ++ pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, inat); + +- PathIterator pi = src.getPathIterator(at, defaultFlat); +- pathTo(pi, lsink); ++ pathTo(pi, pc2d); + } + +- void pathTo(PathIterator pi, LineSink lsink) { +- float coords[] = new float[2]; +- while (!pi.isDone()) { +- switch (pi.currentSegment(coords)) { +- case PathIterator.SEG_MOVETO: +- lsink.moveTo(FloatToS15_16(coords[0]), +- FloatToS15_16(coords[1])); ++ private static boolean nearZero(double num, int nulps) { ++ return Math.abs(num) < nulps * Math.ulp(num); ++ } ++ ++ private static class NormalizingPathIterator implements PathIterator { ++ ++ private final PathIterator src; ++ ++ // the adjustment applied to the current position. ++ private float curx_adjust, cury_adjust; ++ // the adjustment applied to the last moveTo position. ++ private float movx_adjust, movy_adjust; ++ ++ // constants used in normalization computations ++ private final float lval, rval; ++ ++ NormalizingPathIterator(PathIterator src, NormMode mode) { ++ this.src = src; ++ switch (mode) { ++ case ON_NO_AA: ++ // round to nearest (0.25, 0.25) pixel ++ lval = rval = 0.25f; ++ break; ++ case ON_WITH_AA: ++ // round to nearest pixel center ++ lval = 0f; ++ rval = 0.5f; ++ break; ++ case OFF: ++ throw new InternalError("A NormalizingPathIterator should " + ++ "not be created if no normalization is being done"); ++ default: ++ throw new InternalError("Unrecognized normalization mode"); ++ } ++ } ++ ++ public int currentSegment(float[] coords) { ++ int type = src.currentSegment(coords); ++ ++ int lastCoord; ++ switch(type) { ++ case PathIterator.SEG_CUBICTO: ++ lastCoord = 4; ++ break; ++ case PathIterator.SEG_QUADTO: ++ lastCoord = 2; + break; + case PathIterator.SEG_LINETO: +- lsink.lineJoin(); +- lsink.lineTo(FloatToS15_16(coords[0]), +- FloatToS15_16(coords[1])); ++ case PathIterator.SEG_MOVETO: ++ lastCoord = 0; + break; + case PathIterator.SEG_CLOSE: +- lsink.lineJoin(); +- lsink.close(); +- break; ++ // we don't want to deal with this case later. We just exit now ++ curx_adjust = movx_adjust; ++ cury_adjust = movy_adjust; ++ return type; + default: +- throw new InternalError("unknown flattened segment type"); ++ throw new InternalError("Unrecognized curve type"); + } +- pi.next(); ++ ++ // normalize endpoint ++ float x_adjust = (float)Math.floor(coords[lastCoord] + lval) + ++ rval - coords[lastCoord]; ++ float y_adjust = (float)Math.floor(coords[lastCoord+1] + lval) + ++ rval - coords[lastCoord + 1]; ++ ++ coords[lastCoord ] += x_adjust; ++ coords[lastCoord + 1] += y_adjust; ++ ++ // now that the end points are done, normalize the control points ++ switch(type) { ++ case PathIterator.SEG_CUBICTO: ++ coords[0] += curx_adjust; ++ coords[1] += cury_adjust; ++ coords[2] += x_adjust; ++ coords[3] += y_adjust; ++ break; ++ case PathIterator.SEG_QUADTO: ++ coords[0] += (curx_adjust + x_adjust) / 2; ++ coords[1] += (cury_adjust + y_adjust) / 2; ++ break; ++ case PathIterator.SEG_LINETO: ++ break; ++ case PathIterator.SEG_MOVETO: ++ movx_adjust = x_adjust; ++ movy_adjust = y_adjust; ++ break; ++ case PathIterator.SEG_CLOSE: ++ throw new InternalError("This should be handled earlier."); ++ } ++ curx_adjust = x_adjust; ++ cury_adjust = y_adjust; ++ return type; ++ } ++ ++ public int currentSegment(double[] coords) { ++ float[] tmp = new float[6]; ++ int type = this.currentSegment(tmp); ++ for (int i = 0; i < 6; i++) { ++ coords[i] = (float) tmp[i]; ++ } ++ return type; ++ } ++ ++ public int getWindingRule() { ++ return src.getWindingRule(); ++ } ++ ++ public boolean isDone() { ++ return src.isDone(); ++ } ++ ++ public void next() { ++ src.next(); + } +- lsink.end(); ++ } ++ ++ static void pathTo(PathIterator pi, PathConsumer2D pc2d) { ++ RenderingEngine.feedConsumer(pi, pc2d); ++ pc2d.pathDone(); + } + + /** +@@ -311,22 +530,29 @@ + boolean normalize, + int bbox[]) + { +- PiscesCache pc = PiscesCache.createInstance(); +- Renderer r = new Renderer(); +- r.setCache(pc); +- r.setAntialiasing(3, 3); +- r.beginRendering(clip.getLoX(), clip.getLoY(), +- clip.getWidth(), clip.getHeight()); ++ Renderer r; ++ NormMode norm = (normalize) ? NormMode.ON_WITH_AA : NormMode.OFF; + if (bs == null) { +- PathIterator pi = s.getPathIterator(at, defaultFlat); +- r.setWindingRule(pi.getWindingRule()); ++ PathIterator pi; ++ if (normalize) { ++ pi = new NormalizingPathIterator(s.getPathIterator(at), norm); ++ } else { ++ pi = s.getPathIterator(at); ++ } ++ r = new Renderer(3, 3, ++ clip.getLoX(), clip.getLoY(), ++ clip.getWidth(), clip.getHeight(), ++ pi.getWindingRule()); + pathTo(pi, r); + } else { +- r.setWindingRule(PathIterator.WIND_NON_ZERO); +- strokeTo(s, at, bs, thin, normalize, true, r); ++ r = new Renderer(3, 3, ++ clip.getLoX(), clip.getLoY(), ++ clip.getWidth(), clip.getHeight(), ++ PathIterator.WIND_NON_ZERO); ++ strokeTo(s, at, bs, thin, norm, true, r); + } + r.endRendering(); +- PiscesTileGenerator ptg = new PiscesTileGenerator(pc, r.MAX_AA_ALPHA); ++ PiscesTileGenerator ptg = new PiscesTileGenerator(r, r.MAX_AA_ALPHA); + ptg.getBbox(bbox); + return ptg; + } +@@ -354,3 +580,4 @@ + } + } + } ++ +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java 2010-12-09 14:26:24.650147824 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/PiscesTileGenerator.java 2010-12-09 14:28:42.434147616 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,47 +18,61 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + ++import java.util.Map; ++import java.util.concurrent.ConcurrentHashMap; ++ + import sun.java2d.pipe.AATileGenerator; + +-public class PiscesTileGenerator implements AATileGenerator { +- public static final int TILE_SIZE = 32; ++public final class PiscesTileGenerator implements AATileGenerator { ++ public static final int TILE_SIZE = PiscesCache.TILE_SIZE; ++ ++ // perhaps we should be using weak references here, but right now ++ // that's not necessary. The way the renderer is, this map will ++ // never contain more than one element - the one with key 64, since ++ // we only do 8x8 supersampling. ++ private static final Map alphaMapsCache = new ++ ConcurrentHashMap(); + + PiscesCache cache; + int x, y; +- int maxalpha; ++ final int maxalpha; ++ private final int maxTileAlphaSum; ++ ++ // The alpha map used by this object (taken out of our map cache) to convert ++ // pixel coverage counts gotten from PiscesCache (which are in the range ++ // [0, maxalpha]) into alpha values, which are in [0,256). + byte alphaMap[]; + +- public PiscesTileGenerator(PiscesCache cache, int maxalpha) { +- this.cache = cache; ++ public PiscesTileGenerator(Renderer r, int maxalpha) { ++ this.cache = r.getCache(); + this.x = cache.bboxX0; + this.y = cache.bboxY0; + this.alphaMap = getAlphaMap(maxalpha); + this.maxalpha = maxalpha; ++ this.maxTileAlphaSum = TILE_SIZE*TILE_SIZE*maxalpha; + } + +- static int prevMaxAlpha; +- static byte prevAlphaMap[]; ++ private static byte[] buildAlphaMap(int maxalpha) { ++ byte[] alMap = new byte[maxalpha+1]; ++ int halfmaxalpha = maxalpha>>2; ++ for (int i = 0; i <= maxalpha; i++) { ++ alMap[i] = (byte) ((i * 255 + halfmaxalpha) / maxalpha); ++ } ++ return alMap; ++ } + +- public synchronized static byte[] getAlphaMap(int maxalpha) { +- if (maxalpha != prevMaxAlpha) { +- prevAlphaMap = new byte[maxalpha+300]; +- int halfmaxalpha = maxalpha>>2; +- for (int i = 0; i <= maxalpha; i++) { +- prevAlphaMap[i] = (byte) ((i * 255 + halfmaxalpha) / maxalpha); +- } +- for (int i = maxalpha; i < prevAlphaMap.length; i++) { +- prevAlphaMap[i] = (byte) 255; +- } +- prevMaxAlpha = maxalpha; ++ public static byte[] getAlphaMap(int maxalpha) { ++ if (!alphaMapsCache.containsKey(maxalpha)) { ++ alphaMapsCache.put(maxalpha, buildAlphaMap(maxalpha)); + } +- return prevAlphaMap; ++ return alphaMapsCache.get(maxalpha); + } + + public void getBbox(int bbox[]) { +@@ -96,53 +110,24 @@ + * value for partial coverage of the tile + */ + public int getTypicalAlpha() { +- if (true) return 0x80; +- // Decode run-length encoded alpha mask data +- // The data for row j begins at cache.rowOffsetsRLE[j] +- // and is encoded as a set of 2-byte pairs (val, runLen) +- // terminated by a (0, 0) pair. +- +- int x0 = this.x; +- int x1 = x0 + TILE_SIZE; +- int y0 = this.y; +- int y1 = y0 + TILE_SIZE; +- if (x1 > cache.bboxX1) x1 = cache.bboxX1; +- if (y1 > cache.bboxY1) y1 = cache.bboxY1; +- y0 -= cache.bboxY0; +- y1 -= cache.bboxY0; +- +- int ret = -1; +- for (int cy = y0; cy < y1; cy++) { +- int pos = cache.rowOffsetsRLE[cy]; +- int cx = cache.minTouched[cy]; +- +- if (cx > x0) { +- if (ret > 0) return 0x80; +- ret = 0x00; +- } +- while (cx < x1) { +- int runLen = cache.rowAARLE[pos + 1] & 0xff; +- if (runLen == 0) { +- if (ret > 0) return 0x80; +- ret = 0x00; +- break; +- } +- cx += runLen; +- if (cx > x0) { +- int val = cache.rowAARLE[pos] & 0xff; +- if (ret != val) { +- if (ret < 0) { +- if (val != 0x00 && val != maxalpha) return 0x80; +- ret = val; +- } else { +- return 0x80; +- } +- } +- } +- pos += 2; +- } +- } +- return ret; ++ int al = cache.alphaSumInTile(x, y); ++ // Note: if we have a filled rectangle that doesn't end on a tile ++ // border, we could still return 0xff, even though al!=maxTileAlphaSum ++ // This is because if we return 0xff, our users will fill a rectangle ++ // starting at x,y that has width = Math.min(TILE_SIZE, bboxX1-x), ++ // and height min(TILE_SIZE,bboxY1-y), which is what should happen. ++ // However, to support this, we would have to use 2 Math.min's ++ // and 2 multiplications per tile, instead of just 2 multiplications ++ // to compute maxTileAlphaSum. The savings offered would probably ++ // not be worth it, considering how rare this case is. ++ // Note: I have not tested this, so in the future if it is determined ++ // that it is worth it, it should be implemented. Perhaps this method's ++ // interface should be changed to take arguments the width and height ++ // of the current tile. This would eliminate the 2 Math.min calls that ++ // would be needed here, since our caller needs to compute these 2 ++ // values anyway. ++ return (al == 0x00 ? 0x00 : ++ (al == maxTileAlphaSum ? 0xff : 0x80)); + } + + /** +@@ -179,22 +164,24 @@ + + int idx = offset; + for (int cy = y0; cy < y1; cy++) { +- int pos = cache.rowOffsetsRLE[cy]; +- int cx = cache.minTouched[cy]; ++ int[] row = cache.rowAARLE[cy]; ++ assert row != null; ++ int cx = cache.minTouched(cy); + if (cx > x1) cx = x1; + +- if (cx > x0) { +- //System.out.println("L["+(cx-x0)+"]"); +- for (int i = x0; i < cx; i++) { +- tile[idx++] = 0x00; +- } ++ for (int i = x0; i < cx; i++) { ++ tile[idx++] = 0x00; + } +- while (cx < x1) { ++ ++ int pos = 2; ++ while (cx < x1 && pos < row[1]) { + byte val; + int runLen = 0; ++ assert row[1] > 2; + try { +- val = alphaMap[cache.rowAARLE[pos] & 0xff]; +- runLen = cache.rowAARLE[pos + 1] & 0xff; ++ val = alphaMap[row[pos]]; ++ runLen = row[pos + 1]; ++ assert runLen > 0; + } catch (RuntimeException e0) { + System.out.println("maxalpha = "+maxalpha); + System.out.println("tile["+x0+", "+y0+ +@@ -202,14 +189,12 @@ + System.out.println("cx = "+cx+", cy = "+cy); + System.out.println("idx = "+idx+", pos = "+pos); + System.out.println("len = "+runLen); +- cache.print(System.out); ++ System.out.print(cache.toString()); + e0.printStackTrace(); + System.exit(1); + return; + } +- if (runLen == 0) { +- break; +- } ++ + int rx0 = cx; + cx += runLen; + int rx1 = cx; +@@ -228,7 +213,7 @@ + System.out.println("idx = "+idx+", pos = "+pos); + System.out.println("rx0 = "+rx0+", rx1 = "+rx1); + System.out.println("len = "+runLen); +- cache.print(System.out); ++ System.out.print(cache.toString()); + e.printStackTrace(); + System.exit(1); + return; +@@ -265,4 +250,4 @@ + * No further calls will be made on this instance. + */ + public void dispose() {} +-} ++} +\ No newline at end of file +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Renderer.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Renderer.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Renderer.java 2010-12-09 14:26:24.650147824 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Renderer.java 2010-12-09 14:28:42.435147685 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,826 +18,853 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + +-public class Renderer extends LineSink { +- public static final int WIND_EVEN_ODD = 0; +- public static final int WIND_NON_ZERO = 1; ++import java.util.Arrays; ++import java.util.Iterator; + +- // Initial edge list size +- // IMPL_NOTE - restore size after growth +- public static final int INITIAL_EDGES = 1000; +- +- // Recommended maximum scratchpad sizes. The arrays will grow +- // larger if needed, but when finished() is called they will be released +- // if they have grown larger than these sizes. +- public static final int DEFAULT_INDICES_SIZE = 8192; +- public static final int DEFAULT_CROSSINGS_SIZE = 32*1024; +- +- // Antialiasing +- private int SUBPIXEL_LG_POSITIONS_X; +- private int SUBPIXEL_LG_POSITIONS_Y; +- private int SUBPIXEL_MASK_X; +- private int SUBPIXEL_MASK_Y; +- private int SUBPIXEL_POSITIONS_X; +- private int SUBPIXEL_POSITIONS_Y; +- int MAX_AA_ALPHA; +- private int MAX_AA_ALPHA_DENOM; +- private int HALF_MAX_AA_ALPHA_DENOM; +- private int XSHIFT; +- private int YSHIFT; +- private int YSTEP; +- private int HYSTEP; +- private int YMASK; ++import sun.awt.geom.PathConsumer2D; + +- private static final int MIN_QUAD_OPT_WIDTH = 100 << 16; +- +- // Cache to store RLE-encoded coverage mask of the current primitive +- PiscesCache cache; ++public class Renderer implements PathConsumer2D { + +- // Bounds of the drawing region, at S15.16 precsion +- private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; ++ private class ScanlineIterator { + +- // Bounds of the current primitive, at subsample precision +- private int rasterMinX, rasterMaxX, rasterMinY, rasterMaxY; +- +- // Pixel bounding box for current primitive +- private int bboxX0, bboxY0, bboxX1, bboxY1; +- +- // Current winding rule +- private int windingRule; ++ private int[] crossings; ++ ++ // crossing bounds. The bounds are not necessarily tight (the scan line ++ // at minY, for example, might have no crossings). The x bounds will ++ // be accumulated as crossings are computed. ++ private int minY, maxY; ++ private int nextY; ++ ++ // indices into the segment pointer lists. They indicate the "active" ++ // sublist in the segment lists (the portion of the list that contains ++ // all the segments that cross the next scan line). ++ private int elo, ehi; ++ private final int[] edgePtrs; ++ private int qlo, qhi; ++ private final int[] quadPtrs; ++ private int clo, chi; ++ private final int[] curvePtrs; ++ ++ private static final int INIT_CROSSINGS_SIZE = 10; ++ ++ private ScanlineIterator() { ++ crossings = new int[INIT_CROSSINGS_SIZE]; ++ ++ edgePtrs = new int[numEdges]; ++ Helpers.fillWithIdxes(edgePtrs, SIZEOF_EDGE); ++ qsort(edges, edgePtrs, YMIN, 0, numEdges - 1); ++ ++ quadPtrs = new int[numQuads]; ++ Helpers.fillWithIdxes(quadPtrs, SIZEOF_QUAD); ++ qsort(quads, quadPtrs, YMIN, 0, numQuads - 1); ++ ++ curvePtrs = new int[numCurves]; ++ Helpers.fillWithIdxes(curvePtrs, SIZEOF_CURVE); ++ qsort(curves, curvePtrs, YMIN, 0, numCurves - 1); ++ ++ // We don't care if we clip some of the line off with ceil, since ++ // no scan line crossings will be eliminated (in fact, the ceil is ++ // the y of the first scan line crossing). ++ nextY = minY = Math.max(boundsMinY, (int)Math.ceil(edgeMinY)); ++ maxY = Math.min(boundsMaxY, (int)Math.ceil(edgeMaxY)); ++ ++ for (elo = 0; elo < numEdges && edges[edgePtrs[elo]+YMAX] <= minY; elo++) ++ ; ++ // the active list is *edgePtrs[lo] (inclusive) *edgePtrs[hi] (exclusive) ++ for (ehi = elo; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= minY; ehi++) ++ edgeSetCurY(edgePtrs[ehi], minY);// TODO: make minY a float to avoid casts ++ ++ for (qlo = 0; qlo < numQuads && quads[quadPtrs[qlo]+YMAX] <= minY; qlo++) ++ ; ++ for (qhi = qlo; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= minY; qhi++) ++ quadSetCurY(quadPtrs[qhi], minY); ++ ++ for (clo = 0; clo < numCurves && curves[curvePtrs[clo]+YMAX] <= minY; clo++) ++ ; ++ for (chi = clo; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= minY; chi++) ++ curveSetCurY(curvePtrs[chi], minY); ++ } ++ ++ private int next() { ++ // we go through the active lists and remove segments that don't cross ++ // the nextY scanline. ++ int crossingIdx = 0; ++ for (int i = elo; i < ehi; i++) { ++ if (edges[edgePtrs[i]+YMAX] <= nextY) { ++ edgePtrs[i] = edgePtrs[elo++]; ++ } ++ } ++ for (int i = qlo; i < qhi; i++) { ++ if (quads[quadPtrs[i]+YMAX] <= nextY) { ++ quadPtrs[i] = quadPtrs[qlo++]; ++ } ++ } ++ for (int i = clo; i < chi; i++) { ++ if (curves[curvePtrs[i]+YMAX] <= nextY) { ++ curvePtrs[i] = curvePtrs[clo++]; ++ } ++ } + +- // Current drawing position, i.e., final point of last segment +- private int x0, y0; ++ crossings = Helpers.widenArray(crossings, 0, ehi-elo+qhi-qlo+chi-clo); + +- // Position of most recent 'moveTo' command +- private int sx0, sy0; ++ // Now every edge between lo and hi crosses nextY. Compute it's ++ // crossing and put it in the crossings array. ++ for (int i = elo; i < ehi; i++) { ++ int ptr = edgePtrs[i]; ++ addCrossing(nextY, (int)edges[ptr+CURX], edges[ptr+OR], crossingIdx); ++ edgeGoToNextY(ptr); ++ crossingIdx++; ++ } ++ for (int i = qlo; i < qhi; i++) { ++ int ptr = quadPtrs[i]; ++ addCrossing(nextY, (int)quads[ptr+CURX], quads[ptr+OR], crossingIdx); ++ quadGoToNextY(ptr); ++ crossingIdx++; ++ } ++ for (int i = clo; i < chi; i++) { ++ int ptr = curvePtrs[i]; ++ addCrossing(nextY, (int)curves[ptr+CURX], curves[ptr+OR], crossingIdx); ++ curveGoToNextY(ptr); ++ crossingIdx++; ++ } + +- // Buffer to be filled with one row's worth of alpha values +- private byte[] rowAA; // needs to be short if 16x16 subsampling ++ nextY++; ++ // Expand active lists to include new edges. ++ for (; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= nextY; ehi++) { ++ edgeSetCurY(edgePtrs[ehi], nextY); ++ } ++ for (; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= nextY; qhi++) { ++ quadSetCurY(quadPtrs[qhi], nextY); ++ } ++ for (; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= nextY; chi++) { ++ curveSetCurY(curvePtrs[chi], nextY); ++ } ++ Arrays.sort(crossings, 0, crossingIdx); ++ return crossingIdx; ++ } + +- // Track the number of vertical extrema of the incoming edge list +- // in order to determine the maximum number of crossings of a +- // scanline +- private int firstOrientation; +- private int lastOrientation; +- private int flips; ++ private boolean hasNext() { ++ return nextY < maxY; ++ } + +- // Parameters for emitRow +- private int alphaWidth; ++ private int curY() { ++ return nextY - 1; ++ } + +- public Renderer() { ++ private void addCrossing(int y, int x, float or, int idx) { ++ x <<= 1; ++ crossings[idx] = ((or > 0) ? (x | 0x1) : x); ++ } + } +- +- public void setAntialiasing(int subpixelLgPositionsX, +- int subpixelLgPositionsY) { +- this.SUBPIXEL_LG_POSITIONS_X = subpixelLgPositionsX; +- this.SUBPIXEL_LG_POSITIONS_Y = subpixelLgPositionsY; +- +- this.SUBPIXEL_MASK_X = +- (1 << (SUBPIXEL_LG_POSITIONS_X)) - 1; +- this.SUBPIXEL_MASK_Y = +- (1 << (SUBPIXEL_LG_POSITIONS_Y)) - 1; +- this.SUBPIXEL_POSITIONS_X = +- 1 << (SUBPIXEL_LG_POSITIONS_X); +- this.SUBPIXEL_POSITIONS_Y = +- 1 << (SUBPIXEL_LG_POSITIONS_Y); +- this.MAX_AA_ALPHA = +- (SUBPIXEL_POSITIONS_X*SUBPIXEL_POSITIONS_Y); +- this.MAX_AA_ALPHA_DENOM = 255*MAX_AA_ALPHA; +- this.HALF_MAX_AA_ALPHA_DENOM = MAX_AA_ALPHA_DENOM/2; +- this.XSHIFT = 16 - SUBPIXEL_LG_POSITIONS_X; +- this.YSHIFT = 16 - SUBPIXEL_LG_POSITIONS_Y; +- this.YSTEP = 1 << YSHIFT; +- this.HYSTEP = 1 << (YSHIFT - 1); +- this.YMASK = ~(YSTEP - 1); +- } +- +- public int getSubpixelLgPositionsX() { +- return SUBPIXEL_LG_POSITIONS_X; ++ // quicksort implementation for sorting the edge indices ("pointers") ++ // by increasing y0. first, last are indices into the "pointer" array ++ // It sorts the pointer array from first (inclusive) to last (inclusive) ++ private static void qsort(final float[] data, final int[] ptrs, ++ final int fieldForCmp, int first, int last) ++ { ++ if (last > first) { ++ int p = partition(data, ptrs, fieldForCmp, first, last); ++ if (first < p - 1) { ++ qsort(data, ptrs, fieldForCmp, first, p - 1); ++ } ++ if (p < last) { ++ qsort(data, ptrs, fieldForCmp, p, last); ++ } ++ } + } + +- public int getSubpixelLgPositionsY() { +- return SUBPIXEL_LG_POSITIONS_Y; ++ // i, j are indices into edgePtrs. ++ private static int partition(final float[] data, final int[] ptrs, ++ final int fieldForCmp, int i, int j) ++ { ++ int pivotValFieldForCmp = ptrs[i]+fieldForCmp; ++ while (i <= j) { ++ // edges[edgePtrs[i]+1] is equivalent to (*(edgePtrs[i])).y0 in C ++ while (data[ptrs[i]+fieldForCmp] < data[pivotValFieldForCmp]) ++ i++; ++ while (data[ptrs[j]+fieldForCmp] > data[pivotValFieldForCmp]) ++ j--; ++ if (i <= j) { ++ int tmp = ptrs[i]; ++ ptrs[i] = ptrs[j]; ++ ptrs[j] = tmp; ++ i++; ++ j--; ++ } ++ } ++ return i; + } ++//============================================================================ + +- public void setWindingRule(int windingRule) { +- this.windingRule = windingRule; +- } + +- public int getWindingRule() { +- return windingRule; ++////////////////////////////////////////////////////////////////////////////// ++// EDGE LIST ++////////////////////////////////////////////////////////////////////////////// ++// TODO(maybe): very tempting to use fixed point here. A lot of opportunities ++// for shifts and just removing certain operations altogether. ++// TODO: it might be worth it to make an EdgeList class. It would probably ++// clean things up a bit and not impact performance much. ++ ++ // common to all types of input path segments. ++ private static final int YMIN = 0; ++ private static final int YMAX = 1; ++ private static final int CURX = 2; ++ // this and OR are meant to be indeces into "int" fields, but arrays must ++ // be homogenous, so every field is a float. However floats can represent ++ // exactly up to 26 bit ints, so we're ok. ++ private static final int CURY = 3; ++ private static final int OR = 4; ++ ++ // for straight lines only: ++ private static final int SLOPE = 5; ++ ++ // for quads and cubics: ++ private static final int X0 = 5; ++ private static final int Y0 = 6; ++ private static final int XL = 7; ++ private static final int COUNT = 8; ++ private static final int CURSLOPE = 9; ++ private static final int DX = 10; ++ private static final int DY = 11; ++ private static final int DDX = 12; ++ private static final int DDY = 13; ++ ++ // for cubics only ++ private static final int DDDX = 14; ++ private static final int DDDY = 15; ++ ++ private float edgeMinY = Float.POSITIVE_INFINITY; ++ private float edgeMaxY = Float.NEGATIVE_INFINITY; ++ private float edgeMinX = Float.POSITIVE_INFINITY; ++ private float edgeMaxX = Float.NEGATIVE_INFINITY; ++ ++ private static final int SIZEOF_EDGE = 6; ++ private float[] edges = null; ++ private int numEdges; ++ // these are static because we need them to be usable from ScanlineIterator ++ private void edgeSetCurY(final int idx, int y) { ++ edges[idx+CURX] += (y - edges[idx+CURY]) * edges[idx+SLOPE]; ++ edges[idx+CURY] = y; ++ } ++ private void edgeGoToNextY(final int idx) { ++ edges[idx+CURY] += 1; ++ edges[idx+CURX] += edges[idx+SLOPE]; ++ } ++ ++ ++ private static final int SIZEOF_QUAD = 14; ++ private float[] quads = null; ++ private int numQuads; ++ // This function should be called exactly once, to set the first scanline ++ // of the curve. Before it is called, the curve should think its first ++ // scanline is CEIL(YMIN). ++ private void quadSetCurY(final int idx, final int y) { ++ assert y < quads[idx+YMAX]; ++ assert (quads[idx+CURY] > y); ++ assert (quads[idx+CURY] == Math.ceil(quads[idx+CURY])); ++ ++ while (quads[idx+CURY] < ((float)y)) { ++ quadGoToNextY(idx); ++ } ++ } ++ private void quadGoToNextY(final int idx) { ++ quads[idx+CURY] += 1; ++ // this will get overriden if the while executes. ++ quads[idx+CURX] += quads[idx+CURSLOPE]; ++ int count = (int)quads[idx+COUNT]; ++ // this loop should never execute more than once because our ++ // curve is monotonic in Y. Still we put it in because you can ++ // never be too sure when dealing with floating point. ++ while(quads[idx+CURY] >= quads[idx+Y0] && count > 0) { ++ float x0 = quads[idx+X0], y0 = quads[idx+Y0]; ++ count = executeQuadAFDIteration(idx); ++ float x1 = quads[idx+X0], y1 = quads[idx+Y0]; ++ // our quads are monotonic, so this shouldn't happen, but ++ // it is conceivable that for very flat quads with different ++ // y values at their endpoints AFD might give us a horizontal ++ // segment. ++ if (y1 == y0) { ++ continue; ++ } ++ quads[idx+CURSLOPE] = (x1 - x0) / (y1 - y0); ++ quads[idx+CURX] = x0 + (quads[idx+CURY] - y0) * quads[idx+CURSLOPE]; ++ } + } + +- public void beginRendering(int boundsX, int boundsY, +- int boundsWidth, int boundsHeight) { +- lastOrientation = 0; +- flips = 0; +- +- resetEdges(); +- +- this.boundsMinX = boundsX << 16; +- this.boundsMinY = boundsY << 16; +- this.boundsMaxX = (boundsX + boundsWidth) << 16; +- this.boundsMaxY = (boundsY + boundsHeight) << 16; + +- this.bboxX0 = boundsX; +- this.bboxY0 = boundsY; +- this.bboxX1 = boundsX + boundsWidth; +- this.bboxY1 = boundsY + boundsHeight; +- } +- +- public void moveTo(int x0, int y0) { +- // System.out.println("Renderer: moveTo " + x0/65536.0 + " " + y0/65536.0); +- close(); +- this.sx0 = this.x0 = x0; +- this.sy0 = this.y0 = y0; +- this.lastOrientation = 0; +- } +- +- public void lineJoin() { +- // System.out.println("Renderer: lineJoin"); +- // do nothing ++ private static final int SIZEOF_CURVE = 16; ++ private float[] curves = null; ++ private int numCurves; ++ private void curveSetCurY(final int idx, final int y) { ++ assert y < curves[idx+YMAX]; ++ assert (curves[idx+CURY] > y); ++ assert (curves[idx+CURY] == Math.ceil(curves[idx+CURY])); ++ ++ while (curves[idx+CURY] < ((float)y)) { ++ curveGoToNextY(idx); ++ } ++ } ++ private void curveGoToNextY(final int idx) { ++ curves[idx+CURY] += 1; ++ // this will get overriden if the while executes. ++ curves[idx+CURX] += curves[idx+CURSLOPE]; ++ int count = (int)curves[idx+COUNT]; ++ // this loop should never execute more than once because our ++ // curve is monotonic in Y. Still we put it in because you can ++ // never be too sure when dealing with floating point. ++ while(curves[idx+CURY] >= curves[idx+Y0] && count > 0) { ++ float x0 = curves[idx+X0], y0 = curves[idx+Y0]; ++ count = executeCurveAFDIteration(idx); ++ float x1 = curves[idx+X0], y1 = curves[idx+Y0]; ++ // our curves are monotonic, so this shouldn't happen, but ++ // it is conceivable that for very flat curves with different ++ // y values at their endpoints AFD might give us a horizontal ++ // segment. ++ if (y1 == y0) { ++ continue; ++ } ++ curves[idx+CURSLOPE] = (x1 - x0) / (y1 - y0); ++ curves[idx+CURX] = x0 + (curves[idx+CURY] - y0) * curves[idx+CURSLOPE]; ++ } + } + +- public void lineTo(int x1, int y1) { +- // System.out.println("Renderer: lineTo " + x1/65536.0 + " " + y1/65536.0); + +- // Ignore horizontal lines +- // Next line will count flip +- if (y0 == y1) { +- this.x0 = x1; +- return; ++ private static final float DEC_BND = 20f; ++ private static final float INC_BND = 8f; ++ // Flattens using adaptive forward differencing. This only carries out ++ // one iteration of the AFD loop. All it does is update AFD variables (i.e. ++ // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings). ++ private int executeQuadAFDIteration(int idx) { ++ int count = (int)quads[idx+COUNT]; ++ float ddx = quads[idx+DDX]; ++ float ddy = quads[idx+DDY]; ++ float dx = quads[idx+DX]; ++ float dy = quads[idx+DY]; ++ ++ while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) { ++ ddx = ddx / 4; ++ ddy = ddy / 4; ++ dx = (dx - ddx) / 2; ++ dy = (dy - ddy) / 2; ++ count <<= 1; ++ } ++ // can only do this on even "count" values, because we must divide count by 2 ++ while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) { ++ dx = 2 * dx + ddx; ++ dy = 2 * dy + ddy; ++ ddx = 4 * ddx; ++ ddy = 4 * ddy; ++ count >>= 1; ++ } ++ count--; ++ if (count > 0) { ++ quads[idx+X0] += dx; ++ dx += ddx; ++ quads[idx+Y0] += dy; ++ dy += ddy; ++ } else { ++ quads[idx+X0] = quads[idx+XL]; ++ quads[idx+Y0] = quads[idx+YMAX]; + } +- +- int orientation = (y0 < y1) ? 1 : -1; +- if (lastOrientation == 0) { +- firstOrientation = orientation; +- } else if (orientation != lastOrientation) { +- ++flips; ++ quads[idx+COUNT] = count; ++ quads[idx+DDX] = ddx; ++ quads[idx+DDY] = ddy; ++ quads[idx+DX] = dx; ++ quads[idx+DY] = dy; ++ return count; ++ } ++ private int executeCurveAFDIteration(int idx) { ++ int count = (int)curves[idx+COUNT]; ++ float ddx = curves[idx+DDX]; ++ float ddy = curves[idx+DDY]; ++ float dx = curves[idx+DX]; ++ float dy = curves[idx+DY]; ++ float dddx = curves[idx+DDDX]; ++ float dddy = curves[idx+DDDY]; ++ ++ while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) { ++ dddx /= 8; ++ dddy /= 8; ++ ddx = ddx/4 - dddx; ++ ddy = ddy/4 - dddy; ++ dx = (dx - ddx) / 2; ++ dy = (dy - ddy) / 2; ++ count <<= 1; ++ } ++ // can only do this on even "count" values, because we must divide count by 2 ++ while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) { ++ dx = 2 * dx + ddx; ++ dy = 2 * dy + ddy; ++ ddx = 4 * (ddx + dddx); ++ ddy = 4 * (ddy + dddy); ++ dddx = 8 * dddx; ++ dddy = 8 * dddy; ++ count >>= 1; ++ } ++ count--; ++ if (count > 0) { ++ curves[idx+X0] += dx; ++ dx += ddx; ++ ddx += dddx; ++ curves[idx+Y0] += dy; ++ dy += ddy; ++ ddy += dddy; ++ } else { ++ curves[idx+X0] = curves[idx+XL]; ++ curves[idx+Y0] = curves[idx+YMAX]; ++ } ++ curves[idx+COUNT] = count; ++ curves[idx+DDDX] = dddx; ++ curves[idx+DDDY] = dddy; ++ curves[idx+DDX] = ddx; ++ curves[idx+DDY] = ddy; ++ curves[idx+DX] = dx; ++ curves[idx+DY] = dy; ++ return count; ++ } ++ ++ ++ private void initLine(final int idx, float[] pts, int or) { ++ edges[idx+SLOPE] = (pts[2] - pts[0]) / (pts[3] - pts[1]); ++ edges[idx+CURX] = pts[0] + (edges[idx+CURY] - pts[1]) * edges[idx+SLOPE]; ++ } ++ ++ private void initQuad(final int idx, float[] points, int or) { ++ final int countlg = 3; ++ final int count = 1 << countlg; ++ ++ // the dx and dy refer to forward differencing variables, not the last ++ // coefficients of the "points" polynomial ++ final float ddx, ddy, dx, dy; ++ c.set(points, 6); ++ ++ ddx = c.dbx / (1 << (2 * countlg)); ++ ddy = c.dby / (1 << (2 * countlg)); ++ dx = c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg); ++ dy = c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg); ++ ++ quads[idx+DDX] = ddx; ++ quads[idx+DDY] = ddy; ++ quads[idx+DX] = dx; ++ quads[idx+DY] = dy; ++ quads[idx+COUNT] = count; ++ quads[idx+XL] = points[4]; ++ quads[idx+X0] = points[0]; ++ quads[idx+Y0] = points[1]; ++ executeQuadAFDIteration(idx); ++ float x1 = quads[idx+X0], y1 = quads[idx+Y0]; ++ quads[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]); ++ quads[idx+CURX] = points[0] + (quads[idx+CURY] - points[1])*quads[idx+CURSLOPE]; ++ } ++ ++ private void initCurve(final int idx, float[] points, int or) { ++ final int countlg = 3; ++ final int count = 1 << countlg; ++ ++ // the dx and dy refer to forward differencing variables, not the last ++ // coefficients of the "points" polynomial ++ final float dddx, dddy, ddx, ddy, dx, dy; ++ c.set(points, 8); ++ dddx = 2f * c.dax / (1 << (3 * countlg)); ++ dddy = 2f * c.day / (1 << (3 * countlg)); ++ ++ ddx = dddx + c.dbx / (1 << (2 * countlg)); ++ ddy = dddy + c.dby / (1 << (2 * countlg)); ++ dx = c.ax / (1 << (3 * countlg)) + c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg); ++ dy = c.ay / (1 << (3 * countlg)) + c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg); ++ ++ curves[idx+DDDX] = dddx; ++ curves[idx+DDDY] = dddy; ++ curves[idx+DDX] = ddx; ++ curves[idx+DDY] = ddy; ++ curves[idx+DX] = dx; ++ curves[idx+DY] = dy; ++ curves[idx+COUNT] = count; ++ curves[idx+XL] = points[6]; ++ curves[idx+X0] = points[0]; ++ curves[idx+Y0] = points[1]; ++ executeCurveAFDIteration(idx); ++ float x1 = curves[idx+X0], y1 = curves[idx+Y0]; ++ curves[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]); ++ curves[idx+CURX] = points[0] + (curves[idx+CURY] - points[1])*curves[idx+CURSLOPE]; ++ } ++ ++ private void addPathSegment(float[] pts, final int type, final int or) { ++ int idx; ++ float[] addTo; ++ switch (type) { ++ case 4: ++ idx = numEdges * SIZEOF_EDGE; ++ addTo = edges = Helpers.widenArray(edges, numEdges*SIZEOF_EDGE, SIZEOF_EDGE); ++ numEdges++; ++ break; ++ case 6: ++ idx = numQuads * SIZEOF_QUAD; ++ addTo = quads = Helpers.widenArray(quads, numQuads*SIZEOF_QUAD, SIZEOF_QUAD); ++ numQuads++; ++ break; ++ case 8: ++ idx = numCurves * SIZEOF_CURVE; ++ addTo = curves = Helpers.widenArray(curves, numCurves*SIZEOF_CURVE, SIZEOF_CURVE); ++ numCurves++; ++ break; ++ default: ++ throw new InternalError(); ++ } ++ // set the common fields, except CURX, for which we must know the kind ++ // of curve. NOTE: this must be done before the type specific fields ++ // are initialized, because those depend on the common ones. ++ addTo[idx+YMIN] = pts[1]; ++ addTo[idx+YMAX] = pts[type-1]; ++ addTo[idx+OR] = or; ++ addTo[idx+CURY] = (float)Math.ceil(pts[1]); ++ switch (type) { ++ case 4: ++ initLine(idx, pts, or); ++ break; ++ case 6: ++ initQuad(idx, pts, or); ++ break; ++ case 8: ++ initCurve(idx, pts, or); ++ break; ++ default: ++ throw new InternalError(); ++ } ++ } ++ ++ // precondition: the curve in pts must be monotonic and increasing in y. ++ private void somethingTo(float[] pts, final int type, final int or) { ++ // NOTE: it's very important that we check for or >= 0 below (as ++ // opposed to or == 1, or or > 0, or anything else). That's ++ // because if we check for or==1, when the curve being added ++ // is a horizontal line, or will be 0 so or==1 will be false and ++ // x0 and y0 will be updated to pts[0] and pts[1] instead of pts[type-2] ++ // and pts[type-1], which is the correct thing to do. ++ this.x0 = or >= 0 ? pts[type - 2] : pts[0]; ++ this.y0 = or >= 0 ? pts[type - 1] : pts[1]; ++ ++ float minY = pts[1], maxY = pts[type - 1]; ++ if (Math.ceil(minY) >= Math.ceil(maxY) || ++ Math.ceil(minY) >= boundsMaxY || maxY < boundsMinY) ++ { ++ return; + } +- lastOrientation = orientation; + +- // Bias Y by 1 ULP so endpoints never lie on a scanline +- addEdge(x0, y0 | 0x1, x1, y1 | 0x1); ++ if (minY < edgeMinY) { edgeMinY = minY; } ++ if (maxY > edgeMaxY) { edgeMaxY = maxY; } + +- this.x0 = x1; +- this.y0 = y1; ++ int minXidx = (pts[0] < pts[type-2] ? 0 : type - 2); ++ float minX = pts[minXidx]; ++ float maxX = pts[type - 2 - minXidx]; ++ if (minX < edgeMinX) { edgeMinX = minX; } ++ if (maxX > edgeMaxX) { edgeMaxX = maxX; } ++ addPathSegment(pts, type, or); + } + +- public void close() { +- // System.out.println("Renderer: close"); +- +- int orientation = lastOrientation; +- if (y0 != sy0) { +- orientation = (y0 < sy0) ? 1 : -1; +- } +- if (orientation != firstOrientation) { +- ++flips; +- } +- lineTo(sx0, sy0); +- } ++// END EDGE LIST ++////////////////////////////////////////////////////////////////////////////// + +- public void end() { +- close(); +- // System.out.println("Renderer: end"); +- // do nothing +- } + +- // Scan convert a single edge +- private void computeCrossingsForEdge(int index, +- int boundsMinY, int boundsMaxY) { +- int iy0 = edges[index + 1]; +- int iy1 = edges[index + 3]; ++ public static final int WIND_EVEN_ODD = 0; ++ public static final int WIND_NON_ZERO = 1; + +- // Clip to valid Y range +- int clipy0 = (iy0 > boundsMinY) ? iy0 : boundsMinY; +- int clipy1 = (iy1 < boundsMaxY) ? iy1 : boundsMaxY; ++ // Antialiasing ++ final private int SUBPIXEL_LG_POSITIONS_X; ++ final private int SUBPIXEL_LG_POSITIONS_Y; ++ final private int SUBPIXEL_POSITIONS_X; ++ final private int SUBPIXEL_POSITIONS_Y; ++ final private int SUBPIXEL_MASK_X; ++ final private int SUBPIXEL_MASK_Y; ++ final int MAX_AA_ALPHA; + +- int minY = ((clipy0 + HYSTEP) & YMASK) + HYSTEP; +- int maxY = ((clipy1 - HYSTEP) & YMASK) + HYSTEP; ++ // Cache to store RLE-encoded coverage mask of the current primitive ++ PiscesCache cache; + +- // IMPL_NOTE - If line falls outside the valid X range, could +- // draw a vertical line instead ++ // Bounds of the drawing region, at subpixel precision. ++ private final int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; + +- // Exit if no scanlines are crossed +- if (minY > maxY) { +- return; +- } ++ // Current winding rule ++ private final int windingRule; + +- // Scan convert line using a DDA approach ++ // Current drawing position, i.e., final point of last segment ++ private float x0, y0; + +- int ix0 = edges[index]; +- int ix1 = edges[index + 2]; +- long dx = ((long) ix1) - ix0; +- long dy = ((long) iy1) - iy0; +- +- // Compute first crossing point at y = minY +- int orientation = edges[index + 4]; +- int y = minY; +- long lx = (((long) y) - iy0)*dx/dy + ix0; +- addCrossing(y >> YSHIFT, (int)(lx >> XSHIFT), orientation); +- +- // Advance y to next scanline, exit if past endpoint +- y += YSTEP; +- if (y > maxY) { +- return; +- } ++ // Position of most recent 'moveTo' command ++ private float pix_sx0, pix_sy0; + +- // Compute xstep only if additional scanlines are crossed +- // For each scanline, add xstep to lx and YSTEP to y and +- // emit the new crossing +- long xstep = ((long)YSTEP*dx)/dy; +- for (; y <= maxY; y += YSTEP) { +- lx += xstep; +- addCrossing(y >> YSHIFT, (int)(lx >> XSHIFT), orientation); +- } +- } ++ public Renderer(int subpixelLgPositionsX, int subpixelLgPositionsY, ++ int pix_boundsX, int pix_boundsY, ++ int pix_boundsWidth, int pix_boundsHeight, ++ int windingRule) ++ { ++ this.SUBPIXEL_LG_POSITIONS_X = subpixelLgPositionsX; ++ this.SUBPIXEL_LG_POSITIONS_Y = subpixelLgPositionsY; ++ this.SUBPIXEL_MASK_X = (1 << (SUBPIXEL_LG_POSITIONS_X)) - 1; ++ this.SUBPIXEL_MASK_Y = (1 << (SUBPIXEL_LG_POSITIONS_Y)) - 1; ++ this.SUBPIXEL_POSITIONS_X = 1 << (SUBPIXEL_LG_POSITIONS_X); ++ this.SUBPIXEL_POSITIONS_Y = 1 << (SUBPIXEL_LG_POSITIONS_Y); ++ this.MAX_AA_ALPHA = (SUBPIXEL_POSITIONS_X * SUBPIXEL_POSITIONS_Y); + +- private void computeBounds() { +- rasterMinX = crossingMinX & ~SUBPIXEL_MASK_X; +- rasterMaxX = crossingMaxX | SUBPIXEL_MASK_X; +- rasterMinY = crossingMinY & ~SUBPIXEL_MASK_Y; +- rasterMaxY = crossingMaxY | SUBPIXEL_MASK_Y; +- +- // If nothing was drawn, we have: +- // minX = Integer.MAX_VALUE and maxX = Integer.MIN_VALUE +- // so nothing to render +- if (rasterMinX > rasterMaxX || rasterMinY > rasterMaxY) { +- rasterMinX = 0; +- rasterMaxX = -1; +- rasterMinY = 0; +- rasterMaxY = -1; +- return; +- } ++ this.windingRule = windingRule; + +- if (rasterMinX < boundsMinX >> XSHIFT) { +- rasterMinX = boundsMinX >> XSHIFT; +- } +- if (rasterMinY < boundsMinY >> YSHIFT) { +- rasterMinY = boundsMinY >> YSHIFT; +- } +- if (rasterMaxX > boundsMaxX >> XSHIFT) { +- rasterMaxX = boundsMaxX >> XSHIFT; +- } +- if (rasterMaxY > boundsMaxY >> YSHIFT) { +- rasterMaxY = boundsMaxY >> YSHIFT; +- } ++ this.boundsMinX = pix_boundsX * SUBPIXEL_POSITIONS_X; ++ this.boundsMinY = pix_boundsY * SUBPIXEL_POSITIONS_Y; ++ this.boundsMaxX = (pix_boundsX + pix_boundsWidth) * SUBPIXEL_POSITIONS_X; ++ this.boundsMaxY = (pix_boundsY + pix_boundsHeight) * SUBPIXEL_POSITIONS_Y; + } + +- private int clamp(int x, int min, int max) { +- if (x < min) { +- return min; +- } else if (x > max) { +- return max; +- } +- return x; ++ private float tosubpixx(float pix_x) { ++ return pix_x * SUBPIXEL_POSITIONS_X; ++ } ++ private float tosubpixy(float pix_y) { ++ return pix_y * SUBPIXEL_POSITIONS_Y; + } + +- private void _endRendering() { +- if (flips == 0) { +- bboxX0 = bboxY0 = 0; +- bboxX1 = bboxY1 = -1; +- return; +- } ++ public void moveTo(float pix_x0, float pix_y0) { ++ closePath(); ++ this.pix_sx0 = pix_x0; ++ this.pix_sy0 = pix_y0; ++ this.y0 = tosubpixy(pix_y0); ++ this.x0 = tosubpixx(pix_x0); ++ } + +- // Special case for filling a single rect with a flat, opaque color +- // REMIND: This special case was not originally written to fill a +- // cache object and called directly to a Blit - it needs some code +- // to fill the cache instead to be useful for this usage... +- if (false /* Does not work with cache (yet?) */ && +- edgeIdx == 10 && +- edges[0] == edges[2] && +- edges[1] == edges[6] && +- edges[3] == edges[8] && +- edges[5] == edges[7] && +- Math.abs(edges[0] - edges[5]) > MIN_QUAD_OPT_WIDTH) +- { ++ public void lineJoin() { /* do nothing */ } + +- int x0 = edges[0] >> XSHIFT; +- int y0 = edges[1] >> YSHIFT; +- int x1 = edges[5] >> XSHIFT; +- int y1 = edges[3] >> YSHIFT; +- +- if (x0 > x1) { +- int tmp = x0; +- x0 = x1; +- x1 = tmp; +- } +- if (y0 > y1) { +- int tmp = y0; +- y0 = y1; +- y1 = tmp; +- } +- +- int bMinX = this.boundsMinX >> XSHIFT; +- int bMinY = this.boundsMinY >> YSHIFT; +- int bMaxX = this.boundsMaxX >> XSHIFT; +- int bMaxY = this.boundsMaxY >> YSHIFT; +- +- // Clip to image bounds in supersampled coordinates +- x0 = clamp(x0, bMinX, bMaxX); +- x1 = clamp(x1, bMinX, bMaxX); +- y0 = clamp(y0, bMinY, bMaxY); +- y1 = clamp(y1, bMinY, bMaxY); +- +- /* +- * REMIND: Need to fill the cache here instead... +- Blit.fillRectSrcOver(this, +- imageData, imageType, +- imageOffset, +- imageScanlineStride, imagePixelStride, +- width, height, +- x0, y0, x1, y1, +- cred, cgreen, cblue); +- */ +- +- bboxX0 = x0 >> SUBPIXEL_LG_POSITIONS_X; +- bboxY0 = y0 >> SUBPIXEL_LG_POSITIONS_Y; +- bboxX1 = (x1 + SUBPIXEL_POSITIONS_X - 1) +- >> SUBPIXEL_LG_POSITIONS_X; +- bboxY1 = (y1 + SUBPIXEL_POSITIONS_Y - 1) +- >> SUBPIXEL_LG_POSITIONS_Y; ++ private final float[][] pts = new float[2][8]; ++ private final float[] ts = new float[4]; + +- return; ++ private static void invertPolyPoints(float[] pts, int off, int type) { ++ for (int i = off, j = off + type - 2; i < j; i += 2, j -= 2) { ++ float tmp = pts[i]; ++ pts[i] = pts[j]; ++ pts[j] = tmp; ++ tmp = pts[i+1]; ++ pts[i+1] = pts[j+1]; ++ pts[j+1] = tmp; + } ++ } + +- int minY = (edgeMinY > boundsMinY) ? edgeMinY : boundsMinY; +- int maxY = (edgeMaxY < boundsMaxY) ? edgeMaxY : boundsMaxY; +- +- // Check for empty intersection of primitive with the drawing area +- if (minY > maxY) { +- bboxX0 = bboxY0 = 0; +- bboxX1 = bboxY1 = -1; +- return; ++ // return orientation before making the curve upright. ++ private static int makeMonotonicCurveUpright(float[] pts, int off, int type) { ++ float y0 = pts[off + 1]; ++ float y1 = pts[off + type - 1]; ++ if (y0 > y1) { ++ invertPolyPoints(pts, off, type); ++ return -1; ++ } else if (y0 < y1) { ++ return 1; + } ++ return 0; ++ } + +- // Compute Y extent in subpixel coordinates +- int iminY = (minY >> YSHIFT) & ~SUBPIXEL_MASK_Y; +- int imaxY = (maxY >> YSHIFT) | SUBPIXEL_MASK_Y; +- int yextent = (imaxY - iminY) + 1; +- +- // Maximum number of crossings +- int size = flips*yextent; +- +- int bmax = (boundsMaxY >> YSHIFT) - 1; +- if (imaxY > bmax) { +- imaxY = bmax; +- } +- +- // Initialize X bounds, will be refined for each strip +- bboxX0 = Integer.MAX_VALUE; +- bboxX1 = Integer.MIN_VALUE; +- +- // Set Y bounds +- bboxY0 = iminY >> SUBPIXEL_LG_POSITIONS_Y; +- bboxY1 = (imaxY + SUBPIXEL_POSITIONS_Y - 1) >> SUBPIXEL_LG_POSITIONS_Y; +- +- // Compute number of rows that can be processing using +- // a crossings table no larger than DEFAULT_CROSSINGS_SIZE. +- // However, we must process at least one row, so we grow the table +- // temporarily if needed. This would require an object with a +- // huge number of flips. +- int rows = DEFAULT_CROSSINGS_SIZE/(flips*SUBPIXEL_POSITIONS_Y); +- rows = Math.min(rows, yextent); +- rows = Math.max(rows, 1); +- for (int i = iminY; i <= imaxY; i += rows*SUBPIXEL_POSITIONS_Y) { +- // Compute index of last scanline to be processed in this pass +- int last = Math.min(i + rows*SUBPIXEL_POSITIONS_Y - 1, imaxY); +- setCrossingsExtents(i, last, flips); +- +- int bminY = i << YSHIFT; +- int bmaxY = (last << YSHIFT) | ~YMASK; +- +- // Process edges from the edge list +- int maxIdx = edgeIdx; +- for (int index = 0; index < maxIdx; index += 5) { +- // Test y1 < min: +- // +- // If edge lies entirely above current strip, +- // discard it +- if (edges[index + 3] < bminY) { +- // Overwrite the edge with the last edge +- edgeIdx -= 5; +- int fidx = edgeIdx; +- int tidx = index; +- edges[tidx++] = edges[fidx++]; +- edges[tidx++] = edges[fidx++]; +- edges[tidx++] = edges[fidx++]; +- edges[tidx++] = edges[fidx++]; +- edges[tidx ] = edges[fidx ]; +- +- maxIdx -= 5; +- index -= 5; +- continue; +- } +- +- // Test y0 > max: +- // +- // If edge lies entirely below current strip, +- // skip it for now +- if (edges[index + 1] > bmaxY) { +- continue; +- } +- +- computeCrossingsForEdge(index, bminY, bmaxY); +- } ++ public void lineTo(float pix_x1, float pix_y1) { ++ pts[0][0] = x0; pts[0][1] = y0; ++ pts[0][2] = tosubpixx(pix_x1); pts[0][3] = tosubpixy(pix_y1); ++ int or = makeMonotonicCurveUpright(pts[0], 0, 4); ++ somethingTo(pts[0], 4, or); ++ } + +- computeBounds(); +- if (rasterMaxX < rasterMinX) { +- continue; +- } ++ Curve c = new Curve(); ++ private void curveOrQuadTo(int type) { ++ c.set(pts[0], type); ++ int numTs = c.dxRoots(ts, 0); ++ numTs += c.dyRoots(ts, numTs); ++ numTs = Helpers.filterOutNotInAB(ts, 0, numTs, 0, 1); ++ Helpers.isort(ts, 0, numTs); + +- bboxX0 = Math.min(bboxX0, +- rasterMinX >> SUBPIXEL_LG_POSITIONS_X); +- bboxX1 = Math.max(bboxX1, +- (rasterMaxX + SUBPIXEL_POSITIONS_X - 1) +- >> SUBPIXEL_LG_POSITIONS_X); +- renderStrip(); ++ Iterator it = Curve.breakPtsAtTs(pts, type, ts, numTs); ++ while(it.hasNext()) { ++ float[] curCurve = it.next(); ++ int or = makeMonotonicCurveUpright(curCurve, 0, type); ++ somethingTo(curCurve, type, or); + } ++ } + +- // Free up any unusually large scratchpad memory used by the +- // preceding primitive +- crossingListFinished(); ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ pts[0][0] = x0; pts[0][1] = y0; ++ pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1); ++ pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2); ++ pts[0][6] = tosubpixx(x3); pts[0][7] = tosubpixy(y3); ++ curveOrQuadTo(8); + } + +- public void endRendering() { +- // Set up the cache to accumulate the bounding box +- if (cache != null) { +- cache.bboxX0 = Integer.MAX_VALUE; +- cache.bboxY0 = Integer.MAX_VALUE; +- cache.bboxX1 = Integer.MIN_VALUE; +- cache.bboxY1 = Integer.MIN_VALUE; +- } ++ public void quadTo(float x1, float y1, float x2, float y2) { ++ pts[0][0] = x0; pts[0][1] = y0; ++ pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1); ++ pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2); ++ curveOrQuadTo(6); ++ } + +- _endRendering(); ++ public void closePath() { ++ // lineTo expects its input in pixel coordinates. ++ lineTo(pix_sx0, pix_sy0); + } + +- public void getBoundingBox(int[] bbox) { +- bbox[0] = bboxX0; +- bbox[1] = bboxY0; +- bbox[2] = bboxX1 - bboxX0; +- bbox[3] = bboxY1 - bboxY0; ++ public void pathDone() { ++ closePath(); + } + +- private void renderStrip() { +- // Grow rowAA according to the raster width +- int width = (rasterMaxX - rasterMinX + 1) >> SUBPIXEL_LG_POSITIONS_X; +- alphaWidth = width; + +- // Allocate one extra entry in rowAA to avoid a conditional in +- // the rendering loop +- int bufLen = width + 1; +- if (this.rowAA == null || this.rowAA.length < bufLen) { +- this.rowAA = new byte[bufLen]; +- } + ++ public long getNativeConsumer() { ++ throw new InternalError("Renderer does not use a native consumer."); ++ } ++ ++ private void _endRendering(final int pix_bboxx0, final int pix_bboxy0, ++ final int pix_bboxx1, final int pix_bboxy1) ++ { + // Mask to determine the relevant bit of the crossing sum + // 0x1 if EVEN_ODD, all bits if NON_ZERO + int mask = (windingRule == WIND_EVEN_ODD) ? 0x1 : ~0x0; + +- int y = 0; +- int prevY = rasterMinY - 1; ++ // add 1 to better deal with the last pixel in a pixel row. ++ int width = pix_bboxx1 - pix_bboxx0 + 1; ++ int[] alpha = new int[width+1]; ++ ++ int bboxx0 = pix_bboxx0 << SUBPIXEL_LG_POSITIONS_X; ++ int bboxx1 = pix_bboxx1 << SUBPIXEL_LG_POSITIONS_X; ++ ++ // Now we iterate through the scanlines. We must tell emitRow the coord ++ // of the first non-transparent pixel, so we must keep accumulators for ++ // the first and last pixels of the section of the current pixel row ++ // that we will emit. ++ // We also need to accumulate pix_bbox*, but the iterator does it ++ // for us. We will just get the values from it once this loop is done ++ int pix_maxX = Integer.MIN_VALUE; ++ int pix_minX = Integer.MAX_VALUE; ++ ++ int y = boundsMinY; // needs to be declared here so we emit the last row properly. ++ ScanlineIterator it = this.new ScanlineIterator(); ++ for ( ; it.hasNext(); ) { ++ int numCrossings = it.next(); ++ int[] crossings = it.crossings; ++ y = it.curY(); ++ ++ if (numCrossings > 0) { ++ int lowx = crossings[0] >> 1; ++ int highx = crossings[numCrossings - 1] >> 1; ++ int x0 = Math.max(lowx, bboxx0); ++ int x1 = Math.min(highx, bboxx1); + +- int minX = Integer.MAX_VALUE; +- int maxX = Integer.MIN_VALUE; +- +- iterateCrossings(); +- while (hasMoreCrossingRows()) { +- y = crossingY; +- +- // Emit any skipped rows +- for (int j = prevY + 1; j < y; j++) { +- if (((j & SUBPIXEL_MASK_Y) == SUBPIXEL_MASK_Y) || +- (j == rasterMaxY)) { +- emitRow(j >> SUBPIXEL_LG_POSITIONS_Y, 0, -1); +- } +- } +- prevY = y; +- +- if (crossingRowIndex < crossingRowCount) { +- int lx = crossings[crossingRowOffset + crossingRowIndex]; +- lx >>= 1; +- int hx = crossings[crossingRowOffset + crossingRowCount - 1]; +- hx >>= 1; +- int x0 = lx > rasterMinX ? lx : rasterMinX; +- int x1 = hx < rasterMaxX ? hx : rasterMaxX; +- x0 -= rasterMinX; +- x1 -= rasterMinX; +- +- minX = Math.min(minX, x0 >> SUBPIXEL_LG_POSITIONS_X); +- maxX = Math.max(maxX, x1 >> SUBPIXEL_LG_POSITIONS_X); ++ pix_minX = Math.min(pix_minX, x0 >> SUBPIXEL_LG_POSITIONS_X); ++ pix_maxX = Math.max(pix_maxX, x1 >> SUBPIXEL_LG_POSITIONS_X); + } + + int sum = 0; +- int prev = rasterMinX; +- while (crossingRowIndex < crossingRowCount) { +- int crxo = crossings[crossingRowOffset + crossingRowIndex]; +- crossingRowIndex++; ++ int prev = bboxx0; ++ for (int i = 0; i < numCrossings; i++) { ++ int curxo = crossings[i]; ++ int curx = curxo >> 1; ++ int crorientation = ((curxo & 0x1) == 0x1) ? 1 : -1; ++ if ((sum & mask) != 0) { ++ int x0 = Math.max(prev, bboxx0); ++ int x1 = Math.min(curx, bboxx1); ++ if (x0 < x1) { ++ x0 -= bboxx0; // turn x0, x1 from coords to indeces ++ x1 -= bboxx0; // in the alpha array. + +- int crx = crxo >> 1; +- int crorientation = ((crxo & 0x1) == 0x1) ? 1 : -1; ++ int pix_x = x0 >> SUBPIXEL_LG_POSITIONS_X; ++ int pix_xmaxm1 = (x1 - 1) >> SUBPIXEL_LG_POSITIONS_X; + +- if ((sum & mask) != 0) { +- // Clip to active X range, if x1 < x0 loop will +- // have no effect +- int x0 = prev > rasterMinX ? prev : rasterMinX; +- int x1 = crx < rasterMaxX ? crx : rasterMaxX; +- +- // Empty spans +- if (x1 > x0) { +- x0 -= rasterMinX; +- x1 -= rasterMinX; +- +- // Accumulate alpha, equivalent to: +- // for (int x = x0; x < x1; x++) { +- // ++rowAA[x >> SUBPIXEL_LG_POSITIONS_X]; +- // } +- // +- // In the middle of the span, we can update a full +- // pixel at a time (i.e., SUBPIXEL_POSITIONS_X +- // subpixels) +- +- int x = x0 >> SUBPIXEL_LG_POSITIONS_X; +- int xmaxm1 = (x1 - 1) >> SUBPIXEL_LG_POSITIONS_X; +- if (x == xmaxm1) { ++ if (pix_x == pix_xmaxm1) { + // Start and end in same pixel +- rowAA[x] += x1 - x0; ++ alpha[pix_x] += (x1 - x0); ++ alpha[pix_x+1] -= (x1 - x0); + } else { +- // Start and end in different pixels +- rowAA[x++] += SUBPIXEL_POSITIONS_X - +- (x0 & SUBPIXEL_MASK_X); +- int xmax = x1 >> SUBPIXEL_LG_POSITIONS_X; +- while (x < xmax) { +- rowAA[x++] += SUBPIXEL_POSITIONS_X; +- } +- // Note - at this point it is possible that +- // x == width, which implies that +- // x1 & SUBPIXEL_MASK_X == 0. We allocate +- // one extra entry in rowAA so this +- // assignment will be harmless. The alternative +- // is an extra conditional here, or some other +- // scheme to deal with the last pixel better. +- rowAA[x] += x1 & SUBPIXEL_MASK_X; ++ int pix_xmax = x1 >> SUBPIXEL_LG_POSITIONS_X; ++ alpha[pix_x] += SUBPIXEL_POSITIONS_X - (x0 & SUBPIXEL_MASK_X); ++ alpha[pix_x+1] += (x0 & SUBPIXEL_MASK_X); ++ alpha[pix_xmax] -= SUBPIXEL_POSITIONS_X - (x1 & SUBPIXEL_MASK_X); ++ alpha[pix_xmax+1] -= (x1 & SUBPIXEL_MASK_X); + } + } + } + sum += crorientation; +- prev = crx; ++ prev = curx; + } + +- // Every SUBPIXEL_POSITIONS rows, output an antialiased row +- if (((y & SUBPIXEL_MASK_Y) == SUBPIXEL_MASK_Y) || +- (y == rasterMaxY)) { +- emitRow(y >> SUBPIXEL_LG_POSITIONS_Y, minX, maxX); +- minX = Integer.MAX_VALUE; +- maxX = Integer.MIN_VALUE; ++ // even if this last row had no crossings, alpha will be zeroed ++ // from the last emitRow call. But this doesn't matter because ++ // maxX < minX, so no row will be emitted to the cache. ++ if ((y & SUBPIXEL_MASK_Y) == SUBPIXEL_MASK_Y) { ++ emitRow(alpha, y >> SUBPIXEL_LG_POSITIONS_Y, pix_minX, pix_maxX); ++ pix_minX = Integer.MAX_VALUE; ++ pix_maxX = Integer.MIN_VALUE; + } + } + + // Emit final row +- for (int j = prevY + 1; j <= rasterMaxY; j++) { +- if (((j & SUBPIXEL_MASK_Y) == SUBPIXEL_MASK_Y) || +- (j == rasterMaxY)) { +- emitRow(j >> SUBPIXEL_LG_POSITIONS_Y, minX, maxX); +- minX = Integer.MAX_VALUE; +- maxX = Integer.MIN_VALUE; +- } ++ if (pix_maxX >= pix_minX) { ++ emitRow(alpha, y >> SUBPIXEL_LG_POSITIONS_Y, pix_minX, pix_maxX); + } + } + +- private void clearAlpha(byte[] alpha, +- int width, +- int minX, int maxX) { +- if (maxX >= minX) { +- int w = maxX - minX + 1; +- if (w + minX > width) { +- w = width - minX; +- } ++ public void endRendering() { ++ final int bminx = boundsMinX >> SUBPIXEL_LG_POSITIONS_X; ++ final int bmaxx = boundsMaxX >> SUBPIXEL_LG_POSITIONS_X; ++ final int bminy = boundsMinY >> SUBPIXEL_LG_POSITIONS_Y; ++ final int bmaxy = boundsMaxY >> SUBPIXEL_LG_POSITIONS_Y; ++ final int eminx = ((int)Math.floor(edgeMinX)) >> SUBPIXEL_LG_POSITIONS_X; ++ final int emaxx = ((int)Math.ceil(edgeMaxX)) >> SUBPIXEL_LG_POSITIONS_X; ++ final int eminy = ((int)Math.floor(edgeMinY)) >> SUBPIXEL_LG_POSITIONS_Y; ++ final int emaxy = ((int)Math.ceil(edgeMaxY)) >> SUBPIXEL_LG_POSITIONS_Y; ++ ++ final int minX = Math.max(bminx, eminx); ++ final int maxX = Math.min(bmaxx, emaxx); ++ final int minY = Math.max(bminy, eminy); ++ final int maxY = Math.min(bmaxy, emaxy); ++ if (minX > maxX || minY > maxY) { ++ this.cache = new PiscesCache(bminx, bminy, bmaxx, bmaxy); ++ return; ++ } + +- int aidx = minX; +- for (int i = 0; i < w; i++, aidx++) { +- alpha[aidx] = (byte)0; +- } ++ this.cache = new PiscesCache(minX, minY, maxX, maxY); ++ _endRendering(minX, minY, maxX, maxY); ++ } ++ ++ public PiscesCache getCache() { ++ if (cache == null) { ++ throw new InternalError("cache not yet initialized"); + } ++ return cache; + } + +- private void emitRow(int y, int minX, int maxX) { ++ private void emitRow(int[] alphaRow, int pix_y, int pix_from, int pix_to) { + // Copy rowAA data into the cache if one is present + if (cache != null) { +- if (maxX >= minX) { +- int x0 = minX + (rasterMinX >> SUBPIXEL_LG_POSITIONS_X); +- int x1 = maxX + (rasterMinX >> SUBPIXEL_LG_POSITIONS_X); +- +- cache.startRow(y, x0, x1); +- int srcIdx = minX; +- +- // Perform run-length encoding +- // and store results in the cache +- byte startVal = rowAA[srcIdx++]; ++ if (pix_to >= pix_from) { ++ cache.startRow(pix_y, pix_from); ++ ++ // Perform run-length encoding and store results in the cache ++ int from = pix_from - cache.bboxX0; ++ int to = pix_to - cache.bboxX0; ++ + int runLen = 1; +- while (srcIdx <= maxX) { +- byte nextVal = rowAA[srcIdx++]; +- if (nextVal == startVal && runLen < 255) { +- ++runLen; ++ int startVal = alphaRow[from]; ++ for (int i = from + 1; i <= to; i++) { ++ int nextVal = startVal + alphaRow[i]; ++ if (nextVal == startVal) { ++ runLen++; + } else { + cache.addRLERun(startVal, runLen); +- + runLen = 1; + startVal = nextVal; + } + } + cache.addRLERun(startVal, runLen); +- cache.addRLERun((byte)0, 0); + } + } +- +- clearAlpha(rowAA, +- alphaWidth, +- minX, maxX); +- } +- +- public void setCache(PiscesCache cache) { +- this.cache = cache; +- } +- +- // Edge list data +- +- private int[] edges = new int[5*INITIAL_EDGES]; +- private int edgeIdx = 0; +- private int edgeMinY = Integer.MAX_VALUE; +- private int edgeMaxY = Integer.MIN_VALUE; +- +- private void addEdge(int x0, int y0, int x1, int y1) { +- int newLen = edgeIdx + 5; +- if (edges.length < newLen) { +- int[] tmp = new int[Math.max(11*edges.length/10, newLen)]; +- System.arraycopy(edges, 0, tmp, 0, edgeIdx); +- this.edges = tmp; +- } +- +- int orientation = 1; +- if (y0 > y1) { +- int tmp = y0; +- y0 = y1; +- y1 = tmp; +- +- orientation = -1; +- } +- +- // Skip edges that don't cross a subsampled scanline +- int eminY = ((y0 + HYSTEP) & YMASK); +- int emaxY = ((y1 - HYSTEP) & YMASK); +- if (eminY > emaxY) { +- return; +- } +- +- if (orientation == -1) { +- int tmp = x0; +- x0 = x1; +- x1 = tmp; +- } +- +- edges[edgeIdx++] = x0; +- edges[edgeIdx++] = y0; +- edges[edgeIdx++] = x1; +- edges[edgeIdx++] = y1; +- edges[edgeIdx++] = orientation; +- +- // Update Y bounds of primitive +- if (y0 < edgeMinY) { +- edgeMinY = y0; +- } +- if (y1 > edgeMaxY) { +- edgeMaxY = y1; +- } +- } +- +- private void resetEdges() { +- this.edgeIdx = 0; +- this.edgeMinY = Integer.MAX_VALUE; +- this.edgeMaxY = Integer.MIN_VALUE; +- } +- +- // Crossing list data +- +- private int[] crossingIndices; +- private int[] crossings; +- private int crossingMinY; +- private int crossingMaxY; +- private int crossingMinX = Integer.MAX_VALUE; +- private int crossingMaxX = Integer.MIN_VALUE; +- private int crossingMaxXEntries; +- private int numCrossings = 0; +- private boolean crossingsSorted = false; +- +- private int crossingY; +- private int crossingRowCount; +- private int crossingRowOffset; +- private int crossingRowIndex; +- +- private void setCrossingsExtents(int minY, int maxY, int maxXEntries) { +- int yextent = maxY - minY + 1; +- +- // Grow indices array as needed +- if (crossingIndices == null || crossingIndices.length < yextent) { +- this.crossingIndices = +- new int[Math.max(yextent, DEFAULT_INDICES_SIZE)]; +- } +- // Grow crossings array as needed +- if (crossings == null || crossings.length < yextent*maxXEntries) { +- this.crossings = new int[Math.max(yextent*maxXEntries, +- DEFAULT_CROSSINGS_SIZE)]; +- } +- this.crossingMinY = minY; +- this.crossingMaxY = maxY; +- this.crossingMaxXEntries = maxXEntries; +- resetCrossings(); +- } +- +- private void resetCrossings() { +- int yextent = crossingMaxY - crossingMinY + 1; +- int start = 0; +- for (int i = 0; i < yextent; i++) { +- crossingIndices[i] = start; +- start += crossingMaxXEntries; +- } +- crossingMinX = Integer.MAX_VALUE; +- crossingMaxX = Integer.MIN_VALUE; +- numCrossings = 0; +- crossingsSorted = false; +- } +- +- // Free sorting arrays if larger than maximum size +- private void crossingListFinished() { +- if (crossings != null && crossings.length > DEFAULT_CROSSINGS_SIZE) { +- crossings = new int[DEFAULT_CROSSINGS_SIZE]; +- } +- if (crossingIndices != null && crossingIndices.length > DEFAULT_INDICES_SIZE) { +- crossingIndices = new int[DEFAULT_INDICES_SIZE]; +- } +- } +- +- private void sortCrossings(int[] x, int off, int len) { +- for (int i = off + 1; i < off + len; i++) { +- int j = i; +- int xj = x[j]; +- int xjm1; +- +- while (j > off && (xjm1 = x[j - 1]) > xj) { +- x[j] = xjm1; +- x[j - 1] = xj; +- j--; +- } +- } +- } +- +- private void sortCrossings() { +- int start = 0; +- for (int i = 0; i <= crossingMaxY - crossingMinY; i++) { +- sortCrossings(crossings, start, crossingIndices[i] - start); +- start += crossingMaxXEntries; +- } +- } +- +- private void addCrossing(int y, int x, int orientation) { +- if (x < crossingMinX) { +- crossingMinX = x; +- } +- if (x > crossingMaxX) { +- crossingMaxX = x; +- } +- +- int index = crossingIndices[y - crossingMinY]++; +- x <<= 1; +- crossings[index] = (orientation == 1) ? (x | 0x1) : x; +- +- ++numCrossings; +- } +- +- private void iterateCrossings() { +- if (!crossingsSorted) { +- sortCrossings(); +- crossingsSorted = true; +- } +- crossingY = crossingMinY - 1; +- crossingRowOffset = -crossingMaxXEntries; +- } +- +- private boolean hasMoreCrossingRows() { +- if (++crossingY <= crossingMaxY) { +- crossingRowOffset += crossingMaxXEntries; +- int y = crossingY - crossingMinY; +- crossingRowCount = crossingIndices[y] - y*crossingMaxXEntries; +- crossingRowIndex = 0; +- return true; +- } else { +- return false; +- } ++ java.util.Arrays.fill(alphaRow, 0); + } + } +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Stroker.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Stroker.java 2010-12-09 14:26:24.650147824 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Stroker.java 2010-12-09 14:28:42.436147685 -0500 +@@ -1,12 +1,12 @@ + /* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this ++ * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. ++ * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +@@ -18,17 +18,25 @@ + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. + */ + + package sun.java2d.pisces; + +-public class Stroker extends LineSink { ++import java.util.Arrays; ++import java.util.Iterator; ++ ++import sun.awt.geom.PathConsumer2D; ++ ++// TODO: some of the arithmetic here is too verbose and prone to hard to ++// debug typos. We should consider making a small Point/Vector class that ++// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such ++public class Stroker implements PathConsumer2D { + + private static final int MOVE_TO = 0; +- private static final int LINE_TO = 1; ++ private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad + private static final int CLOSE = 2; + + /** +@@ -61,323 +69,107 @@ + */ + public static final int CAP_SQUARE = 2; + +- LineSink output; ++ private final PathConsumer2D out; + +- int lineWidth; +- int capStyle; +- int joinStyle; +- int miterLimit; +- +- Transform4 transform; +- int m00, m01; +- int m10, m11; +- +- int lineWidth2; +- long scaledLineWidth2; +- +- // For any pen offset (pen_dx, pen_dy) that does not depend on +- // the line orientation, the pen should be transformed so that: +- // +- // pen_dx' = m00*pen_dx + m01*pen_dy +- // pen_dy' = m10*pen_dx + m11*pen_dy +- // +- // For a round pen, this means: +- // +- // pen_dx(r, theta) = r*cos(theta) +- // pen_dy(r, theta) = r*sin(theta) +- // +- // pen_dx'(r, theta) = r*(m00*cos(theta) + m01*sin(theta)) +- // pen_dy'(r, theta) = r*(m10*cos(theta) + m11*sin(theta)) +- int numPenSegments; +- int[] pen_dx; +- int[] pen_dy; +- boolean[] penIncluded; +- int[] join; +- +- int[] offset = new int[2]; +- int[] reverse = new int[100]; +- int[] miter = new int[2]; +- long miterLimitSq; +- +- int prev; +- int rindex; +- boolean started; +- boolean lineToOrigin; +- boolean joinToOrigin; +- +- int sx0, sy0, sx1, sy1, x0, y0, x1, y1; +- int mx0, my0, mx1, my1, omx, omy; +- int lx0, ly0, lx1, ly1, lx0p, ly0p, px0, py0; +- +- double m00_2_m01_2; +- double m10_2_m11_2; +- double m00_m10_m01_m11; ++ private final int capStyle; ++ private final int joinStyle; + +- /** +- * Empty constructor. setOutput and +- * setParameters must be called prior to calling any +- * other methods. +- */ +- public Stroker() {} ++ private final float lineWidth2; ++ ++ private final float[][] offset = new float[3][2]; ++ private final float[] miter = new float[2]; ++ private final float miterLimitSq; ++ ++ private int prev; ++ ++ // The starting point of the path, and the slope there. ++ private float sx0, sy0, sdx, sdy; ++ // the current point and the slope there. ++ private float cx0, cy0, cdx, cdy; // c stands for current ++ // vectors that when added to (sx0,sy0) and (cx0,cy0) respectively yield the ++ // first and last points on the left parallel path. Since this path is ++ // parallel, it's slope at any point is parallel to the slope of the ++ // original path (thought they may have different directions), so these ++ // could be computed from sdx,sdy and cdx,cdy (and vice versa), but that ++ // would be error prone and hard to read, so we keep these anyway. ++ private float smx, smy, cmx, cmy; ++ ++ private final PolyStack reverse = new PolyStack(); + + /** + * Constructs a Stroker. + * +- * @param output an output LineSink. +- * @param lineWidth the desired line width in pixels, in S15.16 +- * format. ++ * @param pc2d an output PathConsumer2D. ++ * @param lineWidth the desired line width in pixels + * @param capStyle the desired end cap style, one of + * CAP_BUTT, CAP_ROUND or + * CAP_SQUARE. + * @param joinStyle the desired line join style, one of + * JOIN_MITER, JOIN_ROUND or + * JOIN_BEVEL. +- * @param miterLimit the desired miter limit, in S15.16 format. +- * @param transform a Transform4 object indicating +- * the transform that has been previously applied to all incoming +- * coordinates. This is required in order to produce consistently +- * shaped end caps and joins. ++ * @param miterLimit the desired miter limit + */ +- public Stroker(LineSink output, +- int lineWidth, ++ public Stroker(PathConsumer2D pc2d, ++ float lineWidth, + int capStyle, + int joinStyle, +- int miterLimit, +- Transform4 transform) { +- setOutput(output); +- setParameters(lineWidth, capStyle, joinStyle, miterLimit, transform); +- } +- +- /** +- * Sets the output LineSink of this +- * Stroker. +- * +- * @param output an output LineSink. +- */ +- public void setOutput(LineSink output) { +- this.output = output; +- } ++ float miterLimit) ++ { ++ this.out = pc2d; + +- /** +- * Sets the parameters of this Stroker. +- * @param lineWidth the desired line width in pixels, in S15.16 +- * format. +- * @param capStyle the desired end cap style, one of +- * CAP_BUTT, CAP_ROUND or +- * CAP_SQUARE. +- * @param joinStyle the desired line join style, one of +- * JOIN_MITER, JOIN_ROUND or +- * JOIN_BEVEL. +- * @param miterLimit the desired miter limit, in S15.16 format. +- * @param transform a Transform4 object indicating +- * the transform that has been previously applied to all incoming +- * coordinates. This is required in order to produce consistently +- * shaped end caps and joins. +- */ +- public void setParameters(int lineWidth, +- int capStyle, +- int joinStyle, +- int miterLimit, +- Transform4 transform) { +- this.lineWidth = lineWidth; +- this.lineWidth2 = lineWidth >> 1; +- this.scaledLineWidth2 = (long)transform.m00*lineWidth2; ++ this.lineWidth2 = lineWidth / 2; + this.capStyle = capStyle; + this.joinStyle = joinStyle; +- this.miterLimit = miterLimit; + +- this.transform = transform; +- this.m00 = transform.m00; +- this.m01 = transform.m01; +- this.m10 = transform.m10; +- this.m11 = transform.m11; +- +- this.m00_2_m01_2 = (double)m00*m00 + (double)m01*m01; +- this.m10_2_m11_2 = (double)m10*m10 + (double)m11*m11; +- this.m00_m10_m01_m11 = (double)m00*m10 + (double)m01*m11; +- +- double dm00 = m00/65536.0; +- double dm01 = m01/65536.0; +- double dm10 = m10/65536.0; +- double dm11 = m11/65536.0; +- double determinant = dm00*dm11 - dm01*dm10; +- +- if (joinStyle == JOIN_MITER) { +- double limit = +- (miterLimit/65536.0)*(lineWidth2/65536.0)*determinant; +- double limitSq = limit*limit; +- this.miterLimitSq = (long)(limitSq*65536.0*65536.0); +- } +- +- this.numPenSegments = (int)(3.14159f*lineWidth/65536.0f); +- if (pen_dx == null || pen_dx.length < numPenSegments) { +- this.pen_dx = new int[numPenSegments]; +- this.pen_dy = new int[numPenSegments]; +- this.penIncluded = new boolean[numPenSegments]; +- this.join = new int[2*numPenSegments]; +- } +- +- for (int i = 0; i < numPenSegments; i++) { +- double r = lineWidth/2.0; +- double theta = (double)i*2.0*Math.PI/numPenSegments; +- +- double cos = Math.cos(theta); +- double sin = Math.sin(theta); +- pen_dx[i] = (int)(r*(dm00*cos + dm01*sin)); +- pen_dy[i] = (int)(r*(dm10*cos + dm11*sin)); +- } +- +- prev = CLOSE; +- rindex = 0; +- started = false; +- lineToOrigin = false; +- } +- +- private void computeOffset(int x0, int y0, int x1, int y1, int[] m) { +- long lx = (long)x1 - (long)x0; +- long ly = (long)y1 - (long)y0; +- +- int dx, dy; +- if (m00 > 0 && m00 == m11 && m01 == 0 & m10 == 0) { +- long ilen = PiscesMath.hypot(lx, ly); +- if (ilen == 0) { +- dx = dy = 0; +- } else { +- dx = (int)( (ly*scaledLineWidth2)/ilen >> 16); +- dy = (int)(-(lx*scaledLineWidth2)/ilen >> 16); +- } +- } else { +- double dlx = x1 - x0; +- double dly = y1 - y0; +- double det = (double)m00*m11 - (double)m01*m10; +- int sdet = (det > 0) ? 1 : -1; +- double a = dly*m00 - dlx*m10; +- double b = dly*m01 - dlx*m11; +- double dh = PiscesMath.hypot(a, b); +- double div = sdet*lineWidth2/(65536.0*dh); +- double ddx = dly*m00_2_m01_2 - dlx*m00_m10_m01_m11; +- double ddy = dly*m00_m10_m01_m11 - dlx*m10_2_m11_2; +- dx = (int)(ddx*div); +- dy = (int)(ddy*div); +- } +- +- m[0] = dx; +- m[1] = dy; +- } +- +- private void ensureCapacity(int newrindex) { +- if (reverse.length < newrindex) { +- int[] tmp = new int[Math.max(newrindex, 6*reverse.length/5)]; +- System.arraycopy(reverse, 0, tmp, 0, rindex); +- this.reverse = tmp; +- } ++ float limit = miterLimit * lineWidth2; ++ this.miterLimitSq = limit*limit; ++ ++ this.prev = CLOSE; + } + +- private boolean isCCW(int x0, int y0, +- int x1, int y1, +- int x2, int y2) { +- int dx0 = x1 - x0; +- int dy0 = y1 - y0; +- int dx1 = x2 - x1; +- int dy1 = y2 - y1; +- return (long)dx0*dy1 < (long)dy0*dx1; +- } +- +- private boolean side(int x, int y, int x0, int y0, int x1, int y1) { +- long lx = x; +- long ly = y; +- long lx0 = x0; +- long ly0 = y0; +- long lx1 = x1; +- long ly1 = y1; +- +- return (ly0 - ly1)*lx + (lx1 - lx0)*ly + (lx0*ly1 - lx1*ly0) > 0; +- } +- +- private int computeRoundJoin(int cx, int cy, +- int xa, int ya, +- int xb, int yb, +- int side, +- boolean flip, +- int[] join) { +- int px, py; +- int ncoords = 0; +- +- boolean centerSide; +- if (side == 0) { +- centerSide = side(cx, cy, xa, ya, xb, yb); ++ private static void computeOffset(final float lx, final float ly, ++ final float w, final float[] m) ++ { ++ final float len = (float)Math.hypot(lx, ly); ++ if (len == 0) { ++ m[0] = m[1] = 0; + } else { +- centerSide = (side == 1) ? true : false; +- } +- for (int i = 0; i < numPenSegments; i++) { +- px = cx + pen_dx[i]; +- py = cy + pen_dy[i]; +- +- boolean penSide = side(px, py, xa, ya, xb, yb); +- if (penSide != centerSide) { +- penIncluded[i] = true; +- } else { +- penIncluded[i] = false; +- } +- } +- +- int start = -1, end = -1; +- for (int i = 0; i < numPenSegments; i++) { +- if (penIncluded[i] && +- !penIncluded[(i + numPenSegments - 1) % numPenSegments]) { +- start = i; +- } +- if (penIncluded[i] && +- !penIncluded[(i + 1) % numPenSegments]) { +- end = i; +- } +- } +- +- if (end < start) { +- end += numPenSegments; ++ m[0] = (ly * w)/len; ++ m[1] = -(lx * w)/len; + } +- +- if (start != -1 && end != -1) { +- long dxa = cx + pen_dx[start] - xa; +- long dya = cy + pen_dy[start] - ya; +- long dxb = cx + pen_dx[start] - xb; +- long dyb = cy + pen_dy[start] - yb; +- +- boolean rev = (dxa*dxa + dya*dya > dxb*dxb + dyb*dyb); +- int i = rev ? end : start; +- int incr = rev ? -1 : 1; +- while (true) { +- int idx = i % numPenSegments; +- px = cx + pen_dx[idx]; +- py = cy + pen_dy[idx]; +- join[ncoords++] = px; +- join[ncoords++] = py; +- if (i == (rev ? start : end)) { +- break; +- } +- i += incr; +- } +- } +- +- return ncoords/2; + } + +- private static final long ROUND_JOIN_THRESHOLD = 1000L; +- private static final long ROUND_JOIN_INTERNAL_THRESHOLD = 1000000000L; ++ // Returns true if the vectors (dx1, dy1) and (dx2, dy2) are ++ // clockwise (if dx1,dy1 needs to be rotated clockwise to close ++ // the smallest angle between it and dx2,dy2). ++ // This is equivalent to detecting whether a point q is on the right side ++ // of a line passing through points p1, p2 where p2 = p1+(dx1,dy1) and ++ // q = p2+(dx2,dy2), which is the same as saying p1, p2, q are in a ++ // clockwise order. ++ // NOTE: "clockwise" here assumes coordinates with 0,0 at the bottom left. ++ private static boolean isCW(final float dx1, final float dy1, ++ final float dx2, final float dy2) ++ { ++ return dx1 * dy2 <= dy1 * dx2; ++ } ++ ++ // pisces used to use fixed point arithmetic with 16 decimal digits. I ++ // didn't want to change the values of the constant below when I converted ++ // it to floating point, so that's why the divisions by 2^16 are there. ++ private static final float ROUND_JOIN_THRESHOLD = 1000/65536f; + +- private void drawRoundJoin(int x, int y, +- int omx, int omy, int mx, int my, +- int side, +- boolean flip, ++ private void drawRoundJoin(float x, float y, ++ float omx, float omy, float mx, float my, + boolean rev, +- long threshold) { ++ float threshold) ++ { + if ((omx == 0 && omy == 0) || (mx == 0 && my == 0)) { + return; + } + +- long domx = (long)omx - mx; +- long domy = (long)omy - my; +- long len = domx*domx + domy*domy; ++ float domx = omx - mx; ++ float domy = omy - my; ++ float len = domx*domx + domy*domy; + if (len < threshold) { + return; + } +@@ -388,64 +180,148 @@ + mx = -mx; + my = -my; + } +- +- int bx0 = x + omx; +- int by0 = y + omy; +- int bx1 = x + mx; +- int by1 = y + my; +- +- int npoints = computeRoundJoin(x, y, +- bx0, by0, bx1, by1, side, flip, +- join); +- for (int i = 0; i < npoints; i++) { +- emitLineTo(join[2*i], join[2*i + 1], rev); +- } +- } +- +- // Return the intersection point of the lines (ix0, iy0) -> (ix1, iy1) +- // and (ix0p, iy0p) -> (ix1p, iy1p) in m[0] and m[1] +- private void computeMiter(int ix0, int iy0, int ix1, int iy1, +- int ix0p, int iy0p, int ix1p, int iy1p, +- int[] m) { +- long x0 = ix0; +- long y0 = iy0; +- long x1 = ix1; +- long y1 = iy1; +- +- long x0p = ix0p; +- long y0p = iy0p; +- long x1p = ix1p; +- long y1p = iy1p; +- +- long x10 = x1 - x0; +- long y10 = y1 - y0; +- long x10p = x1p - x0p; +- long y10p = y1p - y0p; +- +- long den = (x10*y10p - x10p*y10) >> 16; +- if (den == 0) { +- m[0] = ix0; +- m[1] = iy0; +- return; +- } +- +- long t = (x1p*(y0 - y0p) - x0*y10p + x0p*(y1p - y0)) >> 16; +- m[0] = (int)(x0 + (t*x10)/den); +- m[1] = (int)(y0 + (t*y10)/den); ++ drawRoundJoin(x, y, omx, omy, mx, my, rev); + } + +- private void drawMiter(int px0, int py0, +- int x0, int y0, +- int x1, int y1, +- int omx, int omy, int mx, int my, +- boolean rev) { +- if (mx == omx && my == omy) { +- return; +- } +- if (px0 == x0 && py0 == y0) { +- return; +- } +- if (x0 == x1 && y0 == y1) { ++ private void drawRoundJoin(float cx, float cy, ++ float omx, float omy, ++ float mx, float my, ++ boolean rev) ++ { ++ // The sign of the dot product of mx,my and omx,omy is equal to the ++ // the sign of the cosine of ext ++ // (ext is the angle between omx,omy and mx,my). ++ double cosext = omx * mx + omy * my; ++ // If it is >=0, we know that abs(ext) is <= 90 degrees, so we only ++ // need 1 curve to approximate the circle section that joins omx,omy ++ // and mx,my. ++ final int numCurves = cosext >= 0 ? 1 : 2; ++ ++ switch (numCurves) { ++ case 1: ++ drawBezApproxForArc(cx, cy, omx, omy, mx, my, rev); ++ break; ++ case 2: ++ // we need to split the arc into 2 arcs spanning the same angle. ++ // The point we want will be one of the 2 intersections of the ++ // perpendicular bisector of the chord (omx,omy)->(mx,my) and the ++ // circle. We could find this by scaling the vector ++ // (omx+mx, omy+my)/2 so that it has length=lineWidth2 (and thus lies ++ // on the circle), but that can have numerical problems when the angle ++ // between omx,omy and mx,my is close to 180 degrees. So we compute a ++ // normal of (omx,omy)-(mx,my). This will be the direction of the ++ // perpendicular bisector. To get one of the intersections, we just scale ++ // this vector that its length is lineWidth2 (this works because the ++ // perpendicular bisector goes through the origin). This scaling doesn't ++ // have numerical problems because we know that lineWidth2 divided by ++ // this normal's length is at least 0.5 and at most sqrt(2)/2 (because ++ // we know the angle of the arc is > 90 degrees). ++ float nx = my - omy, ny = omx - mx; ++ float nlen = (float)Math.sqrt(nx*nx + ny*ny); ++ float scale = lineWidth2/nlen; ++ float mmx = nx * scale, mmy = ny * scale; ++ ++ // if (isCW(omx, omy, mx, my) != isCW(mmx, mmy, mx, my)) then we've ++ // computed the wrong intersection so we get the other one. ++ // The test above is equivalent to if (rev). ++ if (rev) { ++ mmx = -mmx; ++ mmy = -mmy; ++ } ++ drawBezApproxForArc(cx, cy, omx, omy, mmx, mmy, rev); ++ drawBezApproxForArc(cx, cy, mmx, mmy, mx, my, rev); ++ break; ++ } ++ } ++ ++ // the input arc defined by omx,omy and mx,my must span <= 90 degrees. ++ private void drawBezApproxForArc(final float cx, final float cy, ++ final float omx, final float omy, ++ final float mx, final float my, ++ boolean rev) ++ { ++ float cosext2 = (omx * mx + omy * my) / (2 * lineWidth2 * lineWidth2); ++ // cv is the length of P1-P0 and P2-P3 divided by the radius of the arc ++ // (so, cv assumes the arc has radius 1). P0, P1, P2, P3 are the points that ++ // define the bezier curve we're computing. ++ // It is computed using the constraints that P1-P0 and P3-P2 are parallel ++ // to the arc tangents at the endpoints, and that |P1-P0|=|P3-P2|. ++ float cv = (float)((4.0 / 3.0) * Math.sqrt(0.5-cosext2) / ++ (1.0 + Math.sqrt(cosext2+0.5))); ++ // if clockwise, we need to negate cv. ++ if (rev) { // rev is equivalent to isCW(omx, omy, mx, my) ++ cv = -cv; ++ } ++ final float x1 = cx + omx; ++ final float y1 = cy + omy; ++ final float x2 = x1 - cv * omy; ++ final float y2 = y1 + cv * omx; ++ ++ final float x4 = cx + mx; ++ final float y4 = cy + my; ++ final float x3 = x4 + cv * my; ++ final float y3 = y4 - cv * mx; ++ ++ emitCurveTo(x1, y1, x2, y2, x3, y3, x4, y4, rev); ++ } ++ ++ private void drawRoundCap(float cx, float cy, float mx, float my) { ++ final float C = 0.5522847498307933f; ++ // the first and second arguments of the following two calls ++ // are really will be ignored by emitCurveTo (because of the false), ++ // but we put them in anyway, as opposed to just giving it 4 zeroes, ++ // because it's just 4 additions and it's not good to rely on this ++ // sort of assumption (right now it's true, but that may change). ++ emitCurveTo(cx+mx, cy+my, ++ cx+mx-C*my, cy+my+C*mx, ++ cx-my+C*mx, cy+mx+C*my, ++ cx-my, cy+mx, ++ false); ++ emitCurveTo(cx-my, cy+mx, ++ cx-my-C*mx, cy+mx-C*my, ++ cx-mx-C*my, cy-my+C*mx, ++ cx-mx, cy-my, ++ false); ++ } ++ ++ // Return the intersection point of the lines (x0, y0) -> (x1, y1) ++ // and (x0p, y0p) -> (x1p, y1p) in m[0] and m[1] ++ private void computeMiter(final float x0, final float y0, ++ final float x1, final float y1, ++ final float x0p, final float y0p, ++ final float x1p, final float y1p, ++ final float[] m, int off) ++ { ++ float x10 = x1 - x0; ++ float y10 = y1 - y0; ++ float x10p = x1p - x0p; ++ float y10p = y1p - y0p; ++ ++ // if this is 0, the lines are parallel. If they go in the ++ // same direction, there is no intersection so m[off] and ++ // m[off+1] will contain infinity, so no miter will be drawn. ++ // If they go in the same direction that means that the start of the ++ // current segment and the end of the previous segment have the same ++ // tangent, in which case this method won't even be involved in ++ // miter drawing because it won't be called by drawMiter (because ++ // (mx == omx && my == omy) will be true, and drawMiter will return ++ // immediately). ++ float den = x10*y10p - x10p*y10; ++ float t = x10p*(y0-y0p) - y10p*(x0-x0p); ++ t /= den; ++ m[off++] = x0 + t*x10; ++ m[off] = y0 + t*y10; ++ } ++ ++ private void drawMiter(final float pdx, final float pdy, ++ final float x0, final float y0, ++ final float dx, final float dy, ++ float omx, float omy, float mx, float my, ++ boolean rev) ++ { ++ if ((mx == omx && my == omy) || ++ (pdx == 0 && pdy == 0) || ++ (dx == 0 && dy == 0)) { + return; + } + +@@ -456,304 +332,734 @@ + my = -my; + } + +- computeMiter(px0 + omx, py0 + omy, x0 + omx, y0 + omy, +- x0 + mx, y0 + my, x1 + mx, y1 + my, +- miter); +- +- // Compute miter length in untransformed coordinates +- long dx = (long)miter[0] - x0; +- long dy = (long)miter[1] - y0; +- long a = (dy*m00 - dx*m10) >> 16; +- long b = (dy*m01 - dx*m11) >> 16; +- long lenSq = a*a + b*b; ++ computeMiter((x0 - pdx) + omx, (y0 - pdy) + omy, x0 + omx, y0 + omy, ++ (dx + x0) + mx, (dy + y0) + my, x0 + mx, y0 + my, ++ miter, 0); ++ ++ float lenSq = (miter[0]-x0)*(miter[0]-x0) + (miter[1]-y0)*(miter[1]-y0); + + if (lenSq < miterLimitSq) { + emitLineTo(miter[0], miter[1], rev); + } + } + +- +- public void moveTo(int x0, int y0) { +- // System.out.println("Stroker.moveTo(" + x0/65536.0 + ", " + y0/65536.0 + ")"); +- +- if (lineToOrigin) { +- // not closing the path, do the previous lineTo +- lineToImpl(sx0, sy0, joinToOrigin); +- lineToOrigin = false; +- } +- +- if (prev == LINE_TO) { ++ public void moveTo(float x0, float y0) { ++ if (prev == DRAWING_OP_TO) { + finish(); + } +- +- this.sx0 = this.x0 = x0; +- this.sy0 = this.y0 = y0; +- this.rindex = 0; +- this.started = false; +- this.joinSegment = false; ++ this.sx0 = this.cx0 = x0; ++ this.sy0 = this.cy0 = y0; ++ this.cdx = this.sdx = 1; ++ this.cdy = this.sdy = 0; + this.prev = MOVE_TO; + } + +- boolean joinSegment = false; ++ public void lineTo(float x1, float y1) { ++ float dx = x1 - cx0; ++ float dy = y1 - cy0; ++ if (dx == 0f && dy == 0f) { ++ dx = 1; ++ } ++ computeOffset(dx, dy, lineWidth2, offset[0]); ++ float mx = offset[0][0]; ++ float my = offset[0][1]; + +- public void lineJoin() { +- // System.out.println("Stroker.lineJoin()"); +- this.joinSegment = true; +- } ++ drawJoin(cdx, cdy, cx0, cy0, dx, dy, cmx, cmy, mx, my); + +- public void lineTo(int x1, int y1) { +- // System.out.println("Stroker.lineTo(" + x1/65536.0 + ", " + y1/65536.0 + ")"); ++ emitLineTo(cx0 + mx, cy0 + my); ++ emitLineTo(x1 + mx, y1 + my); + +- if (lineToOrigin) { +- if (x1 == sx0 && y1 == sy0) { +- // staying in the starting point ++ emitLineTo(cx0 - mx, cy0 - my, true); ++ emitLineTo(x1 - mx, y1 - my, true); ++ ++ this.cmx = mx; ++ this.cmy = my; ++ this.cdx = dx; ++ this.cdy = dy; ++ this.cx0 = x1; ++ this.cy0 = y1; ++ this.prev = DRAWING_OP_TO; ++ } ++ ++ public void closePath() { ++ if (prev != DRAWING_OP_TO) { ++ if (prev == CLOSE) { + return; + } +- +- // not closing the path, do the previous lineTo +- lineToImpl(sx0, sy0, joinToOrigin); +- lineToOrigin = false; +- } else if (x1 == x0 && y1 == y0) { +- return; +- } else if (x1 == sx0 && y1 == sy0) { +- lineToOrigin = true; +- joinToOrigin = joinSegment; +- joinSegment = false; ++ emitMoveTo(cx0, cy0 - lineWidth2); ++ this.cmx = this.smx = 0; ++ this.cmy = this.smy = -lineWidth2; ++ this.cdx = this.sdx = 1; ++ this.cdy = this.sdy = 0; ++ finish(); + return; + } + +- lineToImpl(x1, y1, joinSegment); +- joinSegment = false; ++ if (cx0 != sx0 || cy0 != sy0) { ++ lineTo(sx0, sy0); ++ } ++ ++ drawJoin(cdx, cdy, cx0, cy0, sdx, sdy, cmx, cmy, smx, smy); ++ ++ emitLineTo(sx0 + smx, sy0 + smy); ++ ++ emitMoveTo(sx0 - smx, sy0 - smy); ++ emitReverse(); ++ ++ this.prev = CLOSE; ++ emitClose(); + } + +- private void lineToImpl(int x1, int y1, boolean joinSegment) { +- computeOffset(x0, y0, x1, y1, offset); +- int mx = offset[0]; +- int my = offset[1]; ++ private void emitReverse() { ++ while(!reverse.isEmpty()) { ++ reverse.pop(out); ++ } ++ } + +- if (!started) { +- emitMoveTo(x0 + mx, y0 + my); +- this.sx1 = x1; +- this.sy1 = y1; +- this.mx0 = mx; +- this.my0 = my; +- started = true; +- } else { +- boolean ccw = isCCW(px0, py0, x0, y0, x1, y1); +- if (joinSegment) { +- if (joinStyle == JOIN_MITER) { +- drawMiter(px0, py0, x0, y0, x1, y1, omx, omy, mx, my, +- ccw); +- } else if (joinStyle == JOIN_ROUND) { +- drawRoundJoin(x0, y0, +- omx, omy, +- mx, my, 0, false, ccw, +- ROUND_JOIN_THRESHOLD); +- } +- } else { +- // Draw internal joins as round +- drawRoundJoin(x0, y0, +- omx, omy, +- mx, my, 0, false, ccw, +- ROUND_JOIN_INTERNAL_THRESHOLD); +- } ++ public void pathDone() { ++ if (prev == DRAWING_OP_TO) { ++ finish(); ++ } + +- emitLineTo(x0, y0, !ccw); ++ out.pathDone(); ++ // this shouldn't matter since this object won't be used ++ // after the call to this method. ++ this.prev = CLOSE; ++ } ++ ++ private void finish() { ++ if (capStyle == CAP_ROUND) { ++ drawRoundCap(cx0, cy0, cmx, cmy); ++ } else if (capStyle == CAP_SQUARE) { ++ emitLineTo(cx0 - cmy + cmx, cy0 + cmx + cmy); ++ emitLineTo(cx0 - cmy - cmx, cy0 + cmx - cmy); + } + +- emitLineTo(x0 + mx, y0 + my, false); +- emitLineTo(x1 + mx, y1 + my, false); ++ emitReverse(); + +- emitLineTo(x0 - mx, y0 - my, true); +- emitLineTo(x1 - mx, y1 - my, true); ++ if (capStyle == CAP_ROUND) { ++ drawRoundCap(sx0, sy0, -smx, -smy); ++ } else if (capStyle == CAP_SQUARE) { ++ emitLineTo(sx0 + smy - smx, sy0 - smx - smy); ++ emitLineTo(sx0 + smy + smx, sy0 - smx + smy); ++ } + +- lx0 = x1 + mx; ly0 = y1 + my; +- lx0p = x1 - mx; ly0p = y1 - my; +- lx1 = x1; ly1 = y1; ++ emitClose(); ++ } + +- this.omx = mx; +- this.omy = my; +- this.px0 = x0; +- this.py0 = y0; +- this.x0 = x1; +- this.y0 = y1; +- this.prev = LINE_TO; ++ private void emitMoveTo(final float x0, final float y0) { ++ out.moveTo(x0, y0); + } + +- public void close() { +- // System.out.println("Stroker.close()"); ++ private void emitLineTo(final float x1, final float y1) { ++ out.lineTo(x1, y1); ++ } + +- if (lineToOrigin) { +- // ignore the previous lineTo +- lineToOrigin = false; ++ private void emitLineTo(final float x1, final float y1, ++ final boolean rev) ++ { ++ if (rev) { ++ reverse.pushLine(x1, y1); ++ } else { ++ emitLineTo(x1, y1); + } ++ } + +- if (!started) { +- finish(); +- return; ++ private void emitQuadTo(final float x0, final float y0, ++ final float x1, final float y1, ++ final float x2, final float y2, final boolean rev) ++ { ++ if (rev) { ++ reverse.pushQuad(x0, y0, x1, y1); ++ } else { ++ out.quadTo(x1, y1, x2, y2); + } ++ } + +- computeOffset(x0, y0, sx0, sy0, offset); +- int mx = offset[0]; +- int my = offset[1]; +- +- // Draw penultimate join +- boolean ccw = isCCW(px0, py0, x0, y0, sx0, sy0); +- if (joinSegment) { +- if (joinStyle == JOIN_MITER) { +- drawMiter(px0, py0, x0, y0, sx0, sy0, omx, omy, mx, my, ccw); +- } else if (joinStyle == JOIN_ROUND) { +- drawRoundJoin(x0, y0, omx, omy, mx, my, 0, false, ccw, +- ROUND_JOIN_THRESHOLD); +- } ++ private void emitCurveTo(final float x0, final float y0, ++ final float x1, final float y1, ++ final float x2, final float y2, ++ final float x3, final float y3, final boolean rev) ++ { ++ if (rev) { ++ reverse.pushCubic(x0, y0, x1, y1, x2, y2); + } else { +- // Draw internal joins as round +- drawRoundJoin(x0, y0, +- omx, omy, +- mx, my, 0, false, ccw, +- ROUND_JOIN_INTERNAL_THRESHOLD); ++ out.curveTo(x1, y1, x2, y2, x3, y3); + } ++ } + +- emitLineTo(x0, y0, !ccw); +- +- emitLineTo(x0 + mx, y0 + my); +- emitLineTo(sx0 + mx, sy0 + my); +- +- ccw = isCCW(x0, y0, sx0, sy0, sx1, sy1); ++ private void emitClose() { ++ out.closePath(); ++ } + +- // Draw final join on the outside +- if (!ccw) { ++ private void drawJoin(float pdx, float pdy, ++ float x0, float y0, ++ float dx, float dy, ++ float omx, float omy, ++ float mx, float my) ++ { ++ if (prev != DRAWING_OP_TO) { ++ emitMoveTo(x0 + mx, y0 + my); ++ this.sdx = dx; ++ this.sdy = dy; ++ this.smx = mx; ++ this.smy = my; ++ } else { ++ boolean cw = isCW(pdx, pdy, dx, dy); + if (joinStyle == JOIN_MITER) { +- drawMiter(x0, y0, sx0, sy0, sx1, sy1, +- mx, my, mx0, my0, false); ++ drawMiter(pdx, pdy, x0, y0, dx, dy, omx, omy, mx, my, cw); + } else if (joinStyle == JOIN_ROUND) { +- drawRoundJoin(sx0, sy0, mx, my, mx0, my0, 0, false, false, ++ drawRoundJoin(x0, y0, ++ omx, omy, ++ mx, my, cw, + ROUND_JOIN_THRESHOLD); + } ++ emitLineTo(x0, y0, !cw); + } ++ prev = DRAWING_OP_TO; ++ } + +- emitLineTo(sx0 + mx0, sy0 + my0); +- emitMoveTo(sx0, sy0); // same as reverse[0], reverse[1] ++ private static boolean within(final float x1, final float y1, ++ final float x2, final float y2, ++ final float ERR) ++ { ++ assert ERR > 0 : ""; ++ // compare taxicab distance. ERR will always be small, so using ++ // true distance won't give much benefit ++ return (Helpers.within(x1, x2, ERR) && // we want to avoid calling Math.abs ++ Helpers.within(y1, y2, ERR)); // this is just as good. ++ } ++ ++ private void getLineOffsets(float x1, float y1, ++ float x2, float y2, ++ float[] left, float[] right) { ++ computeOffset(x2 - x1, y2 - y1, lineWidth2, offset[0]); ++ left[0] = x1 + offset[0][0]; ++ left[1] = y1 + offset[0][1]; ++ left[2] = x2 + offset[0][0]; ++ left[3] = y2 + offset[0][1]; ++ right[0] = x1 - offset[0][0]; ++ right[1] = y1 - offset[0][1]; ++ right[2] = x2 - offset[0][0]; ++ right[3] = y2 - offset[0][1]; ++ } ++ ++ private int computeOffsetCubic(float[] pts, final int off, ++ float[] leftOff, float[] rightOff) ++ { ++ // if p1=p2 or p3=p4 it means that the derivative at the endpoint ++ // vanishes, which creates problems with computeOffset. Usually ++ // this happens when this stroker object is trying to winden ++ // a curve with a cusp. What happens is that curveTo splits ++ // the input curve at the cusp, and passes it to this function. ++ // because of inaccuracies in the splitting, we consider points ++ // equal if they're very close to each other. ++ final float x1 = pts[off + 0], y1 = pts[off + 1]; ++ final float x2 = pts[off + 2], y2 = pts[off + 3]; ++ final float x3 = pts[off + 4], y3 = pts[off + 5]; ++ final float x4 = pts[off + 6], y4 = pts[off + 7]; ++ ++ float dx4 = x4 - x3; ++ float dy4 = y4 - y3; ++ float dx1 = x2 - x1; ++ float dy1 = y2 - y1; ++ ++ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, ++ // in which case ignore if p1 == p2 ++ final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2)); ++ final boolean p3eqp4 = within(x3,y3,x4,y4, 6 * Math.ulp(y4)); ++ if (p1eqp2 && p3eqp4) { ++ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); ++ return 4; ++ } else if (p1eqp2) { ++ dx1 = x3 - x1; ++ dy1 = y3 - y1; ++ } else if (p3eqp4) { ++ dx4 = x4 - x2; ++ dy4 = y4 - y2; ++ } ++ ++ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line ++ float dotsq = (dx1 * dx4 + dy1 * dy4); ++ dotsq = dotsq * dotsq; ++ float l1sq = dx1 * dx1 + dy1 * dy1, l4sq = dx4 * dx4 + dy4 * dy4; ++ if (Helpers.within(dotsq, l1sq * l4sq, 4 * Math.ulp(dotsq))) { ++ getLineOffsets(x1, y1, x4, y4, leftOff, rightOff); ++ return 4; ++ } ++ ++// What we're trying to do in this function is to approximate an ideal ++// offset curve (call it I) of the input curve B using a bezier curve Bp. ++// The constraints I use to get the equations are: ++// ++// 1. The computed curve Bp should go through I(0) and I(1). These are ++// x1p, y1p, x4p, y4p, which are p1p and p4p. We still need to find ++// 4 variables: the x and y components of p2p and p3p (i.e. x2p, y2p, x3p, y3p). ++// ++// 2. Bp should have slope equal in absolute value to I at the endpoints. So, ++// (by the way, the operator || in the comments below means "aligned with". ++// It is defined on vectors, so when we say I'(0) || Bp'(0) we mean that ++// vectors I'(0) and Bp'(0) are aligned, which is the same as saying ++// that the tangent lines of I and Bp at 0 are parallel. Mathematically ++// this means (I'(t) || Bp'(t)) <==> (I'(t) = c * Bp'(t)) where c is some ++// nonzero constant.) ++// I'(0) || Bp'(0) and I'(1) || Bp'(1). Obviously, I'(0) || B'(0) and ++// I'(1) || B'(1); therefore, Bp'(0) || B'(0) and Bp'(1) || B'(1). ++// We know that Bp'(0) || (p2p-p1p) and Bp'(1) || (p4p-p3p) and the same ++// is true for any bezier curve; therefore, we get the equations ++// (1) p2p = c1 * (p2-p1) + p1p ++// (2) p3p = c2 * (p4-p3) + p4p ++// We know p1p, p4p, p2, p1, p3, and p4; therefore, this reduces the number ++// of unknowns from 4 to 2 (i.e. just c1 and c2). ++// To eliminate these 2 unknowns we use the following constraint: ++// ++// 3. Bp(0.5) == I(0.5). Bp(0.5)=(x,y) and I(0.5)=(xi,yi), and I should note ++// that I(0.5) is *the only* reason for computing dxm,dym. This gives us ++// (3) Bp(0.5) = (p1p + 3 * (p2p + p3p) + p4p)/8, which is equivalent to ++// (4) p2p + p3p = (Bp(0.5)*8 - p1p - p4p) / 3 ++// We can substitute (1) and (2) from above into (4) and we get: ++// (5) c1*(p2-p1) + c2*(p4-p3) = (Bp(0.5)*8 - p1p - p4p)/3 - p1p - p4p ++// which is equivalent to ++// (6) c1*(p2-p1) + c2*(p4-p3) = (4/3) * (Bp(0.5) * 2 - p1p - p4p) ++// ++// The right side of this is a 2D vector, and we know I(0.5), which gives us ++// Bp(0.5), which gives us the value of the right side. ++// The left side is just a matrix vector multiplication in disguise. It is ++// ++// [x2-x1, x4-x3][c1] ++// [y2-y1, y4-y3][c2] ++// which, is equal to ++// [dx1, dx4][c1] ++// [dy1, dy4][c2] ++// At this point we are left with a simple linear system and we solve it by ++// getting the inverse of the matrix above. Then we use [c1,c2] to compute ++// p2p and p3p. ++ ++ float x = 0.125f * (x1 + 3 * (x2 + x3) + x4); ++ float y = 0.125f * (y1 + 3 * (y2 + y3) + y4); ++ // (dxm,dym) is some tangent of B at t=0.5. This means it's equal to ++ // c*B'(0.5) for some constant c. ++ float dxm = x3 + x4 - x1 - x2, dym = y3 + y4 - y1 - y2; ++ ++ // this computes the offsets at t=0, 0.5, 1, using the property that ++ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to ++ // the (dx/dt, dy/dt) vectors at the endpoints. ++ computeOffset(dx1, dy1, lineWidth2, offset[0]); ++ computeOffset(dxm, dym, lineWidth2, offset[1]); ++ computeOffset(dx4, dy4, lineWidth2, offset[2]); ++ float x1p = x1 + offset[0][0]; // start ++ float y1p = y1 + offset[0][1]; // point ++ float xi = x + offset[1][0]; // interpolation ++ float yi = y + offset[1][1]; // point ++ float x4p = x4 + offset[2][0]; // end ++ float y4p = y4 + offset[2][1]; // point ++ ++ float invdet43 = 4f / (3f * (dx1 * dy4 - dy1 * dx4)); ++ ++ float two_pi_m_p1_m_p4x = 2*xi - x1p - x4p; ++ float two_pi_m_p1_m_p4y = 2*yi - y1p - y4p; ++ float c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); ++ float c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); ++ ++ float x2p, y2p, x3p, y3p; ++ x2p = x1p + c1*dx1; ++ y2p = y1p + c1*dy1; ++ x3p = x4p + c2*dx4; ++ y3p = y4p + c2*dy4; ++ ++ leftOff[0] = x1p; leftOff[1] = y1p; ++ leftOff[2] = x2p; leftOff[3] = y2p; ++ leftOff[4] = x3p; leftOff[5] = y3p; ++ leftOff[6] = x4p; leftOff[7] = y4p; ++ ++ x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1]; ++ xi = xi - 2 * offset[1][0]; yi = yi - 2 * offset[1][1]; ++ x4p = x4 - offset[2][0]; y4p = y4 - offset[2][1]; ++ ++ two_pi_m_p1_m_p4x = 2*xi - x1p - x4p; ++ two_pi_m_p1_m_p4y = 2*yi - y1p - y4p; ++ c1 = invdet43 * (dy4 * two_pi_m_p1_m_p4x - dx4 * two_pi_m_p1_m_p4y); ++ c2 = invdet43 * (dx1 * two_pi_m_p1_m_p4y - dy1 * two_pi_m_p1_m_p4x); ++ ++ x2p = x1p + c1*dx1; ++ y2p = y1p + c1*dy1; ++ x3p = x4p + c2*dx4; ++ y3p = y4p + c2*dy4; ++ ++ rightOff[0] = x1p; rightOff[1] = y1p; ++ rightOff[2] = x2p; rightOff[3] = y2p; ++ rightOff[4] = x3p; rightOff[5] = y3p; ++ rightOff[6] = x4p; rightOff[7] = y4p; ++ return 8; ++ } ++ ++ // compute offset curves using bezier spline through t=0.5 (i.e. ++ // ComputedCurve(0.5) == IdealParallelCurve(0.5)) ++ // return the kind of curve in the right and left arrays. ++ private int computeOffsetQuad(float[] pts, final int off, ++ float[] leftOff, float[] rightOff) ++ { ++ final float x1 = pts[off + 0], y1 = pts[off + 1]; ++ final float x2 = pts[off + 2], y2 = pts[off + 3]; ++ final float x3 = pts[off + 4], y3 = pts[off + 5]; ++ ++ float dx3 = x3 - x2; ++ float dy3 = y3 - y2; ++ float dx1 = x2 - x1; ++ float dy1 = y2 - y1; ++ ++ // if p1=p2 or p3=p4 it means that the derivative at the endpoint ++ // vanishes, which creates problems with computeOffset. Usually ++ // this happens when this stroker object is trying to winden ++ // a curve with a cusp. What happens is that curveTo splits ++ // the input curve at the cusp, and passes it to this function. ++ // because of inaccuracies in the splitting, we consider points ++ // equal if they're very close to each other. ++ ++ // if p1 == p2 && p3 == p4: draw line from p1->p4, unless p1 == p4, ++ // in which case ignore. ++ final boolean p1eqp2 = within(x1,y1,x2,y2, 6 * Math.ulp(y2)); ++ final boolean p2eqp3 = within(x2,y2,x3,y3, 6 * Math.ulp(y3)); ++ if (p1eqp2 || p2eqp3) { ++ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ++ return 4; ++ } ++ ++ // if p2-p1 and p4-p3 are parallel, that must mean this curve is a line ++ float dotsq = (dx1 * dx3 + dy1 * dy3); ++ dotsq = dotsq * dotsq; ++ float l1sq = dx1 * dx1 + dy1 * dy1, l3sq = dx3 * dx3 + dy3 * dy3; ++ if (Helpers.within(dotsq, l1sq * l3sq, 4 * Math.ulp(dotsq))) { ++ getLineOffsets(x1, y1, x3, y3, leftOff, rightOff); ++ return 4; ++ } ++ ++ // this computes the offsets at t=0, 0.5, 1, using the property that ++ // for any bezier curve the vectors p2-p1 and p4-p3 are parallel to ++ // the (dx/dt, dy/dt) vectors at the endpoints. ++ computeOffset(dx1, dy1, lineWidth2, offset[0]); ++ computeOffset(dx3, dy3, lineWidth2, offset[1]); ++ float x1p = x1 + offset[0][0]; // start ++ float y1p = y1 + offset[0][1]; // point ++ float x3p = x3 + offset[1][0]; // end ++ float y3p = y3 + offset[1][1]; // point ++ ++ computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, leftOff, 2); ++ leftOff[0] = x1p; leftOff[1] = y1p; ++ leftOff[4] = x3p; leftOff[5] = y3p; ++ x1p = x1 - offset[0][0]; y1p = y1 - offset[0][1]; ++ x3p = x3 - offset[1][0]; y3p = y3 - offset[1][1]; ++ computeMiter(x1p, y1p, x1p+dx1, y1p+dy1, x3p, y3p, x3p-dx3, y3p-dy3, rightOff, 2); ++ rightOff[0] = x1p; rightOff[1] = y1p; ++ rightOff[4] = x3p; rightOff[5] = y3p; ++ return 6; ++ } ++ ++ // This is where the curve to be processed is put. We give it ++ // enough room to store 2 curves: one for the current subdivision, the ++ // other for the rest of the curve. ++ private float[][] middle = new float[2][8]; ++ private float[] lp = new float[8]; ++ private float[] rp = new float[8]; ++ private static final int MAX_N_CURVES = 11; ++ private float[] subdivTs = new float[MAX_N_CURVES - 1]; ++ ++ private void somethingTo(final int type) { ++ // need these so we can update the state at the end of this method ++ final float xf = middle[0][type-2], yf = middle[0][type-1]; ++ float dxs = middle[0][2] - middle[0][0]; ++ float dys = middle[0][3] - middle[0][1]; ++ float dxf = middle[0][type - 2] - middle[0][type - 4]; ++ float dyf = middle[0][type - 1] - middle[0][type - 3]; ++ switch(type) { ++ case 6: ++ if ((dxs == 0f && dys == 0f) || ++ (dxf == 0f && dyf == 0f)) { ++ dxs = dxf = middle[0][4] - middle[0][0]; ++ dys = dyf = middle[0][5] - middle[0][1]; ++ } ++ break; ++ case 8: ++ boolean p1eqp2 = (dxs == 0f && dys == 0f); ++ boolean p3eqp4 = (dxf == 0f && dyf == 0f); ++ if (p1eqp2) { ++ dxs = middle[0][4] - middle[0][0]; ++ dys = middle[0][5] - middle[0][1]; ++ if (dxs == 0f && dys == 0f) { ++ dxs = middle[0][6] - middle[0][0]; ++ dys = middle[0][7] - middle[0][1]; ++ } ++ } ++ if (p3eqp4) { ++ dxf = middle[0][6] - middle[0][2]; ++ dyf = middle[0][7] - middle[0][3]; ++ if (dxf == 0f && dyf == 0f) { ++ dxf = middle[0][6] - middle[0][0]; ++ dyf = middle[0][7] - middle[0][1]; ++ } ++ } ++ } ++ if (dxs == 0f && dys == 0f) { ++ // this happens iff the "curve" is just a point ++ lineTo(middle[0][0], middle[0][1]); ++ return; ++ } ++ // if these vectors are too small, normalize them, to avoid future ++ // precision problems. ++ if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) { ++ double len = Math.hypot(dxs, dys); ++ dxs = (float)(dxs / len); ++ dys = (float)(dys / len); ++ } ++ if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) { ++ double len = Math.hypot(dxf, dyf); ++ dxf = (float)(dxf / len); ++ dyf = (float)(dyf / len); ++ } ++ ++ computeOffset(dxs, dys, lineWidth2, offset[0]); ++ final float mx = offset[0][0]; ++ final float my = offset[0][1]; ++ drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my); ++ ++ int nSplits = findSubdivPoints(middle[0], subdivTs, type,lineWidth2); ++ ++ int kind = 0; ++ Iterator it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits); ++ while(it.hasNext()) { ++ float[] curCurve = it.next(); ++ ++ kind = 0; ++ switch (type) { ++ case 8: ++ kind = computeOffsetCubic(curCurve, 0, lp, rp); ++ break; ++ case 6: ++ kind = computeOffsetQuad(curCurve, 0, lp, rp); ++ break; ++ } ++ if (kind != 0) { ++ emitLineTo(lp[0], lp[1]); ++ switch(kind) { ++ case 8: ++ emitCurveTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], lp[6], lp[7], false); ++ emitCurveTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], rp[6], rp[7], true); ++ break; ++ case 6: ++ emitQuadTo(lp[0], lp[1], lp[2], lp[3], lp[4], lp[5], false); ++ emitQuadTo(rp[0], rp[1], rp[2], rp[3], rp[4], rp[5], true); ++ break; ++ case 4: ++ emitLineTo(lp[2], lp[3]); ++ emitLineTo(rp[0], rp[1], true); ++ break; ++ } ++ emitLineTo(rp[kind - 2], rp[kind - 1], true); ++ } ++ } + +- // Draw final join on the inside +- if (ccw) { +- if (joinStyle == JOIN_MITER) { +- drawMiter(x0, y0, sx0, sy0, sx1, sy1, +- -mx, -my, -mx0, -my0, false); +- } else if (joinStyle == JOIN_ROUND) { +- drawRoundJoin(sx0, sy0, -mx, -my, -mx0, -my0, 0, +- true, false, +- ROUND_JOIN_THRESHOLD); ++ this.cmx = (lp[kind - 2] - rp[kind - 2]) / 2; ++ this.cmy = (lp[kind - 1] - rp[kind - 1]) / 2; ++ this.cdx = dxf; ++ this.cdy = dyf; ++ this.cx0 = xf; ++ this.cy0 = yf; ++ this.prev = DRAWING_OP_TO; ++ } ++ ++ // finds values of t where the curve in pts should be subdivided in order ++ // to get good offset curves a distance of w away from the middle curve. ++ // Stores the points in ts, and returns how many of them there were. ++ private static Curve c = new Curve(); ++ private static int findSubdivPoints(float[] pts, float[] ts, ++ final int type, final float w) ++ { ++ final float x12 = pts[2] - pts[0]; ++ final float y12 = pts[3] - pts[1]; ++ // if the curve is already parallel to either axis we gain nothing ++ // from rotating it. ++ if (y12 != 0f && x12 != 0f) { ++ // we rotate it so that the first vector in the control polygon is ++ // parallel to the x-axis. This will ensure that rotated quarter ++ // circles won't be subdivided. ++ final float hypot = (float)Math.sqrt(x12 * x12 + y12 * y12); ++ final float cos = x12 / hypot; ++ final float sin = y12 / hypot; ++ final float x1 = cos * pts[0] + sin * pts[1]; ++ final float y1 = cos * pts[1] - sin * pts[0]; ++ final float x2 = cos * pts[2] + sin * pts[3]; ++ final float y2 = cos * pts[3] - sin * pts[2]; ++ final float x3 = cos * pts[4] + sin * pts[5]; ++ final float y3 = cos * pts[5] - sin * pts[4]; ++ switch(type) { ++ case 8: ++ final float x4 = cos * pts[6] + sin * pts[7]; ++ final float y4 = cos * pts[7] - sin * pts[6]; ++ c.set(x1, y1, x2, y2, x3, y3, x4, y4); ++ break; ++ case 6: ++ c.set(x1, y1, x2, y2, x3, y3); ++ break; + } ++ } else { ++ c.set(pts, type); + } + +- emitLineTo(sx0 - mx, sy0 - my); +- emitLineTo(x0 - mx, y0 - my); +- for (int i = rindex - 2; i >= 0; i -= 2) { +- emitLineTo(reverse[i], reverse[i + 1]); ++ int ret = 0; ++ // we subdivide at values of t such that the remaining rotated ++ // curves are monotonic in x and y. ++ ret += c.dxRoots(ts, ret); ++ ret += c.dyRoots(ts, ret); ++ // subdivide at inflection points. ++ if (type == 8) { ++ // quadratic curves can't have inflection points ++ ret += c.infPoints(ts, ret); + } + +- this.x0 = this.sx0; +- this.y0 = this.sy0; +- this.rindex = 0; +- this.started = false; +- this.joinSegment = false; +- this.prev = CLOSE; +- emitClose(); ++ // now we must subdivide at points where one of the offset curves will have ++ // a cusp. This happens at ts where the radius of curvature is equal to w. ++ ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f); ++ ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f); ++ Helpers.isort(ts, 0, ret); ++ return ret; + } + +- public void end() { +- // System.out.println("Stroker.end()"); +- +- if (lineToOrigin) { +- // not closing the path, do the previous lineTo +- lineToImpl(sx0, sy0, joinToOrigin); +- lineToOrigin = false; +- } +- +- if (prev == LINE_TO) { +- finish(); +- } ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ middle[0][0] = cx0; middle[0][1] = cy0; ++ middle[0][2] = x1; middle[0][3] = y1; ++ middle[0][4] = x2; middle[0][5] = y2; ++ middle[0][6] = x3; middle[0][7] = y3; ++ somethingTo(8); ++ } + +- output.end(); +- this.joinSegment = false; +- this.prev = MOVE_TO; ++ public long getNativeConsumer() { ++ throw new InternalError("Stroker doesn't use a native consumer"); + } + +- long lineLength(long ldx, long ldy) { +- long ldet = ((long)m00*m11 - (long)m01*m10) >> 16; +- long la = ((long)ldy*m00 - (long)ldx*m10)/ldet; +- long lb = ((long)ldy*m01 - (long)ldx*m11)/ldet; +- long llen = (int)PiscesMath.hypot(la, lb); +- return llen; ++ public void quadTo(float x1, float y1, float x2, float y2) { ++ middle[0][0] = cx0; middle[0][1] = cy0; ++ middle[0][2] = x1; middle[0][3] = y1; ++ middle[0][4] = x2; middle[0][5] = y2; ++ somethingTo(6); + } + +- private void finish() { +- if (capStyle == CAP_ROUND) { +- drawRoundJoin(x0, y0, +- omx, omy, -omx, -omy, 1, false, false, +- ROUND_JOIN_THRESHOLD); +- } else if (capStyle == CAP_SQUARE) { +- long ldx = (long)(px0 - x0); +- long ldy = (long)(py0 - y0); +- long llen = lineLength(ldx, ldy); +- long s = (llen == 0) ? 0 : (long)lineWidth2*65536/llen; ++ // a stack of polynomial curves where each curve shares endpoints with ++ // adjacent ones. ++ private static final class PolyStack { ++ float[] curves; ++ int end; ++ int[] curveTypes; ++ int numCurves; + +- int capx = x0 - (int)(ldx*s >> 16); +- int capy = y0 - (int)(ldy*s >> 16); ++ private static final int INIT_SIZE = 50; + +- emitLineTo(capx + omx, capy + omy); +- emitLineTo(capx - omx, capy - omy); ++ PolyStack() { ++ curves = new float[8 * INIT_SIZE]; ++ curveTypes = new int[INIT_SIZE]; ++ end = 0; ++ numCurves = 0; + } + +- for (int i = rindex - 2; i >= 0; i -= 2) { +- emitLineTo(reverse[i], reverse[i + 1]); ++ public boolean isEmpty() { ++ return numCurves == 0; + } +- this.rindex = 0; +- +- if (capStyle == CAP_ROUND) { +- drawRoundJoin(sx0, sy0, +- -mx0, -my0, mx0, my0, 1, false, false, +- ROUND_JOIN_THRESHOLD); +- } else if (capStyle == CAP_SQUARE) { +- long ldx = (long)(sx1 - sx0); +- long ldy = (long)(sy1 - sy0); +- long llen = lineLength(ldx, ldy); +- long s = (llen == 0) ? 0 : (long)lineWidth2*65536/llen; +- +- int capx = sx0 - (int)(ldx*s >> 16); +- int capy = sy0 - (int)(ldy*s >> 16); + +- emitLineTo(capx - mx0, capy - my0); +- emitLineTo(capx + mx0, capy + my0); ++ private void ensureSpace(int n) { ++ if (end + n >= curves.length) { ++ int newSize = (end + n) * 2; ++ curves = Arrays.copyOf(curves, newSize); ++ } ++ if (numCurves >= curveTypes.length) { ++ int newSize = numCurves * 2; ++ curveTypes = Arrays.copyOf(curveTypes, newSize); ++ } + } + +- emitClose(); +- this.joinSegment = false; +- } +- +- private void emitMoveTo(int x0, int y0) { +- // System.out.println("Stroker.emitMoveTo(" + x0/65536.0 + ", " + y0/65536.0 + ")"); +- output.moveTo(x0, y0); +- } ++ public void pushCubic(float x0, float y0, ++ float x1, float y1, ++ float x2, float y2) ++ { ++ ensureSpace(6); ++ curveTypes[numCurves++] = 8; ++ // assert(x0 == lastX && y0 == lastY) ++ ++ // we reverse the coordinate order to make popping easier ++ curves[end++] = x2; curves[end++] = y2; ++ curves[end++] = x1; curves[end++] = y1; ++ curves[end++] = x0; curves[end++] = y0; ++ } ++ ++ public void pushQuad(float x0, float y0, ++ float x1, float y1) ++ { ++ ensureSpace(4); ++ curveTypes[numCurves++] = 6; ++ // assert(x0 == lastX && y0 == lastY) ++ curves[end++] = x1; curves[end++] = y1; ++ curves[end++] = x0; curves[end++] = y0; ++ } ++ ++ public void pushLine(float x, float y) { ++ ensureSpace(2); ++ curveTypes[numCurves++] = 4; ++ // assert(x0 == lastX && y0 == lastY) ++ curves[end++] = x; curves[end++] = y; ++ } ++ ++ @SuppressWarnings("unused") ++ public int pop(float[] pts) { ++ int ret = curveTypes[numCurves - 1]; ++ numCurves--; ++ end -= (ret - 2); ++ System.arraycopy(curves, end, pts, 0, ret - 2); ++ return ret; ++ } ++ ++ public void pop(PathConsumer2D io) { ++ numCurves--; ++ int type = curveTypes[numCurves]; ++ end -= (type - 2); ++ switch(type) { ++ case 8: ++ io.curveTo(curves[end+0], curves[end+1], ++ curves[end+2], curves[end+3], ++ curves[end+4], curves[end+5]); ++ break; ++ case 6: ++ io.quadTo(curves[end+0], curves[end+1], ++ curves[end+2], curves[end+3]); ++ break; ++ case 4: ++ io.lineTo(curves[end], curves[end+1]); ++ } ++ } + +- private void emitLineTo(int x1, int y1) { +- // System.out.println("Stroker.emitLineTo(" + x0/65536.0 + ", " + y0/65536.0 + ")"); +- output.lineTo(x1, y1); +- } + +- private void emitLineTo(int x1, int y1, boolean rev) { +- if (rev) { +- ensureCapacity(rindex + 2); +- reverse[rindex++] = x1; +- reverse[rindex++] = y1; +- } else { +- emitLineTo(x1, y1); ++ public String toString() { ++ String ret = ""; ++ int nc = numCurves; ++ int end = this.end; ++ while (nc > 0) { ++ nc--; ++ int type = curveTypes[numCurves]; ++ end -= (type - 2); ++ switch(type) { ++ case 8: ++ ret += "cubic: "; ++ break; ++ case 6: ++ ret += "quad: "; ++ break; ++ case 4: ++ ret += "line: "; ++ break; ++ } ++ ret += Arrays.toString(Arrays.copyOfRange(curves, end, end+type-2)) + "\n"; ++ } ++ return ret; + } + } +- +- private void emitClose() { +- // System.out.println("Stroker.emitClose()"); +- output.close(); +- } + } +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Transform4.java openjdk/jdk/src/share/classes/sun/java2d/pisces/Transform4.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/Transform4.java 2010-12-09 14:26:24.651148383 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/Transform4.java 1969-12-31 19:00:00.000000000 -0500 +@@ -1,84 +0,0 @@ +-/* +- * Copyright 2007 Sun Microsystems, Inc. All Rights Reserved. +- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. +- * +- * This code is free software; you can redistribute it and/or modify it +- * under the terms of the GNU General Public License version 2 only, as +- * published by the Free Software Foundation. Sun designates this +- * particular file as subject to the "Classpath" exception as provided +- * by Sun in the LICENSE file that accompanied this code. +- * +- * This code is distributed in the hope that it will be useful, but WITHOUT +- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +- * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +- * version 2 for more details (a copy is included in the LICENSE file that +- * accompanied this code). +- * +- * You should have received a copy of the GNU General Public License version +- * 2 along with this work; if not, write to the Free Software Foundation, +- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. +- * +- * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, +- * CA 95054 USA or visit www.sun.com if you need additional information or +- * have any questions. +- */ +- +-package sun.java2d.pisces; +- +-public class Transform4 { +- +- public int m00, m01, m10, m11; +-// double det; // det*65536 +- +- public Transform4() { +- this(1 << 16, 0, 0, 1 << 16); +- } +- +- public Transform4(int m00, int m01, +- int m10, int m11) { +- this.m00 = m00; +- this.m01 = m01; +- this.m10 = m10; +- this.m11 = m11; +- +-// this.det = (double)m00*m11 - (double)m01*m10; +- } +- +-// public Transform4 createInverse() { +-// double dm00 = m00/65536.0; +-// double dm01 = m01/65536.0; +-// double dm10 = m10/65536.0; +-// double dm11 = m11/65536.0; +- +-// double invdet = 65536.0/(dm00*dm11 - dm01*dm10); +- +-// int im00 = (int)( dm11*invdet); +-// int im01 = (int)(-dm01*invdet); +-// int im10 = (int)(-dm10*invdet); +-// int im11 = (int)( dm00*invdet); +- +-// return new Transform4(im00, im01, im10, im11); +-// } +- +-// public void transform(int[] point) { +-// } +- +-// /** +-// * Returns the length of the line segment obtained by inverse +-// * transforming the points (x0, y0) and (x1, +-// * y1). +-// */ +-// public int getTransformedLength(int x0, int x1, int y0, int y1) { +-// int lx = x1 - x0; +-// int ly = y1 - y0; +- +-// double a = (double)m00*ly - (double)m10*lx; +-// double b = (double)m01*ly - (double)m11*lx; +-// double len = PiscesMath.sqrt((a*a + b*b)/(det*det)); +-// return (int)(len*65536.0); +-// } +- +-// public int getType() { +-// } +- +-} +diff -Nru openjdk.old/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java openjdk/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java +--- openjdk.old/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java 1969-12-31 19:00:00.000000000 -0500 ++++ openjdk/jdk/src/share/classes/sun/java2d/pisces/TransformingPathConsumer2D.java 2010-12-09 14:28:42.436147685 -0500 +@@ -0,0 +1,229 @@ ++/* ++ * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved. ++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. ++ * ++ * This code is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 only, as ++ * published by the Free Software Foundation. Oracle designates this ++ * particular file as subject to the "Classpath" exception as provided ++ * by Oracle in the LICENSE file that accompanied this code. ++ * ++ * This code is distributed in the hope that it will be useful, but WITHOUT ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++ * version 2 for more details (a copy is included in the LICENSE file that ++ * accompanied this code). ++ * ++ * You should have received a copy of the GNU General Public License version ++ * 2 along with this work; if not, write to the Free Software Foundation, ++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. ++ * ++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA ++ * or visit www.oracle.com if you need additional information or have any ++ * questions. ++ */ ++ ++package sun.java2d.pisces; ++ ++import sun.awt.geom.PathConsumer2D; ++import java.awt.geom.AffineTransform; ++ ++public class TransformingPathConsumer2D { ++ public static PathConsumer2D ++ transformConsumer(PathConsumer2D out, ++ AffineTransform at) ++ { ++ if (at == null) { ++ return out; ++ } ++ float Mxx = (float) at.getScaleX(); ++ float Mxy = (float) at.getShearX(); ++ float Mxt = (float) at.getTranslateX(); ++ float Myx = (float) at.getShearY(); ++ float Myy = (float) at.getScaleY(); ++ float Myt = (float) at.getTranslateY(); ++ if (Mxy == 0f && Myx == 0f) { ++ if (Mxx == 1f && Myy == 1f) { ++ if (Mxt == 0f && Myt == 0f) { ++ return out; ++ } else { ++ return new TranslateFilter(out, Mxt, Myt); ++ } ++ } else { ++ return new ScaleFilter(out, Mxx, Myy, Mxt, Myt); ++ } ++ } else { ++ return new TransformFilter(out, Mxx, Mxy, Mxt, Myx, Myy, Myt); ++ } ++ } ++ ++ static class TranslateFilter implements PathConsumer2D { ++ PathConsumer2D out; ++ float tx; ++ float ty; ++ ++ TranslateFilter(PathConsumer2D out, ++ float tx, float ty) ++ { ++ this.out = out; ++ this.tx = tx; ++ this.ty = ty; ++ } ++ ++ public void moveTo(float x0, float y0) { ++ out.moveTo(x0 + tx, y0 + ty); ++ } ++ ++ public void lineTo(float x1, float y1) { ++ out.lineTo(x1 + tx, y1 + ty); ++ } ++ ++ public void quadTo(float x1, float y1, ++ float x2, float y2) ++ { ++ out.quadTo(x1 + tx, y1 + ty, ++ x2 + tx, y2 + ty); ++ } ++ ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ out.curveTo(x1 + tx, y1 + ty, ++ x2 + tx, y2 + ty, ++ x3 + tx, y3 + ty); ++ } ++ ++ public void closePath() { ++ out.closePath(); ++ } ++ ++ public void pathDone() { ++ out.pathDone(); ++ } ++ ++ public long getNativeConsumer() { ++ return 0; ++ } ++ } ++ ++ static class ScaleFilter implements PathConsumer2D { ++ PathConsumer2D out; ++ float sx; ++ float sy; ++ float tx; ++ float ty; ++ ++ ScaleFilter(PathConsumer2D out, ++ float sx, float sy, float tx, float ty) ++ { ++ this.out = out; ++ this.sx = sx; ++ this.sy = sy; ++ this.tx = tx; ++ this.ty = ty; ++ } ++ ++ public void moveTo(float x0, float y0) { ++ out.moveTo(x0 * sx + tx, y0 * sy + ty); ++ } ++ ++ public void lineTo(float x1, float y1) { ++ out.lineTo(x1 * sx + tx, y1 * sy + ty); ++ } ++ ++ public void quadTo(float x1, float y1, ++ float x2, float y2) ++ { ++ out.quadTo(x1 * sx + tx, y1 * sy + ty, ++ x2 * sx + tx, y2 * sy + ty); ++ } ++ ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ out.curveTo(x1 * sx + tx, y1 * sy + ty, ++ x2 * sx + tx, y2 * sy + ty, ++ x3 * sx + tx, y3 * sy + ty); ++ } ++ ++ public void closePath() { ++ out.closePath(); ++ } ++ ++ public void pathDone() { ++ out.pathDone(); ++ } ++ ++ public long getNativeConsumer() { ++ return 0; ++ } ++ } ++ ++ static class TransformFilter implements PathConsumer2D { ++ PathConsumer2D out; ++ float Mxx; ++ float Mxy; ++ float Mxt; ++ float Myx; ++ float Myy; ++ float Myt; ++ ++ TransformFilter(PathConsumer2D out, ++ float Mxx, float Mxy, float Mxt, ++ float Myx, float Myy, float Myt) ++ { ++ this.out = out; ++ this.Mxx = Mxx; ++ this.Mxy = Mxy; ++ this.Mxt = Mxt; ++ this.Myx = Myx; ++ this.Myy = Myy; ++ this.Myt = Myt; ++ } ++ ++ public void moveTo(float x0, float y0) { ++ out.moveTo(x0 * Mxx + y0 * Mxy + Mxt, ++ x0 * Myx + y0 * Myy + Myt); ++ } ++ ++ public void lineTo(float x1, float y1) { ++ out.lineTo(x1 * Mxx + y1 * Mxy + Mxt, ++ x1 * Myx + y1 * Myy + Myt); ++ } ++ ++ public void quadTo(float x1, float y1, ++ float x2, float y2) ++ { ++ out.quadTo(x1 * Mxx + y1 * Mxy + Mxt, ++ x1 * Myx + y1 * Myy + Myt, ++ x2 * Mxx + y2 * Mxy + Mxt, ++ x2 * Myx + y2 * Myy + Myt); ++ } ++ ++ public void curveTo(float x1, float y1, ++ float x2, float y2, ++ float x3, float y3) ++ { ++ out.curveTo(x1 * Mxx + y1 * Mxy + Mxt, ++ x1 * Myx + y1 * Myy + Myt, ++ x2 * Mxx + y2 * Mxy + Mxt, ++ x2 * Myx + y2 * Myy + Myt, ++ x3 * Mxx + y3 * Mxy + Mxt, ++ x3 * Myx + y3 * Myy + Myt); ++ } ++ ++ public void closePath() { ++ out.closePath(); ++ } ++ ++ public void pathDone() { ++ out.pathDone(); ++ } ++ ++ public long getNativeConsumer() { ++ return 0; ++ } ++ } ++}